
SOVIET PHYSICS JETP VOLUME 31, NUMBER 5 NOVEMBER 1970 

MOTION OF HELIUM IONS NEAR A VAPOR-LIQUID SURFACE 

V. B. SHIKIN 

Physico-technical Institute of Low Temperatures, Ukrainian Academy of Sciences 

Submitted November 18, 1969 

Zh. Eksp. Tear. Fiz. 58, 1748-1756 (May, 1970) 

A description is given of some effects associated with the proximity of helium ions to the liquid­
vapor interface. 

HELIUM ions that are close to the liquid-vapor inter­
face are repelled from it by the image force 

F = (___!!_ )' e,- e, . (1) 
2x e1 (e1 + e2)' 

x is the distance from the ion to the surface; E 2 and E1 

are the dielectric constants of the liquid and vapor, 
E2 -- E1 = 0.06; F > 0 corresponds to repulsion. By com­
pensating the action of the force (1) by an external field 
E0 directed normal to the liquid-vapor surface and 
forcing the ion toward the surface, we can fix the posi­
tion of the ion at any given depth x 0 from the surface: 

1 [ e e -1 ] '" (2) 
Xo=z- Eo e(e+i) , e,;:::;1, e2==e. 

This possibility is convenient for the observation of a 
number of effects. It should be noted that a similar 
situation has already been studied experimentally[ 1 l 

with the aim of making clear the character of the motion 
of positive and negative (±) ions through the liquid-va­
por interface. It was shown in that case that: a) the cur­
rent of negative ions through the surface has an activa­
tion character with activation energy ~25°K and prac­
tically disappears at a temperature T ~ 1°K and below, 
b) it is generally not possible to pull the positive ions 
from the liquid helium by an electric field E0 up to E0 

~ 400 V/cm. Thus, in the low temperature region, 
T < 1°K, both negative and positive ions can be strongly 
forc:ed to the free surface without risking their removal 
into the gaseous phase. 

Let us now estimate the degree of thermal smear­
ing out of the level x0 • If E0 ~ 300 V/cm and T 
< 0. 5° K, the spreading ~x0 is of the order ~0 
~ 10-7 em. This means that for characteristic distances 
x0 ~ 10-6 em, corresponding to fields E0 ~ 102 -

103 V/cm and being most typical for the problems con­
sidered below, we can neglect this smearing. 

SOME RESONANCE EFFECTS 

L The Xo coordinate (2) determines the position of 
the bottom of the potential well formed by the potentials 
of the image force (1) and the electric field E0 • Conse­
quently, small oscillations of ions near x0 are possible, 
with a characteristic frequency w 0 equal to 

wo'= _1_~ e-1 (3) 
m± Xo3 e ( e + 1) ' 

where m± is the effective mass of the ± ions~ m+ 
~75He4 , m_ ~245He4· Setting Xo ~ 10-5 -10- em, 
which, for E - 1 = 0.06, corresponds to fields E0 ~ 10-
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103 V/cm, we find for w 0 the estimate w 0 ~ 106 -10 
107 sec- 1• The experimental determination of the fre­
quency w0 gives direct evidence on the effective mass 
of the± ions and therefore is of considerable interest. 

Observation of the well-delineated resonance at the 
frequency w0 is possible only upon satisfaction of the 
inequality w0 T >> 1 ( T is the characteristic time of 
relaxation). As estimates show, at a depth x0 ~ 10- 5-

10-6 em, the time T is of the order of the volume. In 
pure helium, the quantity T val increases monotonically 
with decrease in the temperature. Therefore, one can 
always point out a region of temperatures where the in­
equality w 0 T > 1 should begin to be satisfied. In par­
ticular, for negative ions, according to the experimental 
data,[ 2 J theinequality w0 T>1 for w 0 ~107 is satis­
fied at T < 0.2 o K. 

It should be noted that the expression (3) for w 0 is 
obtained under the assumption of the absence of defor­
mations of the free surface. This assumption is valid 
as long as (a/x0) 2 << 1 (a is the ionic radius). 

