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The Hartree- Thomas- Fermi approximation for a heavy atom in an ultrastrong magnetic field apprec­
iably exceeding 1010 Oe is considered, when a complete rearrangement of the electron shells occurs. 
It is shown that spherical symmetry is preserved, and the radius of the atom decreases with magnetic 
field in a certain range of its variation. The problem of the excitation levels of such an atom is dis­
cussed. 

1. INTRODUCTION 

THE discovery of quasars and pulsars has put on the 
agenda the possibility of observing matter in very strong 
magnetic fields, which are not yet attainable under 
laboratory conditions. Fields in the range 109 to 1010 Oe 
or even in the range 1012 to 1014 Oe, which appear in 
contemporary astrophysics, [1- 31 make an examination of 
the question of the behavior of ordinary matter (not 
plasmas) in fields above 1010 Oe, at which the interac­
tion of the atomic electrons with the external magnetic 
field begins to become larger than their Coulomb inter­
action, even if not expedient at least not entirely unjusti­
fied. First of all it is of interest to analyze the problem 
of the behavior of individual atoms in ultrastrong mag­
netic fields. For the hydrogen atom or, more precisely, 
for hydrogen-like systems of the type of excitons in 
semiconductors, for which the corresponding field is 
substantially smaller in virtue of the smallness of the 
effective mass and the presence of a dielectric medium, 
this question has been studied at length. [4-s1 Here we 
consider the problem of the ground state of a very heavy 
atom, when the more simple Hartree- Fock and Thomas­
Fermi approximations can be used. 

2. THE SELF-CONSISTENT FIELD APPROXIMATION 

Let us consider a heavy atom with atomic number 
Z :::P 1 in a strong homogeneous magnetic field. In the 
Hartree- Fock approximation it is sufficient for us to 
consider the motion of the individual electrons in a self­
consistent electric field, and then to determine the field 
itself. The Schrodinger equation for an electron with a 
wave function lJ; - e-im£l in a cylindrical system of co­
ordinates p, 8, and z has the form 

~!_~ (p Chjl) -~ 021(1 +(!!!:':_-~+!:._P2 +Ba)I(J-!p'ljl=EI(J, 
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(1) 
where cp denotes the potential of the electric field and a 
is the spin. All quantities in (1) are expressed in atomic 
units, in particular, the magnetic field is expressed in 
units of m2e3cli-3 = 2.35 x 109 Oe. 

For B :::P cp - Z one can use the approximation of a 
strong magnetic field. [4- 81 For this, the expression 
inside the round brackets of the third term in Eq. (1) is 
expanded near the minimum at 

p = Pm = l(2m I B (2) 

in terms of a small deviation ~ = p - Pm from the mini-
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mum point (we assume that m > 0). For m :::P 1 which 
we require later on, it is sufficient to restrict our atten­
tion to the quadratic term in ~ , and in the first term of 
(1) one can keep only the chief term containing the sec­
ond derivative with respect to~. To this approximation 
we obtain a simple harmonic oscillator with respect to 
the variable p, and as B - oo it is necessary for us to 
choose the ground state of the oscillator with the wave 
function 

'i'= 1jl(z) exp (- 62 I 28), (3) 

i.e., the very lowest Landau level. Here one should also 
assume that a = -1/2, i.e., all magnetic moments are 
turned with the field. After separation of these variables 
we obtain a simple one-dimensional equation 

-+.:~ -'P(p,z)'iJ=E1jl, (4) 

in which p = Pm should be considered as a parameter 
labeling the levels with respect to m. 

Thus, we arrive at a natural picture in which as 
B - oo each individual electron moves in a narrow cy­
lindrical shell of radius Pm, undergoing oscillations 
with respect to z. Since at very large values of B the 
width of a shell may be arbitrarily small, then the 
lfi-functions of the individual electrons do not overlap as 
B-oo, i.e., the exchange interaction is not present. 
This means that in the limiting case B - oo one can use 
the simple Hartree approximation instead of the more 
accurate but at the same time more cumbersome 
Hartree- Fock approximation. 

Let lf! be a solution of Eq. (4) which is normalized to 
unity and depends on p as a parameter. Then the den­
sity of the electrons can be represented in the form 

(5) 

where np denotes the number of electrons occurring in 
a column of unit cross section: np = Jn dz. 

