
SOVIET PHYSICS JETP VOLUME 31, NUMBER 5 NOVEMBER 1970 

THEORY OF SELF-TRAPPING OF AN ELECTROMAGNETIC FIELD IN A 

NONLINEAR MEDIUM 

V. M. ELEONSKII and V. P. SILIN 

P. N. Lebedev Physics Institute, U.S.S.R. Academy of Sciences 

Submitted November 5, 1969 

Zh. Eksp. Teor. Fiz. 58, 1715-1726 (May 1970) 

We determine the conditions under which electromagnetic fields specified at the boundary of half-space 
become self-trapped into fields that are distributed periodically in one dimension in a transparent non­
linear medium. Both weakly-nonlinear fields and fields with a nearly exact one-dimensional distribu­
tion with finite amplitude are studied. It is shown that on violation of the conditions of "self-trapping" 
to a rigorously one-dimensional distribution, proper non-one-dimensional fields are excited in the me­
dium at a sufficient distance from the boundary. In a number of cases these fields are the same as the 
non- one-dimensional fields investigated previously. [a, 31 

1. IN this communication we consider the boundary­
value problem for a half-space filled with a medium 
having a nonlinear dielectric constant. The bulk of the 
paper deals with a clarification of the conditions under 
which a distribution of the electromagnetic field speci­
fied at the boundary causes some type of steady-state 
proper distribution of the field in the medium far from 
the boundary. It is obvious that this boundary-value 
problem is directly connected with the analysis of the 
phenomena called "self-trapping" of the electromag­
netic field in a nonlinear medium. [ 11 

We note that it is shown in [a, 31 that besides the 
previously known types of one-dimensional steady-state 
distributions of the electromagnetic field in a nonlinear 
nondissipative medium, [41 there exist non-one-dimen­
sional distributions that are close to the one-dimen­
sional ones and possess a periodic structure in one or 
two spatial dimensions. The properties of such field 
distributions in unbounded space were considered in 
detail in the aforementioned papers. [ 2' 31 It will be 
shown that these very same properties play an import­
ant role in the problem of establishment of the self­
trapping of the field. 

Using as an example a medium that is transparent 
in the linear approximation, we show that self-trapping 
of the field specified on the boundary of a half-space 
into a strictly one-dimensional proper distribution of 
the field in the medium is an exceptional event. As 
shown by an analysis of the boundary-value problem, 
the transition to a strictly one-dimensional proper dis­
tribution is possible-in the case of weakly nonlinear 
field distributions-only if a definite connection exists 
between the basic parameters characterizing the field 
on the boundary. On the other hand, in the case when the 
field specified on the boundary of the half-space has a 
distribution close to an exact periodic distribution with 
finite amplitude, the condition of self-trapping into a 
strictly one-dimensional distribution makes it neces­
sary to satisfy several relations that limit the type of 
admissible perturbations on the boundary in each order 
of the asymptotic expansion (in terms of the amplitude) 
of the solution of the boundary-value problem charac­
terizing the perturbation of the field on the boundary. 
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It is shown further that proper two-dimensional field 
distributions are excited in the case when the self-trap­
ping conditions are satisfied for weakly nonlinear dis­
tributions far from the boundary. On the other hand, if 
the self-trapping conditions are not satisfied for bound­
ary fields that are close to the proper one-dimensional 
periodic distributions with finite amplitude, then there 
are excited, in some order (in terms of amplitude) of 
the perturbation, far from the boundary, proper two­
dimensional periodic distributions with the amplitude of 
the fundamental non-one-dimensional mode of the same 
order of smallness. 

Finally, we note that at certain values of the param­
eters characterizing the field on the boundary of the 
half-space, far from the boundary, there are excited 
proper non-one-dimensional distributions with a more 
complicated structure (compared with those investi­
gated in [ 2 ' 31 ). 

2. Let us consider the conditions for self-trapping of 
the periodic distribution of a field specified on the 
boundary of the half-space, to strictly one-dimensional 
and periodic distributions, for the case of a medium that 
is transparent in the linear approximation. 