2. The interaction of the ions with the free surface 
shows the effect on the spectrum of surface waves in 
liquid helium. To explain the character of this effect, 
we limit ourselves to consideration of the simplest lim­
iting case of long surface waves with low ionic concen­
trations: ..\ >> l >> x0 • ..\ is the wavelength, l is the 
mean distance between ions that fill the plane x0 , and 
x0 is the distance between the equilibrium free surface 
and the equilibrium plane filled with ions. 

The necessary set of equations for the determination 
of the spectrum of surface waves in the presence of 
backing of ions and in the limit ,.\ > l > x0 has the form 

8<p ( 82\, 82\,) pg?;+ p--a -+- -nF(xo+~- SI) =0 
8t 8y2 8z2 • ' 

d't, 
m±dt~ -eEo+F(xo+?;-\,1) =0, 

(4) 

(5) 

where p is the density of liquid helium, g the accelera­
tion due to gravity, cp the hydrodynamic velocity poten­
tial, a the coefficient of surface tension, n the surface 
density of ions, F(x) is from (1), E0 is the applied ex­
ternal field, /; the local deviation of the free surface 
from the equilibrium value x = 0 and /;1 is the depar­
ture of the ions from the equilibrium position x0 • 

Equation (4) is the boundary condition for the hydro­
dynamic problem. This condition differs from the 
usual ( [ 3J, p. 291) by the term nF, which takes into ac­
count, in the mean, the effect of the ions on the free sur­
face. The introduction of the averaged pressure nF, 
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n <Zl z-2 is possible because of the inequality X >> l , 
which is assumed to be satisfied. 

The oscillations of the free surface in turn lead to 
the appearance of time-periodic forces acting on the 
ions in a direction normal to the free surface. Further­
more, there is Coulomb interaction between the ions. 
Therefore the motion in the general case is described 
by an infinite set of interlocking equations. However, in 
view of the inequality l >> x0, we can neglect the Cou­
lomb interaction, limiting ourselves only to account of 
the interaction of the ions with the surface. Here the 
equations of motion of the ions are uncoupled and take 
the form of the equation of motion for the individual 
ion (5). 

Expanding the force F(x0 + /;- /; 1 ) from (4) and (5) 
in a series in the small departures /; - 1;1 , expressing 
/; 1 in terms of /; by means of (5), substituting this ex­
pression for sl in (4) and then proceeding in the nor­
mal fashion, we find the dispersion law for the surface 
waves: 

y=nF(xo)-2- (1 + 0002 
) ; (6) 

pxo oo02- oo2 

here w0 is from (3), and k is the wave vector. The 
right side of this dispersion law differs from the usual 
law in the term yk. This term becomes large, in reso­
nance fashion, in the vicinity of w ~ w0• 

The discussions above are valid only in the case of a 
constant mean concentration of ions along the liquid­
vapor surface. Actually, such a situation is unrealistic 
in view of the fact that the ions are of like charge and 
can be maintained at a finite distance from one another 
only with the help of outside external forces (the walls 
of the vessel and so on), which usually destroys the uni­
formity of distribution of the charges. This assertion, 
however, does not apply to stationary current states, in 
the case of which the constancy of the carrier density 
along the direction of the lines of the current is one of 
the necessary conditions for stationarity of the current. 
Therefore, by introducing additional electrodes in the 
helium bath, which force the surface ions to move along 
the surface with some constant velocity, much less than 
the velocity of the surface waves, and by exciting the 
ions in the direction of the current state thus created, 
we obtain the possibility of studying the surface waves 
of the type described under conditions that are close to 
those used in the calculation. 

3. We shall now describe another scheme which 
makes it possible to observe resonance phenomena at 
the frequency w 0 • With this purpose, we consider an 
oscillatory LC circuit, the principal capacitor C1 of 
which consists of two parallel plates placed in the he­
lium tank so that the liquid-vapor interface lies be­
tween them. In addition to the principal capacitance Cv 
the circuit also contains an auxiliary capacitor C2, con­
nected in series with C1 so that one can apply a con­
stant voltage to cl without short-circuiting it by the in­
ductance L. Because of the presence of helium temper­
atures, all the elements of the circuit can be made su­
perconducting in order to give the highest Q to the cir­
cuit in the absence of helium ions in the liquid. 