The potential cp of the self-consistent field is deter­
mined by Poisson's equation 

11'1' = 4nn (6) 

with the boundary condition rep- Z as r- 0. Equa­
tions (4)- (6) determine the stationary state of a heavy 
atom in the self-consistent field approximation as 
B- co, 

The function np for the ground state must be found 
from the condition for a minimum of the energy of the 
stationary state. Before going on to a discussion of this 
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rather complicated problem, let us consider the simpler 
case of the Thomas- Fermi approximation. 

3. THE THOMAS-FERMI MODEL 

Let us assume that B, although large, still cannot be 
regarded as infinite in comparison with the atomic 
number Z in the units adopted by us. Physically this 
means that the Larmor frequency is not infinitely large 
in comparison with I/fi, where I denotes the ionization 
potential. As is seen from Eq. (3) the width of the 
~/'-function with respect to ~, i.e., with respect top, is 
of the order of magnitude of B-112 • If this value is not 
very small, then the ~/'-functions of the neighboring 
levels in m will overlap strongly, and the occupation of 
several levels in z with comparatively small values 
m « Z will be energetically favored. Thus, there exists 
a definite range of variation of B (we shall subsequently 
define it more precisely) in which one can use the 
Thomas- Fermi approximation with respect to the var­
iable z, and at the same time one can assume that the 
higher Landau levels are not occupied. Since p = v'2m/B 
then dm states with respect to m correspond to dp 
= ·/2/mB dm = (pBr1dm, but with respect to the variable 
z in virtue of the one-dimensional nature of the motion 
dN = pzdz/2rr electrons with a given m occur in the 
interval dz, where pz denotes the maximum momentum, 
which is equal to v'2(j. From here we obtain 

dmdN = p,Bpdpdz I 2n = n2npdpdz, 

i.e., the density n of the electrons is given by 

n = Bl/2~ I 4n2. 

(7) 

(8) 

If this expression is substituted into Eq. (8), then we 
obtain the equation 

(9) 

which is similar to the Thomas- Fermi equation. 
Equation (9) is spherically symmetric so that its 

solution only depends on r-the distance from the nuc­
leus. The solution of Eq. (9) must go over into Z/r as 
r - 0 and must tend to zero faster than r-1 as r - oo. 

In terms of the variables x and x defined by the rela­
tions x(x) = rcp/Z and x = r(2B2/rr2 Z) 11S, it takes the 
form 

x"=l/xx (10) 

with the boundary conditions x = 1 for x = 0 and x = 0 for 
x- oo. The result of a numerical solution of Eq. (10) is 
shown in the figure. 

The density of electrons (8) can be expressed in 
terms of the function x in the following way: 

(11) 

From here it is seen that, just as in the ordinary 
Thomas- Fermi model, the density distribution remains 
similar upon a change of Z and B, where the character­
istic size of the atom varies like Z115B-215 • In other 
words, the application of a field decreases the size of 
the atom. 

Now we can determine the conditions for validity of 
the approximation under consideration. Within the 
framework of the Thomas-Fermi approximation, elec­
trons with a = 1/2 or in the first excited Landau level 

" 1.0 

0,5 

can appear only in the region cp > (1/2)B or cp > B, 
respectively. Therefore, for the validity of the approxi­
mation under consideration it is necessary that the po­
tential cp in the fundamental region should be appreciably 
smaller than B, that is, B » Z4 13 • On the other hand, 
from the condition that even if several electrons occur 
in each level m, it follows that dp/dm >> ro/Z, where 
r 0 ~ (Z/B2 ) 115 denotes the atom's radius. Taking it into 
account that dp/dm ~ 1/roB, we get B « Z/r~, i.e., 
B « Z3 • Thus, the range of applicability of the approxi­
mation under consideration is rather broad: 

(12) 

Now let us turn to an examination of the case B - oo, 

i.e., B > Z3 • 

4. The Case B > Z3 

For B > Z3 not more than one electron remains in 
each level m; therefore the distribution of the electron 
density with respect to z should be determined by the 
square of the ~/'-function of a single electron, which is 
the solution of Eq. (4) for the ground state. Correspond­
ingly the use of the density of the Thomas- Fermi model 
given by Eqs. (7) and (8) instead of (5) undoubtedly must 
lead to quantitative deviations. However, if great accur­
acy is not required, then one can approximately use the 
approximation 1/' 2 ~ Pz = ..fE{i, which is utilized in the 
Thomas- Fermi model. By the same token we assume 
that 1/' 2 is large in the region near the median plane and 
tends to zero, where cp = 0. If this approximation for the 
electronic density is also extended in regard to the var­
iable p, then we arrive at an expression of the type (8): 