The system of equations determining the amplitude E 
and the phase >I!' of the electromagnetic field in the me­
dium with nonlinear dielectric constant is[ 1- 31 

!lE + (k.?- x2- (grad '1')2 + (xE / Ec)2]E = 0, (2.1) 

div (E2 grad 'I')= 0. (2.2) 

Let the half-space z > 0 be filled with a medium, and 
let the amplitude and the normal derivative of the phase 
be specified on the boundary: 

aw I E(x,z=O)=E0 cosk.Lx, --- =ko. oz z~o 
(2.3) 

Relations (2.3) determine the field energy flux density 
on the boundary of the half-space. We stipulate further 
that at z - :>() a one-dimensional periodic distribution 
of the field is produced in the medium, in the form 

li.c:!,E(x,z)= E .. e .. (x), 
aw 

-lim--= k ... 
z-+<OO iJz 

Here e00(x) is a known[a-41 periodic solution of the 

(2.4) 
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equation 

If k~- K 2 - k~ > 0, Eq. (2.5) admits of a weakly non­
linear solution with knownl 2 ' 31 expansion of the trans­
verse wave number k 1 in terms of the small parame­
ter Jloo = (E 00 1Ec)2 : 

kj_2 =kw2 - x2 - koo 2 + fl~xf\oo)+ f1~2X~l (oo)+ · · · (2.6) 

Assuming that the problem of self-trapping of the 
field (2.3), specified on the boundary of the half-space, 
into the strictly one-dimensional periodic distribution 
(2.4) has a solution if the transverse wave number k 1 
is conserved, we arrive at the conclusion that it is nec­
essary, when constructing the solution, to determine the 
connection between k1 and the amplitude E 0 at z = 0, 
and also the amplitudes of the fundamental modes Eo 
and E00 at z = oo, 

The substitution E = Eo e(x, z) enables us to rewrite 
the system (2.1) and (2.2) in the form 

!J.e + [kro2 - x2 -- k02 ] e =- floX2e3 + [(grad 'I') 2 - ko2] e, 
(2. 7) 

div ( e2 grad 'I') = 0 

and when flo = (E0 /Ec) 2 << 1 we can seek the solution 
of the boundary-value problem in the form of the asymp­
totic expansions 

e = e'"J + floe''' + flo'e''l + ... , 

'I' = - koz + f,lotpl'l + flo"¢''! + ... , 
(2.8) 

kj_2 = kw 2 - x2 - ko 2 + floX~l + !lo'xT + · · · · 

The linear approximation admits of the solution 

el0l(<pj_,Z)=coskj_x==coS<jlj_, 'lfl0l=-koz, (2.9) 

which satisfies the required boundary conditions. In the 
next higher approximation, putting 

(2.10) 
(I) (I) ( 3 ¢(1> cos <pj_ = s1 (z) cos <pj_ + s, z) cos !pj_, 

we obtain a system of equations for the functions that 
depend only on the longitudinal variable z: 

(2.11) 

(2.12) 

d's,(!) (I) dei 1' 
--- 8(kw2 - x 2 - ko2)ss - 2ko--= 0. 
~2 ~ 

The system (2.11), under the condition x <l> = 3/4K 2, 

which is connected with the requirement that the solu­
tion be bounded at infinity, admits of the trivial solution 
ei1 ' = dsi11/dz = 0, and the system (2.12) admits of a so­
lution in the form 

(I) 1 x2 
e, = +Ae-", 

32 kro2 - x2 - ko2 
s~Il = ±iAe-", (2.13) 

where v is the solution of the equation 

v2 + 2ikov - 8 (kro2 - x2 - ko2 ) = 0. (2.14) 

Thus, the first terms of the asymptotic expansion of 
the solution of the weakly nonlinear boundary-value 
problem for the half-space are of the form 

We have used here the notation 

tg 6 = ko /.'A, 'A2 = 8(kro2 - x2) - 9ko2• 

It is obvious that the behavior of the solution at in­
finity required for self-trapping, namely degeneracy of 
the solution at z - oo into a strictly one-dimensional 
periodic distribution of the field with a plane front, is 
realized only if relation (2.17) is satisfied together with 
the inequality 

(2.18) 

