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The possibility of creating conditions of permanent sensitivity of supercooled liquids to cha.rged 
particles by setting up a certain temperature gradient in the liquid is analyzed theoretically. Some 
theoretical demands on the geometric characteristics of the system, and the choice of working liquid 
and material of the walls and top are established. Formulas are given for calculation of the upper 
and lower temperatures of the sensitivity zone. The width of the latter is determined. 

INTRODUCTION 

PisAREV[ 1 1 has shown the possibility of the appear­
ance of ions in supercooled liquids. This phenomenon 
was proposed for use for the creation of a tracking ap­
paratus, capable of detecting moving charged particles. 
Just as in [2 1 there were revealed physical conditions 
for the permanent sensitivity of binary liquid solutions 
to ions, it is possible to analyze the possibility of ob­
taining constant sensitivity of supercooled liquids to 
charged particles. One can obtain a zone of permanent 
sensitivity by creating a definite temperature gradient 
in appropriate liquids. In the present paper, the possi­
bility of obtaining such conditions is analyzed theoreti­
cally. 

THE TEMPERATURE GRADIENT AND CONVECTIVE 
STABILITY 

We consider a vertical cylindrical column of liquid, 
along which a constant temperature gradient is main­
tained. At the lower end of this column, we maintain 
some temperature Tz which should be greater than T 0 -

the fusion temperature, and at the upper end, the tem­
perature T2, which is the lower boundary of the tem­
perature sensitivity zone of a supercooled liquid to 
charged particles. T 2 is the minimal temperature of 
supercooling, beyond which the formation of a solid 
phase occurs effectively even without any isolated cen­
ters; T 1 is the upper limit of the temperature sensitiv­
ity zone, beginning with which the effective formation of 
a solid phase takes place on the charged centers. The 
liquid in the zone between T0 and T2 is in a metastable 
supercooled state. The temperature distribution is 
shown schematically in the drawing. If such conditions 
can exist, then the charged particle passing through the 
sensitivity zone between T1 and T2 and producing ioniza­
tion, leaves behind it a chain of growing crystallites. [ 11 
The produced crystals will grow so long as they are in 
the zone of the metastable state. Under the action of the 
force of gravity, they will fall downward and enter a 
zone with temperature above the melting temperature, 
where they will melt. Most materials expand on heating 
and therefore their density decreases here. Thereiore, 
it is important to make clear the problem of the convec-
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tive stability of a similar system. The problem of the 
conditions for the appearance of stationary convection 
in a motionless liquid in a vertical cylindrical tube, 
along which a constant temperature gradient is main­
tained, was investigated by Ostroumov. [ 3 ' 41 It has been 
shown that, to avoid convective flow of the liquid, it is 
necessary that the temperature gradient be parallel to 
the gravitational force. The instant of appearance of 
convection corresponds to the smallest value of the 
quantity ~ 

y = PG = AR4ga / xv. (1) 

Here P is the Prandtl number, G the Grasshof num­
ber, aTI3Z =-A< 0 is the temperature gradient, R 
the radius of the cylinder, g the acceleration due to 
gravity, a the coefficient of thermal expansion of the 
liquid, x the coefficient of thermal conductivity, and v 
the kinematic viscosity. 

In the limiting case of thermally insulated walls, 
y = 67.4. In the other limiting case (infinite thermal 
conductivity of the walls) y = 215.8. Thus, if the differ­
ence (Tz - T2) is not too large, the cylinder is suffi­
ciently high, and its radius is t:>ufficiently small, then 
the liquid remains motionless, and a purely thermally 
conducting regime develops. The temperature and the 
density of the liquid in this case are functions of the co­
ordinate z, while the density of the liquid above is 
higher than below. 

We find the temperature distribution along the col­
umn of liquid. In the absence of convection and of heat 
sources inside the liquid, the equation of thermal con­
ductivity is 

II= -x grad T, (2) 

where I1 is the heat flux, K the coefficient of thermal 

Vertical temperature 
distribution. The 
sensitive zone is shaded. 
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conductivity of the liquid. We then have 

div II= 0, fJ2T I aZ2 = 0. (3) 

Integration of the second of Eqs. (3) for our boundary 
conditions gives 

T1-T, 
T(Z)=T1- l Z, (4) 

is the length of the liquid column. 
Thus, to each value of Z from Eq. {4), one can set a 

definite temperature T, and conversely, for T one can 
find the corresponding z, i.e., the height at which the 
given temperature is achieved. 

