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It is shown that finite motion of the single-particle excitations in a magnetic field near the surface of 
a superconductor may lead to the existence of a comparatively large number of discrete quantum 
levels located below the energy gap. The quasiclassical problem of surface excitations is solved, and 
the spectrum of these excitations is found. The results are illustrated by calculations on an elec­
tronic computer. 

IN a normal metal the finite motion of the electrons in 
a magnetic field near the surface of the metal corre­
sponds to the system of quantum levels investigated by 
Prange and NeeYl In particular, the spectrum of the 
surface electron states may be obtained quasiclassically 
from the well-known rule of quantization 

Xo 

J p(x)dx=(n + y)nli, 
0 

where p and x denote the corresponding momentum 
and coordinate, and the motion is enclosed between the 
surface of the metal and the turning point of the elec­
tron in a magnetic field. 

Somewhat earlier Pincus[ 2J pointed out the possibil­
ity of the existence of bound states of single-particle 
excitations near the surface of a superconductor and 
showed that the gap in the spectrum of the surface 
excitations decreases in comparison with the energy 
gap t:.., characteristic of a superconductor, by an 
amount of the order of the energy of the interaction of 
the excitations with the magnetic field, eA · v / c 
~ Oop0 • Here A is the vector potential, v is the elec­
tron's velocity, 0 is the cyclotron frequency, o is the 
penetration depth of the field, and p0 is the Fermi mo­
mentum. Due to the large value of the momentum in 
the plane of the surface, the "shift" of the gap in the 
spectrum of the surface excitations is already com­
parable with t:.. in fields of the order of a few oersteds. 
The existence of surface excitations leads to singulari­
ties in the density of the single-particle states at ener­
gies below t:.. and appears, in particular, in the reso­
nance absorption of the electromagnetic field at fre­
quencies corresponding to the shifted energy gap. [sJ 

The results of article[2l are obtained by numerical 
solution of the equations for a superconductor 11 and 
therefore are hard to interpret. Since the spectrum of 
the surface excitations is extremely sensitive to a 
small change of the parameters, in the scheme of the 
Pincus calculations it is difficult to also answer the 
question of the number of levels under the gap. In the 
present article we show that in a certain range of vari­
ation of the parameters the number of surface levels 
turns out to be sufficient so that the problem can be 
regarded as quasiclassical, analogous to what is done 
in a normal metal. 

1>Numerical calculation of the surface levels is also carried out in 
article [4 l. 
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FIG. 1 

From a quasiclassical point of view, in a supercon­
ductor a bound state near the surface is realized in the 
form of an electron-hole pair, each of the excitations 
of which is localized in a layer of the order of the 
penetration depth, or more exactly-in a layer of the 
order of the depth of the potential well near the surface, 
created by the magnetic field. 21 The motion of such a 
pair along the surface of the superconductor corre­
sponds to the quantization rule which, in a typical case, 
has the form 

j (P+(x)-p-(x))dx=(n+a)nli, 
0 

where P±, respectively, are the quasiclassical mo­
menta of the electron and hole. At the turning point a 
mutual transformation of the electron and hole takes 
place (see Fig. 1 below). This assertion was contained 
in article[61 ; here we give a rigorous derivation of it 
with the aid of a quasiclassical solution of the problem 
of surface excitations. 

We note that the surface levels in superconductors 
are not at all analogous to the levels in a normal metal, 
although caused by the same diamagnetic interaction 
mechanism. The spectrum of surface excitations in a 
superconductor consists of a finite number of levels, 
distributed in the range from t:.. - Oop0 to t:... The dis­
crete levels turn into states of the continuous spec­
trum for € > t:.. ( € denotes the excitation energy). 
Above t:.. the motion of only one of the quasi-particles 

21In the region of weaker fields than the magnetic fields under con­
sideration here, the excitations near the surface of a superconductor are 
localized over distances larger than the penetration depths, as a result of 
which a quasi-local level appears. This case is considered in the article 
by Azbel'. [5 ] 
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may turn out to be bound (this corresponds to the 
Prange levels); the motion of the other will be infinite. 
Therefore, the Prange levels arising in a supercon­
ductor for E: > t. are smeared out. Only as E: in­
creases, when the binding between the excitations be­
comes all the more weak, we arrive at the surface 
levels for a normal metal (taking account, of course, 
of the inhomogeneity of the magnetic field). 

