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By means of the Coulomb Green function an analytic expression is obtained for the composite (over l 
and l') squared Born amplitude for the n - n' transition. The formula is essentially simplified in the 
limiting case of large values of n and n'. At high external electron energies an expression is obtained 
for the transition cross section in an approximation analogous to the Kramers approximation for os
cillator strengths (1 « ~n « n). 

B ORN cross sections for excitation of atoms by elec
trons are usually determined by numerical methods. 
Results in analytic form have been obtained only for the 
excitation amplitudes of states n l· with n ;;; 5 
(cf., e.g.,l1l). Application of the methods used in such 
calculations is practically impossible in the case of 
states with large values of the principal quantum num
ber n. Calculation of the n- n' transition cross section 
summed over the orbital quantum numbers l and l' is 
all the more unrealistic. Inl2 ' 3 l analytic expressions 
were obtained for the amplitudes of transitions between 
states describable by parabolic quantum numbers. In 
this case too, because of the unwieldiness of the formu
las obtained, it is in practice impossible to perform the 
indicated summation. At the same time, it is precisely 
these cross sections that are of fundamental interest 
both in a number of experimental problems and in cer
tain theoretical questions. 

In the present paper an analytic expression for the 
square of the n- n' transition amplitude totalled over 
l and z', is obtained by means of the Green function for 
the Coulomb field. In the case of large values of n and 
n', the formula is essentially simplified and for small 
momentum transfers leads to an expression for the os
cillator strength coinciding with the quasi-classical 
formula. 

Throughout we use the atomic system of units with 
the Rydberg as the unit of energy. 

1. In the Born approximation the n - n' transition 
cross section has the form 

8n •+•· dq 
C1nn•=- S f(q)-

k2 k-k' q3 

/(q)= n! .L, l\nlmlei•'ln'l'm'l) 2, 

l,m,l',m' 

(1) 

(2) 

where k and k' are the wave vectors of the external 
electron before and after the collision and n, l, and m 
are the quantum numbers of the electron in the atom. 
We shall sum over the quantum numbers land min (2). 
To do this we shall extend the sum (2) over all the 
quantum numbers 

.L, (nlm I e-i•• I n'l'm') (n'l'm'l eW I nlm) 

l,m,l',m' 

where y is the set of quantum numbers n, l, and m, and 
S includes summation over the states of the discrete 
spectrum and integration over the continuum states. 
Using the spectral expansion of the Green function 

,, ·(r r') = S_ly) <vi (4) 
VE ' v E -Ev' 

we obtain 
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f(q)=~ lim (E-En)(E'-En•) J GE(r,r')e-i•('-''JGE.(r',r)drdr'. 
n2E1f:::, (5) 

The Green function for the Coulomb field has the 
forml4 l 

G ( ')- f(1-v) v1[w•,'f,(: )M,,•J,( ~ )] , (6) Er,r-2n(x-y) " v 

where 

~ {) {) 
L=---, :r=r+ r' +lr-r'l, y=r+r'-lr-r'l, v=(-E)-'h, 

ox {)y 

W(x) and M(x) are Whittaker functions of the first and 
second kinds. 

Going over to the limit in (5) reduces to calculation 
of the residue of the gamma function. As a result we 
obtain 

(8) 

The integral in (7) can be reduced to a double integ
ral over the variables x and y; to calculate this it is 
convenient to introduce the quantity A(q): 

1 q 

f(q)=-2 J A(q)dq. (9) 
nqo 

Then, taking account of the symmetry of Pn with 
respect to x and y, we shall have 

1 ~ 

A(q)=-- JJe-iq(x-y)/2 PnPn,dxdy. (10) 
48nn' 0 

With this, the cross section ann' is equal to 



BORN CROSS SECTION FOR THEn- n' TRANSITION 979 

q q_ 

!lnn•=~{J+(_:_ __ i )A(q)dq+(~---;) J A(q)dq},(ll) 
3k2n2 q3 q+ 3 q_ q+ o 

q_ 

where q+ = k ± k'. 
Expressing Pn in terms of degenerate hypergeome

tric functions and using the known integral (cf., e.g., l 5 J) 
00 

h(a,a')= J e-~xF(a,1,px)F(a',1,p'x)dx 
0 

pp' ) = A.'*"'-I (A._ p)"""'"(A.- p')"""'"' F (a, a', 1; (A._ p) (A._ p') , (12) 

we write A(q) in terms of I and I' = di/dq (the line over 
the I denotes the complex conjugate): 

A (q)=(nn')-2 Re{ 1/ 4 [h' (- n + 1,- n' + 1)h'(- n,- n') 

- h'(-n ...!-. 1, -n')h'(-n, -n' + 1)] 

d2 I 1 - ( ') 
- 1/s-[h(-n+1,-n + )h -n,-n 

dq2 

-h(-n+1,-n')h(-n,-n'+1)]}; (13) 

where p = 1/n, p' = 1/n' and .t\ = (p + p' + iq)/2. 
The expression for A(q) in terms of hypergeometric 

functions is extremely cumbersome and will not be 
given here. 