(13) 

with the only difference being that now the quantity B0 is 
simply a certain arbitrary constant which one should 
choose from the condition that the energy of the ground 
state be a minimum. This energy is composed of the 
kinetic energy which, under conditions when all elec­
trons "sit" in the lower z-levels, is of the order of 
magnitude of Z/r~ for all electrons, and the potential 
-- Z2/ro. The minimum of the energy occurs at r 0 

~ Z- 1• But the value r 0 ~ Z-1 is reached exactly at the 
limit of validity (12) of the Thomas-Fermi model, 
B = Z3 • This means that for the ground state of the atom 
the constant Bo in (13) should be of the order of Z3 • 

Thus, for B > Z3 there exists a complete set of 
spherically-symmetric states of the atom, out of which 
only one with B0 ~ Z3 corresponds to the ground state. 
The radius of the atom in the ground state, ro ~ z-t, 
ceases to depend on B for B > Z3 • In this connection 
the average number of occupied m levels turns out to be 
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less than unity, as is not difficult to see. This means 
that the electrons do not at all tend to fill all lower 
levels-their Coulomb repulsion leads to a "swelling" 
of the atom so that for B » Z3 many lower levels re­
main unoccupied. As B increases the width of each shell 
in p, l:l.p ~ 1/v'B, continues to decrease and for B > Z4 

it becomes smaller than the average distance between 
the shells which is ~ro/Z ~ z-2 • Thus, forB> Z4 the 
¢-functions of the individual electrons cease to overlap, 
i.e., the conditions for the Hartree approximation are 
satisfied. 

The qualitative arguments presented here actually do 
not depend on the approximation (13), but rest only on the 
fact of the occupation of a lower state by each electron. 
Using similar qualitative considerations, one can reach 
the conclusion that the ground state should not deviate 
strongly from spherical symmetry, since upon deforma­
tion of the electron shells (or ljl 2 (z)) the energy associa­
ted with the Coulomb repulsion of the electrons increa­
ses. 

The effect of occupying only part of the lower m­
m-levels for B » Z3 leads to the result that near the 
ground level of a heavy atom there must be a band of 
weakly excited states, which correspond to a superposi­
tion of states with one and the same macroscopic distri­
bution of the electron density, but with different occupa­
tion numbers with respect to the neighboring m-levels. 
This band is separated by an appreciable energy gap 
from the similar band where one of the z-levels of the 
lon_situdinal motion of the electrons is excited. And, 
finally, the excitations of the Landau levels lie very 
high. Since the excitation of the Landau levels for the 
individual electrons has very little effect on the distri­
bution of the electron density, then both for B > Z3 and 
in the region Z413 < B < Z3 , the corresponding state will 
be Z-fold degene:o:-ate. One can say that such an excita­
tion is analogous to an exciton in a crystal-it will be 
passed on from electron to electron, and therefore the 
corresponding z-levels will correspond to different 
interference states with the excitation of one of the 
electrons. Correspondingly, a reversal of one of the 
spins will correspond to a spin wave in a ferromagnetic. 

5. CONCLUSION 

Thus, we have shown that for very strong magnetic 
fields, B » 109 Z413 Oe, a substantial change of the 
electronic states occurs in a heavy atom with atomic 
number Z » 1. In this case all electrons undergo mo-

tion in comparatively thin cylindrical shells with the 
axis directed along the magnetic field, oscillating along 
the field and precessing around the nucleus. If 
B << 109 Z3 Oe, then several electrons are found in each 
shell m, and in order to determine the distribution of 
the electron density in the atom one can use the modi­
fied Thomas- Fermi model in the appropriate manner. 
According to this model an atom in a strong magnetic 
field retains spherical symmetry, and its radius r 0 

changes like ( Z/B2) 115 , i.e., the atom is compressed 
with increasing B. For a field B > 109 Z3 Oe the com­
pression of the atom stops and its radius in the ground 
state ceases to depend on the field. In this connection 
the m-shells in the ground state turn out to be incom­
pletely filled, and for B » 109 Z4 Oe the ¢-functions 
of the individual electrons do not even overlap. The 
spectrum of the excited states of an atom in an ultra­
strong field consists of equidistant Landau levels and 
levels corresponding to a reversal of the spins, with a 
wide band around each level of excitations of the longi­
tudinal motion. For B » 109 Z3 Oe weak excitations 
still appear, corresponding to a change of the occupation 
numbers in the shells with a weak excitation of the 
averaged distribution of the density. 
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