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The energy balance equation is solved and all possible stationary distributions of the electron tem
perature over the cross section of a finite- size sample are determined. A classification of the dis
tributions is presented. Only one of them is stable with respect to small perturbations; depending 
on the sample size and on the electric field strength, this may be either a uniform or monotonic 
distribution. For sufficiently thick samples there exist field-strength ranges for which not a single 
solution exists. This leads to hysteresis in the current-voltage characteristic. Current-voltage 
characteristics for samples with different transverse dimensions are plotted. 

NONLINEAR effects connected with heating of the 
eleetron gas becomes significant in semiconductors 
even in relatively weak electric fields. One of the most 
interesting nonlinear effects, interest in which has been 
increasing of late, is the occurrence of a decreasing 
section on the current-voltage characteristic. This 
property is posses sf' j by the so- called S- and N- shaped 
current-voltage characteristics. There are many rea
sons for the appearance of a decreasing section on these 
characteristicsl11 • In this communication we consider 
an S- shaped current-voltage characteristic due to the 
presence of superheat mechanisms in semiconductors. 

Our purpose is to investigate the true form of the 
current-voltage characteristic in bounded samples as 
functions of the dimensions of the latter. The limiting 
case of large transverse dimensions (relative to the 
applied voltage) of the sample was investigated qualita
tively inl1- 31 • We note, however, that to obtain the true 
form of the current-voltage characteristic it is neces
sary to take a correct account of the boundary condi
tions, something not done consistently in the cited 
papers. 

1. FORMULATION OF PROBLEM AND HOMOGENEOUS 
SOLUTIONS 

We consider a semiconductor in which the mean free 
path connected with the energy transfer is much larger 
than either the mean free path connected with momen
tum transfer or the Debye radius. In addition, we as
sume that the frequency of the interelectron collisions 
exceed the electron-lattice collision frequency connected 
with the energy transfer. Under these assumptions, the 

"' symmetrical part of the electron distribution function is 
Maxwellian with an effective temperature ®. 

Let the semiconducting sample have the form of a 
parallelepiped, in which a constant electric field E is 
applied along the x direction, and the contacts in the 
directions y and z are open (jy = jz = 0, j-current den
sity), and on the boundary planes (y = 0, b and z = 0, a) 
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FIG. I 

it is assumed that there are no specific energy-dissipa
tion mechanisms. Then the equation for the temperature 
and the boundary conditions are written in the form: 

ae a ae a ae 
3/ 2N at=ayx(•El)ay+az-x (Eilaz-+ a(El)E2 - A (EI). (1) 

ae I = ae I = o (2) 
ay y~b; 0 az '~a; 0 ' 

where N is the carrier concentration, K is the thermal 
conductivity, a is the specific electric conductivity, 
A~ Nv(e) (e- T) is a term describing the transfer of 
heat to the lattice, and v(e) is the frequency of the colli
sions causing this transfer. Equation (1) for the tem
perature, written in this form, presupposes that the 
problem is homogeneous with respect to x. 

We note that Eq. (1) admits of a stationary homogene
ous solution that satisfies automatically the boundary 
conditions (2). In this case Eq. (1) takes the form 

a(El)E2 -A(8) =0. (3) 

If Eq. (3) has three roots with respect to e, then an 
S- shaped dependence of the temperature on the field is 
obtained (Fig. 1a), and the corresponding current-voltage 
characteristic (Fig. 1b) is connected with the tempera
ture by the formula 

j = a(El)E. (4) 

The decreasing section on the curve of Fig. 1a (and 
consequently also on Fig. 1b) is unstable against small 
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perturbationsl4•51 . Thus, if we co!lfine ourselves to per
turbations of the form o 8 (y, z)e-lWt, which leave the 
carrier density constant (w « 471'0'/E, where E is the 
dielectric constant of the lattice), then we obtain for w 
the equation 

w=i. ~....':_n2[ta-2(E)- (~+~)] 
3 N a2 b2 ' 

1 ( dcr dA ) 2 erE I de ~- 1 
k2(E)=-- --E2-- ==-- -- . 

rr2x d8 d9 n2 x dE 

(5) 

A homogeneous fluctuation (m = n = 0) corresponds to a 
frequency Wo = i · (2/3}(K/N)(n/lc)2. Therefore such a 
homogeneous fluctuation always increases in time, as a 
result of which there is realized one of two possible 
stable branchesl11 (AB or CD). In other words, there 
exists a range of currents j1 < j < h, which are never 
reached in any regime (field regime), and the decreasing 
branch drops out of consideration in general in this case. 