2. The case of most interest for physical applica
tions is that when n » 1 and t.n « n. According to (12) 
and (13), the quantity A(q) is determined by the value of 
the argument z of the hypergeometric function, which 
in our case is equal to 

4 4 
z =- nn'[ (1/n -1/n')2 + q2] ~ -n --:2:-;[-:-(~:-n-/:-n:-:)2:-...!-.-:----q::::-2]" 

If q is finite and n- oo, then z ~ 1/n2 • However, as n 
increases the region of q making the main contribution 
to the cross section is displaced in the direction of 
lower values and, therefore, in going over to the limit 
n- oo in (13) it is necessary to make q go simultane
ously to zero. It is easy to see that here the behaviour 
of z as n - oo is determined by the law by which q de
creases. Detailed analysis shows that if we put 
q ~ 1/n2 , the asymptotic series for A(q) in powers of 
1/n is found to be uniform with respect to K = n2q in the 
region giving the main contribution to the cross section; 
then z ~ n2 • 

Using the relation 

[ 4nn' ] --{n+n')/2 ( 4nn' ) lim - 2 F -n,-n',1;--2 =(-1)nhn(x),(14) 
n, n'--?«~ X X 

for the first term of the asymptotic series for A(q) in 
powers of 1/n, we find 

2 n2 
A(q)=-- [A,{8)+A2(e)], 

3 !l.n 

e2-1(4) A,(e)=-- --1 hn(e!l.n)hn'(e~n), 
83 g2 

A 2 (e)=!l.n (e2
- 1)2 [(1 +~-~) hn2 (e!l.n) 
8 4 e2 8 4 

-(1-~)(hn'(e!l.n)) 2], (15) 

E= [1 + (x/.!l.n) 2]'", q=x/n2, !l.n«;;n. 

Then we shall have for the cross section 

.+ 

S A1(e)+A2(e) ede} + (e2-1)2 , ·-
(16) 

- [ [ (k ± k')n2 ]2]''• 
8±- 1+ !l.n . 

We note that for K- 0 (i.e., q- 0 faster than 1/n2) it 
follows from (15) that the oscillator strength is 

32 1 ( nn' )3 =---- --- h.n(!l.n)hn'(!l.n). 
3 (!l.n) 2 n2 n+n' 

(17) 

The formula (17) is the same as the expressLm for 
the oscillator strength obtained with quasi- classical 
functions in the paper lBJ • 

For a number of problems, the total amplitude for 
inelastic transitions from a level n to all the levels 
n' ""' n is of interest. This amplitude can be expressed 
in terms of the total amplitude of all transitions with no 
change in the principal quantum number. Using (15) 
and (9), we find 

2 [ lo(x)J, (x) ] A(q)=-3n2 Jo2(x)-J,2(x)+ x , 

!l.n=O 
and, consequently, 

1 
"\1 I (nlm I ei•• I n'l'm') 12 

n2 .l...J 
n'*n 

l,m,l',m' 

=1-_:_ "\1 l(nlmle'•'lnl'm')l 2 
n2 .l...J 

l,m,l',m' 

(18) 

= 1 + ~ [ : J0 (x)J1 (x)- 2(Jo2(x) + J12 (x))] . (19) 

3. We shall consider the behavior at high external 
electron energies of the cross section determined by 
the formulas (15) and (16). For k » 1/n, the upper 
limit E+ can be put equal to infinity. Then integrating 
A1(E) gives a logarithmic function of k, since E_- 1 as 
k- oo, The remaining integrals converge and, in gen
eral, are functions only of t.n. Thus, at high energies 
the cross section is a sum of two terms: 

(20) 

The first term corresponds to the usual dipole ap
proximation and, as can be shown, is proportional to the 
oscillator strength (17). It is difficult to find the depen
dence of the second term on t.n in the general case. 

With the additional assumption that t.n » 1, the func
tions C1 and C2 have a simple form. In fact, using the 
asymptotic expansions of the Bessel function Jm(mx) as 
m - oo, we shall obtain for the cross section 

_ 8rr ~ { 2 1 2Ckn + "J'Z } 
!1nn'-];2 (!l.n)3 3rr"J'3(~n) n (t.'m)'" 9.rt a ' 

a.=J~ ~.38 -,---1___.,,.,--[ 1 +~-~-~(2 +_:_)2 
1 ~ [ e ( e - 1)] '" e2 e4 9 e 

X ( 1 - +) ( 1 - 18~)] = 5.5, (21) 

where the constant C R: 1. 
In conclusion, we note that the conditions of appli

cability. of this formula (1 « t.n « n) are the same as 
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those for the Kramers approximation for· the oscillator 
strength. In particular, the coefficient of the logarithm 
in (21) is equal to ( 47Tn3 /k2 ~n)fC (fC is the oscillator 
strength in the Kramers approximation). 

The authors are grateful to L. A. Vai'nshtei'n and I. I. 
Sobel'man for discussion of the work. 
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