1. In order to investigate the problem in a super­
conductor we shall start from the homogeneous Gor 'kov 
equations for the wave functions of the quasiparticles[ 7J 

The superconductor occupies the half-space x > 0. 
The vector potential is given by 

A=(o,-j H(x')dx',o). 
X 

Being interested in excitations moving along the sur­
face, for which the angles of collisions with the surface 
are small (({J < ({Jo ~ (O/R)112 , where R denotes the 
radius of the orbit), we shall assume that the condi­
tions for specular reflection are satisfied on the 
boundary 

gJx~o = f+Jx=O = 0. (2) 

Since the number of surface excitations is small 
( ~({J 0), the energy gap t. is determined as usual by the 
self-consistent interactions inside the volume of the 
metal. In the linear approximation with respect to the 
magnetic field, the gap is constant. In Eqs. (1) we also 
neglect those terms which are quadratic in the vector 
potential. 

Since the I,!lOmenta Py and pz commute with the 
Hamiltonian H, one can seek the solution of the system 
(1) in the form 

( A ) { PuY p,z } { S(x) } 1Jl(r)= B exp ih+iT exp i-h- , (3) 

where in the quasiclassical approximation S(x) is a 
rapidly varying function of the coordinates. Substituting 
(3) into (1) and defining the generalized momentum of 
the system by p = asjax, we obtain the following result 
in the main approximation with respect to the quasi­
classical parameters 

where E:l =(~ + p~)/2m. 
The conditwn for the validity of the quasiclassical 

treatment has the usual form: 

_!_ (..!!.._) <1. 
ox P± 

(4) 

For quasiparticles whose an~les of flight from the 
surface do not exceed (0/R) 2, P± ~ (m00p0 ) 1/ 2 as is 
evident from Eq. (4). Thus, the criteria for the quasi­
classical treatment can be written in the form 

n I B(mQBpo)''• < 1 (5) 

or, expressing 0 in terms of the critical field He, o-1 

~ evHc /ct., and introducing the correlation radius 

~o = tiv/t., 

(5') 

Assuming ~ 0 ~ 10-4 em, 0 ~ 10-5 em, and He ~ 102 Oe, 
one can see thta there is a rather broad range of fields 
in which a quasiclassical treatment is valid. 

Condition (5) expresses the usual requirement for a 
quasiclassical treatment, that the number of levels 
should be sufficiently large, n >> 1. We note that the 
condition for the quasiclassical nature of the problem, 
obtained in article[ 5 l, coincides with formula (5). 

Let us determine the boundaries of the classically 
accessible regions from the conditions that the veloci­
ties of the quasiparticles vanish: 

As is evident from expression (6) the particles may 
possess two turning points, determined by the condi­
tions P±(x~)=Oand (E: ... eAy(x0 )py/mc)2 =t. 2 • There­
fore the following situations may arise. 

There are no turning points at all. This corresponds 
to a large value of J.1. - E:l, and the motion of the parti-
cles is infinite. 

There is one turning point determined by the first 
of the conditions. This corresponds to E: > t. and cor­
responds to finite motion of one of the partie les and 
infinite motion of the other. As already indicated in the 
Introduction, this case is characteristic for Prange 
levels above the energy gap. ' 

Finally, a turning point may exist which is common 
for electron and hole, determined by the second of the 
conditions. In this connection the turning point p(x~) 
= 0 may exist simultaneously. 