Now let ions be introduced into the liquid helium. 
By means of the constant field intensity E0 applied at 
the plates of C10 these ions are forced to the surface of 

the liquid, remaining at depth Xo from (2). The plane Xo 
should be about midway between the plates of the capac­
itor cl and should be sufficiently far from them that 
ions carrying out small oscillations near x0 do not 
touch the plates of C1• Under similar conditions in the 
excitation of the LC circuit, the ions in the gap of the 
capacitor C1 will undergo forced oscillations, absorbing 
the energy of the oscillations and decreasing the Q of 
the circuit. 

If we assume that in the presence of the ions the Q of 
the circuit nevertheless remains high, then the ionic 
current between the plates of the' capacitor C1 can be 
written in the form[ 'J 

tg ¢ 

N is the number of ions reaching a unit surface of the 
capacitor, w0 is from (3), w is the eigenfrequency of 
the LC circuit, c'1:0 exp (iwt) is the alternating part of 
the electric field at the plates of cl. 

We now define the Q of the circuit as the ratio 
Q =We /(21Tq/ w). Here We= i\ :d/81T is the initial 
energy of the circuit, carried to a unit surface of the 
plate capacitor, d is the distance between the plates of 
the capacitor, q the power loss associated with the 
ionic current, computed per unit surface area, 
q = Re (j <'i'), where j is taken from (7) and i"i = i/ 0 

x exp (iw t). As a result, we obtain the following expres­
sion for Q: 

d m± [(ooo2-oo2)2+oo2fT2J"' 
Q- (8) 

- 16n2 Ne2 cos(n/2- ¢) 

It is seen from (8) that the Q of the Circuit has a 
sharp minimum for w ~ w0 • 

MOBILITY NEAR THE LIQUID-VAPOR INTERFACE 

The nearness of the free surface influences the mo­
bility of the ions along the surface. This effect is espe­
cially marked in the low temperature region, where the 
mobility of the ions begins to experience the free inter­
face at distances much greater than the dimensions of 
the ions themselves. 

1. Volume mobility at low temperatures. For calcu­
lation of the surface mobility of ions and a comparison 
of it with the corresponding volume mobility, we need 
some information on the mechanism of retardation of 
the ions in the bulk of the liquid at low temperatures. 
All the necessary considerations on the mechanism of 
mobility at low temperatures is contained in [Z, s-aJ. 

In the low temperature region T < 0. 5 °K, the rotons 
in the liquid helium are practically frozen out and the 
wave length of the characteristic phonons begin to ex­
ceed the dimensions of the:!: ions. Under these condi­
tions, the value of the drift velocity ui) is determined 
from the relation[2l 

eE=_!:__U~ oos a±(k)k3dk (9) 
6n2 

0 exp (chk/k 8 T) - 1 ' 

where E is the applied field moving the ion along the 
liquid-vapor surface, c the sound velocity, a±(k) the 
total transport scattering cross section of long-wave 
phonons by a single :l:: ion. (In the long-wave limit, the 
scattering is spherically symmetric, and therefore the 
difference between the simple cross section and the 
transport cross section tends to zero.) Thus, the cal-
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culation of Ub reduces to the determination of a±. 
The value of a(-) in the temperature range T<0.4°K 

that is of interest to us can be written down in the 
form[ 5 ' 9 l 

where 

(-) 
a.~ 

oH = o,<-l + o~-l , 

4na2 (-) (-) IJ 
O'a = Gs ka' 

ro., = Sa I pa3, 15 = ka. 

(10) 

Ws is the characteristic frequency of a bubble, a the 
coefficient of surface tension, p the density of liquid 
helium, o the damping constant. According to (10), the 
characteristic frequency w8 for a= 0.36, a = 2 
x 10-7 c m and f = 0.142 g/cm3 is of the order w s 
~ 5 x 1010 sec- . On the other hand, the characteristic 
thermal frequency WT for T ~ 0.4 oK is also of the or­
der wT ~ 5 X 1010 sec- 1• This means that an important 
part of the thermal phonons for T ~ 0.4 °K will be scat­
tered by the bubble in resonant fashion. In addition to 
the s resonance, the bubble also possesses higher res­
onances, the closest frequency of which wd, according 
to [7,al, is equal to wd ~ rrws//2. However, according 
to estimate, for T < 0.4 oK, the principal contribution to 
the mobility is given by the s-resonance. 