If we connect the sample in a circuit with a serious 
ballast resistance R of sufficient magnitude (the current 
regime), then the homogeneous will attenuate with time 
(Im w shifts towards negative values). The ballast re
sistor, which stabilizes the homogeneous perturbation, 
should satisfy the inequalityl41 

L I dj 1-1 
R>s dE ' (6) 

where L is the length of the sample and S is the trans
verse cross section area. 

If follows from (5) that if Zc(E) > a, b, then inhomo
geneous perturbations (m, n ;o< 0) in the given field E 
attenuate with time. In the case of the inverse inequality 
we have Im w > 0, and since the inhomogeneous pertur
bations are not connected with the external circuit, the 
homogeneous distribution of the temperature is unstable 
in all regimes. It is clear therefore that at fixed dimen
sions of the sample, the sign of the imaginary part of 
w, corresponding to the inhomogeneous perturbation, is 
determined by the function Zc(E) when the field is varied. 
The character of this dependence follows from the 
definition (5) of lc and is shown in Fig. 2. As seen from 
this figure, in fields E1 and E2 the quantity de/dE, and 
with it also lc, vanishes, and in some intermediate field 
assumes a minimum value lc min· 

Thus, we can conclude that if a, b < lc min (a1 in 
Fig. 2), and if R > (L/S) {ldj/dEr1}max• then the homo
geneous distribution of the temperature is stable in the 
entire interval of fields E1 < E < E2, and the form of 
the current-voltage characteristic is given by Fig. lb. 
If the foregoing condition on the transverse dimension 
is violated (a2 in Fig. 2), then there are two regions 

adjacent to E1 and E2, whereas before the homogeneous 
distribution of the temperature is stable. The limits of 
these regions E~ and E~ are determined from the equa
tion 

lc(E) =max (a, b). (7) 

The region of the fields E, in which the homogeneous 
distribution is unstable (E~ < E < E~) is the larger the 
thicker the sample. This region of fields calls for an 
additional investigation, which will be carried out below. 

In concluding this sec\ion we note that the problem 
was regarded as homogeneous in x from the very outset. 
This is connected with the fact that the fluctuations that 
depend on x decrease the growth increment of the per
turbation (the fluctuations that depend only on x gener
ally do not lead to instability of the homogeneous tem
perature distributionu1 ). 

2. INHOMOGENEOUS STATIONARY SOLUTIONS AND 
THEIR STABILITY 

Let us consider the intermediate interval of fields, 
where the condition a< lc(E) is not satisfied, and let us 
construct inhomogeneous stationary solutions. With 
respect to the dimension in the direction of the y axis, 
we shall assume that the condition b < lc min is satis
fied. Since in this case the solution that is homogeneous 
with respect toy is stable, the problem can be regarded 
as one-dimensional, and the stationary equation (1) for 
the temperature takes the form 

d de (8) dzx(8)dz=-cr(8)E2 +A(8). 

We shall henceforth consider only the one-dimen
sional problem, for in this case we can carry out a 
complete investigation of the solutions of Eq. (8) (unlike 
the two-dimensional problem, where the equation cannot 
be integrated exactly). ® 

By making the change of variable w = jK(®)d® 
Eq. (8) and the boundary condition (2) are reduced to the 
form 

d2w + dU(w) =O, 
dz2 dw 

dwl =0, 
dz z=a,O (9) 

w 

U(w)= J{cr(w)E2-A(w)} dw. 

Equation (9) coincides in outward appearance with the 
equation of motion of the particle in a potential field, 
the function U(w) having the meaning of the potential 
energy of the "particle," and the roles of the time and 
of the coordinate are played by z and w, respectively. 

The form of the potential energy in a fixed field E is 
shown in Fig. 3. When the field changes from E1 to E2, 
the values of the two maxima change in such a way that 
the function U(w) has only one maximum in the field 
E = E1 (or E2), and the other two extrema coalesce at 
the inflection point located on the right of the single 
extremum (or on the left in the field E2). The boundary 
conditions imposed on the temperature correspond to 
finite motion of the "particle" in the potential well and 
can be satisfied only when the sample subtends an in
teger IUimber of half-oscillations. 