We note that the turning point x0 in the case of an 
electron ( E: > 0) will occur for Py < 0, and for a hole 
(E: <O) for Py > 0, which is related to the sign of the 
effective potential well. It is not difficult to see that 
the turning point x0 arises only in the case E: < t., i.e., 
the quantum levels are located below the gap t.. In 
fact, for E: = t. the second of the conditions is satisfied 
only for x- oo, The dependence of P±(x) for the latter 
two cases is shown in Fig. 1 a and 1 b. The dependence 
P±(x) corresponds to the classical trajectories V±(x) 
= ;4(x) shown on the same figure. It is obvious that 
discrete quantum levels correspond to periodic trajec­
tories near the surface of the metal. 

2. Let us consider the situation shown in Fig. 1 a in 
detail. In this case the only turning point x0 , common 
to the electron and hole, is a reflection point for the 
particles. An electron traveling from the surface 
arrives at the point x0 with momentum p. , is reflected 
at this point and is transformed into a hole with mo­
mentum p_ (to depart with a different momentum is 
"forbidden" by the presence of a momentum jump 
between the pairs of branches at x = x0 ). Correspond­
ingly, a hole ( - p _) at the turning point turns into an 
electron with momentum - p. upon reflection. 

Let us prove this result. In order to do this it is 
convenient, having eliminated the function f• from the 
system (1 ), to proceed to an equation of fourth order 
for the wave function g. Introducing the dimensionless 
coordinate ~ = xp0 /ti, let us write it in the form 
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where A = eAy Py / cpg and a = ( iJ. - £ 1)/ iJ.. 
The term containing the second derivative of the 

vector potential is of the order of tma/ 1i (a is the 
lattice constant) and is small in comparison with the 
term ( t:J../ iJ. )2 • In the quasic lassical approximation one 
should also neglect the term containing the first de­
rivative of g. The final equation, which we shall use 
in the quasiclassical treatment, takes the form 

{.!!__+ 2a..!:.._+ a2 + (~) 2 - (.!..+ 2A) 2
} g=O as• as2 11 11 

(8) 

Let us construct quasiclassical solutions of Eq. (8). 
As usual, in the region to the left of the turning point 
(~ < ~ 0 ) we represent the wave function in the form of 
a sum of oscillating exponentials, but by damped expo­
nentials to the right ( ~ > ~ o) 

I - 1/3 • -'/2 g;<;,= (£a- ~)-i•{AIP+ e'8++A2P- e18-

+ Aap.;:-'"e-;s+ + A,p:'"e-iB_}, 

1 
g•><. =2(6- 6o)-''•{BIIP+I-'t.ei<s+-iti2J + B21P--I-''•ei(s_ +l'ti2l (9) 

+ BsiP+I-'1• e-i(B++iit2> + B,IP-1-'1• e-i(s--M>}, (10) 

where 
• 

S±= J P±(s)dS, (11) 

•• 
We note that in the region ~ > ~ 0 the wave function is 
represented by a product of oscillating, damped, and 
increasing exponentials in contrast to the usual quasi­
classical solution. 

The amplitudes Bi and Aj,. are related to each other 
by the transition matrix B = {3A. The general form of 
the matrix ~. which follows from relations of the type 
of unitarity, 3> was indicated in article[ 6l: 

(
uv 0 ) ~ ZU' 

~= .• 0 Z(J) 

u*v* 

(12) 

The explicit form of the matrix {3 may be obtained by 
matching the solutions (9) and (10) with the asymptotic· 
exact solution of Eq. (8) in the neighborhood of a turn­
ing point. 

Let us find a solution near a turning point. We ex­
pand the vector potential in a series and confine our 
attention to the linear term A(~)= A(~o) + A'(~ 0) 
U - ~ 0), A'(~o) < 0. Equation (8) takes the form 

( ~ ~ ) at;• + 2a at;• + ao + ~·s g = 0, 

where 

ao= a2 - P26o, P2 =4~IAo'l-
ll 

We shall solve it by the Laplace method (see, for 
examplePl) 

(13) 

4 11 [1(t5 2 )] g= _Ec;Jexp f\2 5 + 3 at3 + (ao+P26)t dt, (14) 
i=l r . . 

where the contours of integration ri, corresponding to 

3)We take this opportunity to correct an error in article [ 6]. Since 
in [ 6 ] the spectrum is determined correct to within a phase factor, only 
the fact of the diagonal nature of the matrix Sis essential. 