We proceed to the case of positive ions. Here we 
have the assertion[ SJ that the scattering cross section 
of long-wave phonons by a positive ion has the form 
a(+l rz w\ i.e., the positive ion is equivalent to a solid 
sphere. Actually, there is a condensation of the liquid 
helium around the positive charge. This falls off with 
distance by a power law. Systematic account of this fact 
shows that the problem of the scattering of long-wave 
phonons by a positive ion does not reduce to the problem 
of seattering by a solid sphere. Therefore, the question 
of the phonon scattering cross section by a positive ion 
still remains in the discussion stage. 

2. Mobility of negative ions close to the free surface. 
Using information on the volume mobility of the ions, 
we can obtain definite results on the mobility of the ions 
close to the interface. It is natural that specific results 
can lbe obtained only for negative ions at the present 
time. 

Let us bring a negative ion to a finite distance x0 

from the free surface of liquid helium. The expected 
change in the mobility here has the following origin. 
The total pressure at the free surface is equal to zero. 
This shunting action of the surface should also appear 
in the interior of the liquid at distances of the order of 
a wavelength of the characteristic phonons. Thus, if we 
bring the ion to a layer of depth of the order of the 
characteristic length of the phonons, and recall that the 
retardation of the ion takes place because of the reso­
nance scattering of the phonons by the characteristic 
oscillations of the bubble, 1 ) we can then expect that the 
shunting action of the surface, which decreases the 
pressure amplitude in the phonon waves, leads to a 
change in the value of the mobility of the negative ions 

I) It should be noted that although the resonance scattering cross 
section aH decreases near the surface, it still remains large. Therefore, 
the possible contributions to the total scattering cross section, con­
nected with the presence of surface phonons on the free surface of liq­
uid helium are not important. These contributions cannot change the 
resonant parts of the scattering, since the surface oscillations take place 
under the condtion div V = 0, i.e., P = const. 

in comparison with the volume. And, since the charac­
teristic lengths of the phonons at low temperatures 
greatly exceeds the dimensions of the ions, the effect of 
the surface on the mobility of the ions begins to be seen 
at distances much greater than the dimensions of the 
ions themselves. 

Let the phonon incident on the free surface have the 
potential 

Then the pressure at a given point of the liquid at depth 
x0 from the free surface has the form 

Po(t) = Po2isin (kx0 cosy)eioot, (11) 

where y is the angle between the normal to the surface 
and the direction of the wave vector of the phonon k. 
For the calculation of the scattering cross section of 
the phonons by a negative ion close to the free surface, 
a(k, x0, y), we also need the potential of the spherical 
wave induced by the oscillations of the sphere located at 
a distance x0 from the free surface. Taking into account 
the boundary condition at the liquid-vapor interface 
P / x = 0 = O, we write down this potential in the form 

A 

r 12 = r2 + (2x0 ) 2 - 4rx0 cos (rx0). 

(12) 

On the boundary of the bubble, the pressure and the 
radial velocity ought to be continuous: 

Po(t) + P,(t) Ia =Pel (t), Ur1 la = Ur''la; (13) 

Here P 0 (t) is from (11), P 1(t) = iwp<;o1 /r=a• U~ja 
= iJ<;o 1 /3rja, <;01 is from (12), Pel is the electron pres­
sure inside the bubble. It is necessary to add the cou­
pling between Pel and the radial velocity of the bubble 
u~l to these equations. This coupling, as in the volume 
case, has the form 

imPel = (Sa/ a') Ur" (14) 

and is obtained under the assumption of the instantane­
ous adjustment of the electron pressure to the given de­
formation of the bubble. 

By solving the set of Eqs. (13) and (14) relative to 
the unknown quantities B, Pel> and u11, we find them all 
as functions of P 0(t). Using the definition of the total 
scattering cross section and the solution of the set (13)­
(14), we find the sought-for expression a(k, x0 , y): 

where 

a(k, Xo, y) = a,+ Oa, 

4na2 · 4 sin2 ( kx0 cosy) 

(ro,2/ro 2 -1) 2 + 15 12 ' 

a ro 2 [ a2 a2k ] 
15, (k)= ka- -sin 2kx0 + -' -sin 2kx0 - -cos 2kxo , 

2xo w 2 4xo2 2.:ro 

ws is from (10), w = kc. 