The minimum period of motion of the "particle" 
corresponds to motion near the minimum of the poten
tial energy, where the particle behaves like a linear os-
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cill.ator with a period 2lc (E). We note that 
l~2 = rr-2(d2U(w)/dw2). It is obvious that when lc(E) >a 
there exist no inhomogeneous solutions in the given 
field 1>, and the criterion for the absence of inhomogene
ous solutions coincides with the criterion for the stabil
ity of the homogeneous solution. Thus, if the homogene
ous solution is stable, then it is unique. Conversely, 
when there exists at least one inhomogeneous solution 
(a > lc(E)), the homogeneous solution is unstable (see 
Sec. 1). Let us examine the character of the behavior 
of the solutions with increasing thickness of the plate 
in a given field E. 

When 2lc > a > lc, there exists only one inhomo
geneous solution corresponding to one half-oscillation. 
When 3lc > a > 2lc there occurs one more solution, 
corresponding to two half-oscillations, etc. The total 
number of inhomogeneous solutions at given a and E is 
thus equal to [a/Zc(E)] (square brackets denote the in
teger part of the argument). 

Let us renumber the solutions of (9), using the ex
plieit form of the solution, which is written as follows: 

- Jw dw 
l'2z = , 

w( l'U(wt')- U(w) 
(10) 

where w~ is the value of w on the boundary z = 0, and 
U(w~) has the meaning of the total energy of the particle. 
The following formula is obvious: 

w{ 

- J dw y2a=p , 
,fU(w1')- U(w) 

lL'j 

(11) 

where w~ is the value of w(z) closest to (but not coin
ciding with) the extremum at the point z = 0, and 
p = 1, 2, 3, ... is the number of half-oscillations of the 
p-th solution. 

Let us consider now the character of the behavior of 
the solutions with increasing field for a given sample 
thickness. In analogy with the solution of the problem 
of particle motion in a potential well, each solution 
corresponds to an energy level uP(w~). If at a fixed 
dimension we vary the field in the interval E~ < E 
< Ef1 >, where Efl> is determined from the relation 
2lc(E i1 >) = a, then in each well from this region there 
is one energy level corresponding to a monotonic solu
tion. In the interval Ei1> < E < Ei2 >, where Ei2 > is de
termined from the condition 2lc(Ef2 >) =a, there appears 
a second level, etc. In some interval of fields from the 
region E~ < E < E~, including the field corresponding 
to lc min' the number of levels will be maximal and 
equal to [a/lc min]. With further increase of the field, 
the number of levels begins to decrease, so that in the 
field range E~ 1 > < E < E~, where EJ 1 > is determined 
from the formula 2lc(EJ1>) = a, there again takes place 
only one level corresponding to a monotonic solution. 
We note that a monotonic inhomogeneous solution exists 
in the entire interval of fields E~ < E < E~, and corre
sponds to the "uppermost" energy level. 

Let us investigate the stability of the inhomogeneous 
solutions against perturbations of the form ow 

!)We note that the existence of only a homogeneous solution if the 
foregoing conditions satisfied follows from the character of the be
havior of the function U(w) and is connected with the assumption 
that U(w) is a single-valued function of w. 

lflw} 

1/J 

FIG, 3 

= ow(z)e-iwt. Let us linearize Eq. (1). Then we obtain 
from (1) and from the boundary conditions (2) 

HP6w + 3/,iNw6w/x=-2a(w)EoE, (12) 

~ owj =0 
dz ,~o:a ' (13) 

HP=!!_+ dcr(wP(z)) E2 dA(wP(z)) 
dz2 dw dw 

Here wP(z) is one of the possible inhomogeneous solu
tions of the equation with a number of half-oscillations 
equal to p (this circumstance is denoted by the superior 
index). 

Equation (12) and boundary conditions (13) must be 
supplemented by Kirchhoff's law (the law of conserva
tion of the total current), which takes the form 

a 

EL + bRE s cr(wP)dz =fff, 
0 

where & is the generator emf and is constant. Variation 
of this relation yields 

0 0 d ( P) 
[ L+ bR s cr(wP)dz]!JE=- bRE s __!!_!!__!Jwdz. (14) 

o o dw 

The solution of (12) is sought in the form of an ex
pansion in the eigenfunctions of the same equation with
out the right hand side. Eq. (12) without the right hand 
side corresponds to the condition 15 E = 0 or, as is seen 
from (14), to the absence of ballast (R = 0, given-field 
regime). 

As already mentioned above, in this case the homo
geneous solution on the decreasing section of the cur
rent-voltage characteristic is unstable, i.e., hysteresis 
occurs. A similar type of instability is expected also 
for the inhomogeneous solutions. This would correspond 
to the appearance of at least one negative eigenvalue 
(i.e., 1m w > 0) in the spectrum of the eigenvalues of 
the operator HP. 