LIMITING TEMPERATURES OF THE SENSITIVITY 
ZONE 

As the upper temperature boundary of sensitivity of 
a supercooled liquid to charged particles, we take such 
a temperature T 1 for which the crystallites, which are 
formed on ions, would be visible, independent of their 
dimensions. The upper temperature boundary is deter­
mined from thermodynamic considerations in r 1 1: 

[ 3 M ( 4rra4 e1e2 ) '''] T=To 1--- · 
2 pQ (ze) 2 (e2- eJ) 

(5) 

Here M is the molecular weight of the crystallizing ma­
terial, p its density, Q the molar heat of fusion, a the 
surface tension on the "crystal-liquid" boundary, ze 
the charge of the particle on which crystallization oc­
curs, E 1 and E2 the dielectric constants of the liquid 
and the crystal. Substituting T1 from {5) in {4), we get 
an expression for finding the location of the lower 
boundary of the sensitivity zone, corresponding to the 
upper temperature boundary, 

Zt ={T 1- To [1-~~( 4rra• ~\'h]} (TI-1'2 )- 1 1. (6) 
2 pQ (ze) 2 (e,- Et) I 

We further determine the lower temperature bound­
ary corresponding to the spontaneous production of 
crystals. We make use of the results of the theory of 
heterophase fluctuations[ 51 in the case of phase inver­
sion of "liquid-crystal" from the melt. According to 
this theory, even up to the beginning of the usual phase 
transition, the system keeps the new nucleation phase 
in the metastable state, i.e., strictly speaking, it is in­
homogeneous. The presence of the new nucleation phase 
and its distribution are considered not as fluctuations, 
but as the appearance of statistical equilibrium of the 
system. 

Just as in r 2 1, we make use of the Beeker-Doring 
solution of the fundamental kinetic equation for the rate 
of formation of critical nuclei and apply it to the phase 
inversion "liquid-crystal:" 

s·~ Y L'l<ll' L'l<P' 
l= -Nexp(--) 

(2nk1') '" 3n' -kT · 
(7) 

Here I is the number of critical viable nuclei of crys­
tals forming per cm3 per second, S* is the surface area 
of the critical nucleus (in the case of a spherical nu­
cleus, S * = 4rrr\ f3 the number of collisions of the mole­
cules of the liquid with unit surface of the nucleus per 
second, ~<I>* the maximum change in the thermodynamic 
potential of the system in the formation of a critical nu­
cleus in the supercooled liquid (the height of the poten­
tial barrier which must be surmounted by the system in 

order that a nucleus of critical size be formed), n * the 
number of molecules in the critical nucleus, N the num­
ber of molecules in 1 cm3 of the liquid, k Boltzmann's 
constant. 

Let us determine ~<I>*. The change in the thermody­
namic potential of the system in the formation of a crit­
ical nucleus of radius r in the supercooled liquid is 

(8) 

where J.J. 1 is the molar chemical potential of the liquid 
phase, J.J. 2 the molar chemical potential of the crystal­
line phase, NM the number of moles in the nucleus, S 
the surface of the nucleus. N M = % rrr 3 (M/ p) -\ where 
M/ p is the volume of a single mole of the crystal, 
( J.J. 1 - J.J. 2) = Q~T/ T0, ~T the supercooling of the liquid. 
Taking it into account that at the maximum a(~rp)/ar 
= 0, we find the critical radius of the crystalline nu­
cleus and the maximum change in the thermodynamic 
potential: 

r' _ 2aM/p 
- Q/1.1' /To' 

• _ 16 3 ( M/p )' 
/I.<P -3M Q/1.1'/To · 

The number of molecules in-the critical nucleus is 

{9) 

(10) 

{11) 

Here N0 is Avogadro's number, M/pN0 the volume oc­
cupied by one molecule of the material in the crystal. 