(15) 

The cross section (15) contains the expected factor 
sin2 (kx0 cos y), which effectively decreases the scat­
tering cross section for kx0 cos y < 1. Moreover, for 
kx0 < 1, the damping constant 51 changes form, in com­
parison with the volume case. 

The resultant cross section a(k, Xa, y) must be sub­
stituted in the general expression for the balance of 
forces acting on the ion in the external field E, applied 
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along the liquid-vapor interface. We have 

uDn ~ "~' " 
eE = --, sdk j des d<p k3 sine cos2 en (kT) cr(k, Xo, y). 

4-'t " 0 0 

cos "Y = -sine sin qo. 

The polar axis of the spherical system of coordinates 
is directed along E, n(kT) is the Bose distribution func­
tion, a(k, x0, y) is from (15), x0 is from (2). After in­
tegration over the angles, we obtain 

eE= UDn~sdkk'n(kT) 4na2 (1+6Ifka) [_!_+ f('/z) l•(,(2kxo)] 
n 2 (w,2/w 2 -1) 2 +612 6 4 (kx0 )'f, ' 

0 (16) 

where rC%liis the gamma function, J3/2 is the Bessel 
function of order %. 

In the limit when the characteristic wave numbers k 
satisfy the inequality kx0 >> 1, the relation (16) trans­
forms into (9). In the opposite limiting case kx0 >> 1, 
which begins to be satisfied for Xo ""' 10-6 em at temper­
atures T :S 0. 5 °K, the equation of the balance of forces 
becomes qualitatively different from (9). For this re­
gion of temperatures, and for x ""' 10-6 em, the mobility 
of the negative ions fJ. = Un/E, following from (16) is 
written on drawing 1 (curve 2). For comparison, the 
graph for the volume mobility (curve 1) is plotted on 
this same drawing, constructed with the help of Eqs. (9) 
and (10). As is seen from the drawing, curves 1 and 2 
differ significantly from one another. 

POSSIBILITIES FOR THE EXISTENCE OF SURFACE 
ELECTRONS 

In the previous sections, we have discussed the vari­
ous properties of the helium ions near the liquid-vapor 
interface. Here, the helium ions are moved to the inter­
face from the liquid side. No less interesting is the var­
iant in which the charged particles, more precisely, 
electrons, move to the liquid-vapor interface from the 
side of the gaseous phase. Several properties of the 
electrons under similar conditions are discussed in the 
present section. 

1. We again return to the expression for the force F 
from (1). If the difference E - 1 in this formula is un­
derstood in the sense E1 - E, where E1 is the dielectric 
constant of the medium in which the charge is located, 
then it is evident that for E 1 > E2 the charge is repelled 
from the interface, and for E 1 < .::2 it is attracted to it. 
Thus, if the charge is located above the surface of liquid 
helium (the situation E 1 < .:: 2 ), then it will be attracted 
to the interface. This attraction, after the transition 

through the interface, changes to repulsion from the in­
terface and therefore, in the field of force (1) the 
charged particles, wherever they would be located at 
the initial instant (above the boundary or below it), 
should pass into the depth of the liquid helium. How­
ever, this assertion is valid in full measure only for 
positive charges. In the case of electrons, the situation 
is somewhat different. The difference is that for free 
electrons the boundary of the liquid helium is a poten­
tial barrier of exchange origin of height 1.4 eV.[lOJ 
Therefore, the electrons which have energies < 1.4 eV 
are also attracted to the free surface of the liquid he­
lium by the forces of (1); they cannot pass through the 
boundary into the depth of the liquid helium and should 
be localized on its surface. Such electrons, brought up 
to the liquid helium from the side of the gaseous phase 
and localized on the liquid-vapor boundary, we shall 
call surface electrons. This special term enables us to 
avoid the confusion between surface electrons and sur­
face ions (positive and negative) brought to the liquid­
vapor interface from the side of the liquid phase. It is 
evident that the properties of the surface electrons will 
be intermediate between the properties of the negative 
ions in purely liquid or purely gaseous media. 