The method of determining the number of negative 
eigenvalues of the operator HP is based on the idea ofrsJ. 
Differentiation of Eq. (9) with respect to z gives the 
following equation for dwP I dz: 

dwP 
HP--=0. 

dz 
(15) 

Thus, the function dwP /dz, corresponding to the zero 
eigenvalue, but satisfying boundary conditions differing 
from the boundary conditions (15), is an eigenfunction 
of the operator HP. (The function itself, rather than the 
derivative, vanishes on the boundary.) 

As is well known, from any solution of a second
order differential equation it is possible to construct a 
second solution that is linearly independent of the first. 
Thus, knowing dwP /dz, we can find the solution of Eq. 
(15) with a derivative that vanishes at the point z = 0. 
An investigation shows that at the point z = a the deriva-
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tive of this solution vanishes automatically. Such a solu
tion is an eigenfunction of the operator HP corresponding 
to a zero eigenvalue and satisfying the boundary condi
tions (13). According to the Sturm theorem, the zeroes 
of two linearly independent solutions mutually alternate 
with one another. Therefore in the open interval (0, a) 
the function corresponding to the zeroth eigenvalue of 
HP and satisfying the boundary conditions (13) has one 
more zero than the function dwP /dz (since two zeroes of 
the latter are located at the end points of the interval). 
It is clear that, for example, the function corresponding 
to the zeroth eigenvalue of the operator HP with p = 1 
and satisfying the condition (13) has one zero, since 
dwP /dz with p = 1 has no zeroes in the open interval 
(0, a). It is easy to verify that the index p determines 
the number of zeroes possessed by the eigenfunction of 
the operator HP corresponding to the zero eigenvalue 
and satisfying the condition (13). 

We apply the oscillation theorem, from which it fol
lows that the ground- state function has no zeroes and 
that the number of zeroes of each function determines 
the number of the state, and the corresponding eigen
values are arranged in an increasing sequence. It is 
clear from the foregoing that the operator HP has ex
actly p negative eigenvalues, and in accordance with the 
advanced hypothesis, none of the stationary solutions is 
stable in the given-field regime2 >. 

In the current regime (R ¢ 0), Eq. (12) has a solution 
only if the right hand side of Eq. (12) is orthogonal to 
the eigenfunction of the operator HP corresponding to 
the zeroth eigenvalue. It is easy to see that this re
quirement reduces to the existence of a solution of an 
equation for dw/dE, since the equation for this function 
is obtained from Eq. (12) by formally letting the fre
quency w go to zero. The corresponding solution is con
structed by differentiating formula (10) with respect to 
E. On the other hand, in order for this solution to exist 
it is necessary to have the same orthogonality relation. 
Thus, the sought orthogonality does take place. 

Taking this circumstance into account, the solution 
of Eq. (12) takes the form 

a 

~ qJnP 1 cr(wP)<pnP dz 

6wP=2Ei ~ 0 6E. 
£...J (J) + il.nP 
n=O 

(16) 

Here A~ are the eigenvalues of the operator HP, cpP(z) 
are the corresponding eigenfunctions, which are a//
sumed to be normalized by the condition 

a 1 ) 
( 3f2N J-<rnPqJmPdz=6nm . 

0 " 

We substitute (16) in (14) and write the result as follows: 
b a co 'T 

FP(w)==R- 1 +-[Jcr(wP)dz+2E2 ~ ~~ ]. (17) 
L 0 b/, (J) + ~l.nP 

where 
a ad ( P) 

Tn=qcr(wP)<rnPdz)(I ad: <rnPdz). 

This is the dispersion equation for w. 
The inhomogeneous solution is stable if the function 

2>This contradicts the result of [ 2 ] , where it was erroneously de
duced that the spectrum of the operator HP with p = 1 has no negative 
eigenvalue. 

FP(w) of the complex variable w does not vanish in the 
upper half-plane. In order to establish the number of 
zeroes possessed by the function FP(w) in the upper 
half-plane, we note that the number of poles in this 
function in the upper half-plane is equal to the number 
of negative eigenvalues, i.e., it is equal top. Then, in 
accordance with the principle of the argument, we have 

(18) 

Here n is the number of zeroes in the upper half-plane, 
and the second term in the right side is the increment of 
the argument of the function FP(w), after following the 
contour C and closing the upper half plane of w, divided 
by 27T. We choose these contours in the form of a semi
circle of infinite radius. We consider the mapping of the 
chosen contour in the complex FP(w) plane. The entire 
infinite semi-circle (w - oo) is mapped into a point on 
the real axis. This point lies to the right of the origin 

(R-1 + (b/L) ja(wP)dz > o). The real positive (negative) 
0 

axis is mapped into a curve lying above (below) the real 
axis of the FP(w) plane. The image of the origin of the 
w plane lies on the real axis. We can have two cases. 