FIG. 2 

the four linearly independent solutions, must lie in 
those regions of the complex t plane where Re t 5 < 0 
(see Fig. 2). Asymptotic representations of the solu­
tion (14) to the right and left of the turning point can be 
obtained by the saddle-point method, in analogy to the 
way this is done for Airy functions. The saddle points 
are given by 

2 --
tl,2 =-a =F Wt'6o- 6=- P±2 (s). (15) 

For ~ < ~ 0 the saddle points are located on the imagi­
nary axis, but the lines of descent pass through them, 
respectively, at angles -1T/4, -31T/4 in the upper half­
plane and w/ 4, 31T/ 4 in the lower half-plane. The cor­
responding contours are shown in Fig. 2 a (the chosen 
directions of going around the contours are denoted by 
arrows). We note that the contours passing through the 
first and fourth quadrants (for ~ > ~ 0 they correspond 
to increasing solutions, as it is not difficult to see) can 
be continued in a nonunique manner. Both possibilities 
are shown in Fig. 2 a. 

For ~ > ~ 0 the saddle points are displaced in the 
complex plane and the lines of descent go at angles of 
31T/2- 9/2 and 1T + 9/2 respectively into the second 
and first quadrants, and at angles 1T/2 + 9/2 and 
11' - 9/2 into the third and fourth quadrants. The con­
tours of integration in this case are shown in Fig. 2 b. 

For ~ < ~ 0 all solutions oscillate; for ~ > ~ 0 the 
solutions corresponding to contours passing through 
the points t+ and -t_ decrease exponentially, and the 
solutions which correspond to contours passing 
through t- and -t+ increase exponentially. 

As a result the solutions (14) may be written in the 
form 

g = {C1/1 + (C1 + C2)/2 + C,I, + (C3 + C4)/3. 
(CI + C2)/1 + C1l2 +(Cs + C4)/4 + C4/ 3, ( 15) 

6>~, g=fj C1! 1, (16) 

where li denote the values of the integrals (14) at the 
points t+, L, -L, and -t+, respectively, with the 
directions of circuit taken into account. Calculating 
the integrals by the method of steepest descent, for 
~ < ~ 0 we obtain: 

g= (so- s)~'i•{Cip:;'"e 1 <"'+-"''l + (C1 + C2)p:::'1'ei<.,_-3:t/4l 

when the contours r 2, 3 pass through the points ± t_ 
and 

g=(so- s)-'1•{(CI- C2)P;'"e1<"'+-"14> + C1p:'"ei<"'-~•!•> 

+ (C3 - C4)p;'" e-i(0>++3:ti4) + C,p:'be-i(O>_ -3:t/4l}, 

if the contours r 2, 3 pass through the points ± t+. 

(17) 

(18) 
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For !; > ~o 

(All of the real factors not containing a dependence on 
~, which arise upon integration, entered into the defi­
nition of the constants Ci). Here 

4 ( ap±a P±s) !l>±(s)=- ----
~2 3 5 ' 

(20) 

where P±(!;) are determined by formula (15 ). The 
functions cl>±(!;) are real for !; < !; 0 and complex for 
!; > ~0· 

At the same time, carrying out the integration in 
(11) near the turning point (here S±(!;) = cl>±( !;)), we 
obtain the asymptotic behavior of the quasiclassical 
solutions (9) and (10 ). Joining them with the asymp­
totic exact solution (17)-(19), we find the transition 
matrix 

A- (a 0) ~ = (e-ni/4 e•i/4 ) • 

~ - 0 "' ' a ni/4 -rn/4. 
a \e e 

(21) 

In agreement with Eq. (12) the transition matrix is 
diagonal, where the eigen matrices a are transition 
matrices for the one-particle Schrodinger equation. 
Using the transition matrix (21 ), let us find the quanti­
zation rule for surface excitations. We write the wave 
function (9) in the region to the left of the turning point 
in the form 

where 

• 
g = (~- s)-'1• ..E A; p;;V' exp{ ± i J P± ds} =(so- s) -•;, 

i 6o 

.. 
A;= A{ exp { ± i J P± ds}. 