2. For clarification of the degree of localization of 
the surface electrons, we consider the solution of the 
Schrodinger equation for an electron in the correspond­
ing potential well. The potential well consists of the po­
tential force (1) and the potential barrier, located at 
x = 0. The gaseous phase corresponds to x > 0. We 
have 

ljl(x, y, z) = f(x) exp[i(kyy + k,z) 1 
d'f 2m ( n'lc2 ~ ) 
dx' + fi2 E - 2m +----:; j = O, 

e2 let- ezl 
~=- k2 =k/+k,2 , 

4 e1(e, + e2)' 

f(x) ix->+oo->-0, f(x) ix~o = 0. (17) 

In writing down (17), it is assumed that the surface 
electron weakly deformed the free surface of the liquid 
helium and therefore, these deformations can be neg­
lected in the zeroth approximation. 

In Coulomb units (m = mass, fi2 / m/3 = length, mt3?'n2 

= energy), Eq. (17) is rewritten thus: 

d'f + 2 (E- k' + _!_) f = 0. 
dx2 x 

After the single substitution n = [ -2(E- k 2) ]-1; 2 and 
X = 2x/n, we obtain 

j" + [-1/. + n/X]f = 0 f""" d'f/dX'. (17a) 

The solution of (17a) which satisfies the boundary con­
ditions (17) is sought in the form 

j(X) = X 1e-X12w(X). (18) 

As a result, we get the following equation for w(X): 

Xw" + (21- X)w' + w[n -l + l(l- 1) I X]= 0. 

This equation reduces to the hypergeometric one if we 
set l = 1. The solution of the latter equation with l = 1, 
which is finite for X = 0, and which increases no more 
rapidly than a polynomial of finite degree as X = 0, has 
the form ( [ 11 1, p. 158) 
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w(X)=<I>(-n+1,2,X), n=1,2, ... , (19) 

<P is the confluent hypergeometric function. The rela­
tions (18) and (19) solve the given problem. 

The energy levels of the surface electron in dimen­
sional units are determined by the relation 

fi2k2 m~2 
E--=--, n=1,2,3, .... 

2m 2fi2n2 
(20) 

The energy of the ground state with account of I E1 - E2 1 

= 0.06 and m ~ 10-27 g, is equal to E 1 = -0.003 eV. 
The wave function of the n-th state is determined by 

Eqs. (18), (19). In the ground state, n = 1, this function 
has the form 

f(x) = const·xe-vx, "\' = m~/h2• 

Its maximum is located at the distance x0 = y- 1 

~ 10-6 em from the free surface. This distance is 
much greater than atomic distances and therefore use 
of the macroscopic expression for the force (1) in the 
construction of the potential energy of the surface elec­
tron can be regarded as sufficiently correct. 

Let us estimate the value of the depth of the free 
surface under the electron. For this purpose, we shall 
assume that the total force acting from the side of the 
surface electron on the free surface is equal to F from 
(1) where x as a coordinate means the average distance 

' 1 -6 of the electron from the surface, i.e., Xo ~ 0 em. 
This force should be compensated by the forces of sur­
face tension which arise in the deformation of the sur­
face. It is e~sy to show that the area of the depressed 
surface S is approximately equal to S ~ 4 TTXo~. where 
x0 :is the radius of the depression, ~ the maximum de­
viation of the free surface from its equilibrium position 
in the absence of the electron. Setting F = PS, where 
P = 2a/x0, and a is the coefficient of surface tension, 
we get the equation for the determination of ~· As a re­
sult, 

~=-1-(_:_)2 e-1 6;10-scm. 
8na 2xo e(e + 1) 

Thus, E << x0 and consequently the assumption used 

above as to the smallness of the deformation of the 
free surface is actually valid in practice. Although the 
deformation of the free surface is seen to be small, 
which fact is connected essentially with the distribution 
of the electron pressure on the surface over a large 
area, it should be noted that even such bends are suf­
ficient to cause the effective mass of the surface elec­
tron to be of the order of the mass not of the free elec­
tron, but of the helium atom. 

The author is grateful to Yu. Kovdrya for useful dis­
cussions. 
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