1. The origin of the w plane is mapped into a point 
lying on the real axis to the right of the origin, if the 
inequality K 1 > -d]/dE is satisfied, where 

f " J=-fi(z)dz. 
a o 

In this case the image of the contour C does not enclose 
the origin, i.e., the increment of the argument of FP(w) 
is equal to zero. From (18) we get n = p. This means 
that none of the solutions are stable. 

This result shows that if sections with positive dif
ferential conductivity appear on the current-voltage 
characteristic, then these sections are unstable. Sec
tions with negative differential conductivity are also 
unstable if the ballast is chosen to be insufficiently 
large. 

2. The origin of the w plane is mapped into a point 
lying on the real axis to the left of the origin, if the 
following inequality is satisfied. 

R-1 b dJ 
<-LdE' (19) 

Since in this case the image of the counter C encloses 
the origin, which is then circled in the opposite direc
tion, then the argument of FP(w) acquires an increment 
equal to -27T. Expression (18) yields 

n=p-1. (20) 

This result must be taken to mean that if the ballast 
resistance is chosen sufficiently large (see (19)), then 
the only stable inhomogeneous solution on the decreas
ing section of the current-voltage characteristic is the 
solution with p = 1, i.e., a monotonic solution. We note 
that the criterion (19) for an inhomogeneous solution 
coincides with the criterion (6) for a homogeneous solu
tion3>. 

3>For the limiting case of a cylindrical sample of infinitely large 
radius, a similar inequality was obtained in [3 ]. 
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FIG. 4 

3. CURRENT- VOLTAGE CHARACTERISTIC 

From the results of(4 ' 51 and the preceding section it 
follows that if there is no balanced resistance (the field 
regime), then at arbitrary transverse dimensions of the 
specimen only the branches AB and CD on Fig. 4 are 
stable. This means that when the field is increased 
from zero to E > E2, at the point E = E2 the current 
changes jumpwise from j1 to j~, and when the field is 
decreased from E > E2 to zero the jump of the current 
from a value h to j~ occurs at the point E = E1 (hystere
sis). Thus, the decreasing section of the current
voltage characteristic can be investigated only if a 
ballast resistor is used. 

If the transverse dimensions a and b of the sample 
are < lc min and the ballast resistor satisfy the inequal
ity 

L {I dj ,-1} 
R>s dE max 

(see (16)), then Eq. (3) for the temperature has a homo
geneous solution, that is stable against small perturba
tions. The form of the current-voltage characteristic 
for this case is shown by Fig. 4, curve 1 (see also 
Fig. 1b). 

On the other hand, if a > lc min and b < l · then 
· d · t d . c m1n , as m 1ea e m Sec. 1, there are regions E1 < E < E~ 

and E~ < E < E2 where the homogeneous distribution of 
the temperature is stable and is unique as before (the 
fields E~ and E~ are determined by the condition 
lc (E~,2) = a). In these regions, the current-voltage 
characteristic coincides with curve of Fig. 4, for which, 
naturally, it is necessary to have 

R >~max {I dj(E) ~-I} . 
8 dE E=E.,E, 

Let us consider now the variation of the current
voltage characteristic compared with curve 1 of Fig. 4 
in the region E~ < E < E~, where only a monotonic in
homogeneous distribution of the temperature can be 
stable. To this end, it is convenient to investigate the 
function 

1 • 
e=-Ja(z)dz 

a o 

representing the average temperature, since the char
acter of variation of this function duplicates qualitatively 
the form of the current-voltage characteristic. We can 
assume approximately that 

E" -J=-J crdz ~ cr(8)E. 
a o 

The average temperature is a function of the field E and 
of the transverse dimension of the sample a. It there
fore depends on the form of the potential energy U(w), 
which varies with variation of the field E, and on the 
position assumed by the energy level relative to the 
bottom of the well. The position of this level in a fixed 
field changes with changing dimension of the sample. 
Thus, in regions of fields directly adjacent to E~ or E;, 
the energy level is located near the bottom of the well 
and the average temperature is close to the branch BC 
of the homogeneous distribution shown in Fig. 1. It may 
turn out that in a certain field integral, when the 
maxima of the potential energy still greatly differ in 
magnitude, the energy level will be located near the ,if 
smaller maximum and then the average temperature 
will be close to the temperature determining this maxi
mum. Therefore the course of the curve of the average 
temperature in such an integral field will be close to 
the branch EB or CD of Fig. 1. Such a case takes place 
in a sufficiently thick sample with dimension a » z · 
(th 1. ·t· c m1n 

e 1m1 mg case is that of an infinite sample, for which 
the foregoing considerations are obvious). 