The number of molecules in the supercooled liquid 
in 1 cm 3 is 

N = NoPliql M, (12) 

where Pliq is the density of the liquid. 
We now determine the mean number of collisions of 

molecules of the supercooled liquid with a unit surface 
per second. The growth of the crystal nucleus presup­
poses the preliminary separation of the molecules 
growing on the crystal from those of the surrounding 
liquid. The "activation energy" necessary for this sep­
aration, is identical with the energy which is the pre­
requisite of self-diffusion of molecules of the liquid. 
The fraction of molecules found in a similar "activated" 
condition is determined by the expression exp ( -~U/kT), 
where ~U is the "activation energy." Taking this into 
account, we can assumer 5 J 

~ = ~o exp( -/I.U I kT), (13) 

where {3 0 = Nv'kT/2rrm, m is the mass of a single mol­
ecule From the viewpoint of the theory of heterophase 
fluctuations, the value ~U::::; A where A = Q/N0 is the 
heat of fusion referred to a single molecule. 

Substituting (9)-{13) in (7), we get an expression for 
the rate of formation of viable critical nuclei in 1 cm3: 

8 ( PI)'( No )'" [/I.U 16na3 
( 1lfjp )'] 

l= y6m a-;;-- Q/1.1'/To exp- kT+ 3kT Q/1.1'/To . 
(14) 

We now define the lower temperature boundary as 
the temperature at which a number of critical nuclei of 
order of unity are formed in the supercooled liquid per 
cm3 per second. Then, we can determine from (14) the 
corresponding supercooling ~T* = To- T2 and conse­
quently, the temperature T2. In view of the transcen-
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dental character of (14), the problem is solved either 
graphically or numerically. We note that the rate of 
formation of critical nuclei is very much dependent on 
the supercooling of the liquid. As the factor in front of 
the exponential is not large, it would still be compen­
sated by a rather small supercooling t.T. 

Application of Eq. (14) to the case of supercooled 
liquid argon, for which the upper temperature boundary 
was calculated in l 1 1 , shows the practical suitability of 
this liquid for the purpose of detecting moving charged 
particles if the calculated data used were sufficiently 
accurate. For argon, the temperature T 2 is found to be 
higher than T 1 for the charges of the nucleus of the 
crystallization centers 1e, 2e, 3e, 4e. The physical 
meaning of this result can be interpreted in the follow­
ing fashion. The formation of the viable nuclei of the 
argon crystals on charged centers is somewhat more 
probable than spontaneous crystallization, but these 
probabilities are comparable. For this reason, for 
practical detection of moving charged particles, liquids 
should be used for which T1 > T2 • 

The rate of formation of viable nuclei I depends rath­
er strongly on the value of the surface tension on the 
"crystal-liquid" interface. Therefore, by using refer­
ence data, we can take into account the dependence of 
the surface tension on the temperature. We note that in 
the theory developed above, we did not take into consid­
eration the dependence of the surface tension on the di­
mensions of the nucleus. In calculations of the upper 
temperature boundary T 1 from (5), it should be taken 
into account that for small critical nuclei, the values of 
the dielectric constants E 1 and E2 can differ appreci­
ably from their macroscopic values. 

EFFECT OF WALLS AND IMPURITIES 

It is known that the appearance of a new phase in 
phase transitions, including crystallization from the 
melt, proceeds more easily on the walls and on various 
mechanical impurities. This is due to the fact that the 
work of formation of a critical nucleus is somewhat 
less in this case. The work involved in the formation of 
a critical nucleus is especially greatly reduced if the 
material of the walls or impurity particles has a suit­
able structure on some faces with the crystallizing ma­
terial. All this must be taken into account in the choice 
of materials of the walls and covers, so as to obtain 
significant supercooling. The liquid used should be 
carefully cleansed of impurities. The materials of the 
walls and cover should be such that the liquid employed 
wets these substances but little. The temperature of 
the upper cover should be somewhat lighter than that 
calculated from Eq. (14). 
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