0 

From the boundary conditions (2) we find A~ =-A; and 
A~ = -A~. Expressing the amplitudes B2 and B3 of the 
increasing solutions in the region to the right of the 
turning point in terms of the amplitudes Ai with the 
aid of Eq. (21 ), and letting B2 = B3 = 0, we obtain the 
corresponding condition 

I ei<B++•/4) e'<B--n/4) I 
e-i(S++n/4.) e-i(B--n/4) = 0, 

from which the quantization rule 

follows. 

S+-S-= {(p+-P-)dx=(n+ 112)nli. 
0 

(23) 

In the situation shown in Fig. 1 b when there are two 
turning points x 0 and x~, similar calculations lead to 
the result 

rp+dx- f~-dx=(n+ l(.)nli 
0 Xo' 

(24) 

3. Let us consider formula (23) in more detail: 

~ 
0,5 

\ 
0,1 

0-
0.995 

1~1/~ 
FIG. 3 

The integral in (25) has a value ~6(mQ6p0Y12 ; there­
fore the number of levels n ~ 6 ( mQ6p0 ) 172/ti with a 
relative distance between them given by Q6p0 /nt.. 
~ (Qp0 /m6)112ti/t... This rough estimate, as the results 
of machine calculations cited below show, nevertheless 
gives the correct order of magnitude of the number of 
levels. As is evident from this formula n ~ 6312 • Such 
a substantial dependence of n on 6 leads to an abrupt 
decrease in the number of levels for small penetration 
depths, and in particular explains the results of 
articles[ 2• 4 l (n =2 for 6 = 5 x 10-6 em). For o::::: 10-5 

em one can expect on the order of ten or more levels. 
Unfortunately, even in the case of an exponential de­
crease of the vector potential the spectrum cannot be 
calculated in explicit form; however, the integrals in 
(25) reduce to elliptic integrals and can easily be cal­
culated on a machine. The results of a calculation of 
the spectrum on an electronic computing machine are 
shown in Fig. 3, the calculations being carried out for 
the following values of the parameters: Ay = -H6e-X/ 6, 
H = 10 Oe, 6 = 6 x 10-5 em, and t. = 6 x 10-16 erg. As 
is evident from the figure, more than ten levels fit 
within the depth 6. The values of the parameters taken 
are somewhat arbitrary; however, they occur within 
experimentally attainable limits. 

The spectrum presented in Fig. 3 agrees with the 
general picture of a transition from a local level to a 
quasiclassical situation, which was described by 
Azbel' ,l5 l and corresponds to excitations, whose tra­
jectories make angles of inclination to the surface 
which do not exceed ( 6/R)112• For the indicated values 
of the parameters the characteristic angles of inclina­
tion are of the order of a few minutes: 

P± __. (mQ6po)'l• 10_3 
cp~-~ ~ . 

PY Po 

In the present investigation we have neglected damp­
ing of the excitations. It is obvious that at low temper­
atures in a superconductor, just as in a normal metal, 
collisions with surface roughnesses are the basic 
mechanism of dissipation. Our investigation is based 
on the strict specular nature of the scattering; a small 
amount of diffuse scattering will lead to a washing out 
of the levels. 4 ) The question of taking account of a 
small amount of diffuse scattering in the collisions of 
surface excitations with the boundaries in a super-

4lSee the article by Fal'kovskii [9 ] in which a calculation of the dif­
fuse scattering of electrons in a normal metal is carried out. 



MAGNETIC SURFACE LEVELS IN A SUPERCONDUCTOR 1003 

conductor is of a rather fundamental nature and will be 
investigated separately. 
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