We note also the following circumstance. Regardless 
of the dimension of the sample, thee curve should cross 
the branch BC of the homogeneous distribution. This 
follows from the fact that in measuring the field the 
value of the smaller maximum increases, and that of 
the larger one decreases, and ultimately the smaller 
maximum becomes large. Therefore, by virtue of the 
continuity, there is found a field Eo( a) from the interval 
E~ < E < E~, in which the average temperature coin
cides exactly with the temperature of the homogeneous 
distribution in this field. 

The foregoing considerations m:ike it possible to 
describe certain limiting cases of the qualitative course 
of the current-voltage characteristic in the field 
integral E~ < E < E;. 

1. If the sample is thin (a ~ lc min), then the field 
region in which the homogeneous notion is unstable is 
small. We can therefore expect in this field integral 
the energy level to be always located at the bottom of 
the corresponding potential well. Curve 2 in Fig. 4 
shows the approximate form of the current-voltage 
characteristic in the section E~ <2l < E < E; <2l. 

2. If a » lc min• then the integral (E~, E;) is large, 
of the order of (E1, E2). The energy level can approach 
the maximum in such fields, when both maxima still 
differ significantly in magnitude. Therefore, when the 
field increases from E~ to E;, the average temperature 
will first decrease, in accordance with curve BC of 
Fig. 1, and then increase, tending to the curve CD. 
Subsequently it again begins to decrease, and intersects 
at a certain field Eo( a) the curve BC. The function e (E) 
behaves similarly when the field is decreased from E~. 
Thus, the function e(E) has in the interval (E~, E~) four 
extrema. An approximate form of the current-voltage 
characteristic in the section E~ <3 l < E < E~ <3 l is shown 
in Fig. 4 (curve 3). The variation of curve 3 of Fig. 4 
with decreasing dimension, can be easily understood. 
The two clearly pronounced extrema on curve 3 of Fig. 4 
were located over BC, start to come together with de
creasing dimension, until at a certain thickness a 1 they 
coalesce into a single inflection point. The two other 
extrema located under BC behave in similar fashion, 
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FIG. 5 

and the coalescence into a single inflection point takes 
place, generally speaking, at a different thickness 
a2 .., a1. With further decrease of the thickness, the 
current-voltage characteristic assumes the form of the 
curve 2 of Fig. 4, and finally when a< lc min it takes 
the form of curve 1 in Fig. 4. 

Let us stop to discuss in greater detail the current
voltage characteristic shown by curve 3 (Fig. 4). The 
sections of the ~urr~nt-voltl!¥e £_haracteristic in the 
field intervals (Eh E2) and (E3, E4) (see Fig. 5) are un
stable, since the condition (19) is not satisfied in these 
sections. Nor is it satisfied near the points E1, E2, E3 , 

and E4, since at these points d]/dE = 0, and in order to 
satisfy the condition (19) the ballast R must be infinite. 
Therefore when the current increases, the field ex
periences a discontinuity at the point r = ll> changing 
jumpwise from the value E4 to E3, and at the point 
f = 1 it changes jumpwise from E2 to E1. When the 
current is decreased, similar jumps occur at the point 
J = ls and J = ~ (in Fig. 5 the jumps are shown by thick 

dashed lines). Thus, the current-voltage characteristic 
of the thick sample has two hysteresis sections. In a 
sufficiently thin sample, the current-voltage character
istic has no hysteresis sections. 

In conclusion we note that we assumed above that 
there is no constant magnetic field. It is not difficult 
to take into account the presence of a magnetic field, if 
the latter is directed along the current. In a weak mag
netic field, the results remain the same as before. Since 
the magnetic field is sufficiently strong (but. not quan
tizing), then this leads to a change in the value of lc, 
which decreases in proportion to the reciprocal of the 
magnetic field. In this case the homogeneous distribu
tion becomes unstable in much thinner samples (com
pared with the case when there is no magnetic field). 

The authors are grateful to I. B. Levinson and Sh. M. 
Kogan for useful discussions. 
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