3. For a more complete elucidation of the structure 
of the weakly-nonlinear solution of the boundary-value 
problem for a half-space, as well as of the conditions 
of self-trapping to strictly one-dimensional periodic 
distributions of the field in the medium, it is necessary 
to investigate the higher-order approximations. We find 
that the solution of the system of equations of the next 
higher approximation can be written in the form 

(3.1) 

In particular, the system of equations for the fundamen­
tal mode is given by 

(2) (2) d (I) 2 
d2e1 , ds1 (2) 3 2 (I) [ s, 1 

-------;J;,2 + 2ko ---a;: = xj_ - 4 x es + --:a;,-

(Il (ll dsl'; 
+8(kro2 -x2 -ko2 )[s, )2-2koe3 ~' (3.2) 

(2) (2) d (l) 

d's 1 -2ko~=ko~[el1 ) )2-2~[ei1>_!.:___]. (3.3) 
dz 2 dz dz dz dz 

The solution of the system (3.2), (3.3) must satisfy at 
z = 0 the zero boundary conditions for the amplitude 
and the normal derivative of the phase, and must cor­
respond at z - oo to self-trapping to a strictly one­
dimensional field distribution. Equation (3.3) has a 
first integral and leads, when the boundary conditions 
are taken into account, to the solution 

d (2) d (I) 
SJ 2k (2) + k [ (l)F 2 (I) S3 (3.4) dz = oe, o e3 - e3 ~ 

It can be shown that in all the higher approximations 
the equations for the fundamental mode, resulting from 
the divergent form (2.2), also have first integrals sim­
ilar to (3.4). This circumstance is connected with the 
conservation of the energy flux through any plane paral­
lel to the boundary of the half-space (see below). 

Using relation (3 .4), we find that e~ 21 (z) satisfies the 
equation 

d2 (2) 3 d (I) 2 
e1 + 4k 2 (2) _ (2) 2 (l) + [ ss ] ----;Ji2 0 e1 -Xl_ - 4 xe, ~ 

d (l) 

+ 8(k .. ,'- x2 - ko2 ) [s,<l)p + 2koei1' ~- 2ko2 [ei1' ]'. (3. 5) 
dz 
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The latter contains the free parameter x<f>, which is 
determined by the boundary conditions corresponding to 
the assumed self-trapping. The solution of (3.5) is 

(2J (2J 1 a 
e1 (z)= e1 (oo) +----[A, cos(koz + 6) + B 1 sin(koz + ll)]e-1'' 

128 cos/) 

1 ( a )2 + 1024 cosll [A2cos2(koz + ll)+B2sin2(k0z + ll)]e-n', (3.6) 

(2) 3 1 (2\) () 
X-L = 128 ax2+ 512 (ako) 2+4ko2e, (oo). 3.7 

Here a == K 2(k~- K 2 - k~) and A1 and B1, for example, 
are the solutions of the system of equations 

(I?+ 3ko2)A,- 2ko'JJJI = 3x2 + 'f,(ako) 2, (3.8) 

2koA.AI + (A2 + 3ko2)B, = 1/,koA. 

Thus, if the normal derivative of the phase on the 
boundary satisfies the inequality (2.18), and the ampli­
tude of the field E0 on the boundary and the transverse 
wave number k 1 are connected by the relation 

k-L 2 = k.,Z- x2- ko2 + 3/• f1oX 2 

(2) (3. 9) 
+ !1o2(3/,zs ax2 + 1/5!2 ( ako) 2 + 4ko2e, ( oo)] + ... , 

there is excited in the medium, as z - oo, a strictly 
one-dimensional periodic distribution of the field with a 
plane front and with a fundamental-mode amplitude 

Eoo=[1 + fto2e/"l(oo)+ . . ]Eo. 

Consequently, self-trapping to strictly one-dimen­
sional proper distributions of the field in the medium, 
as shown by an analysis of the asymptotic solution of the 
weakly nonlinear boundary value problem, is possible 
only upon satisfaction of a number of strong conditions 
superimposed on the main parameters of the field at the 
boundary of the half -space. 

In the absence of an energy flux through the boundary 
of the half-space k0 == 0, and the asymptotic expansion 
takes the form 

e(z,<PJ.) = [1- 3/wz<(J.Ioa)2(1- e-z) + .. ,] COS<PJ. 

+ J.loa['/az(1- 'f•f!oa) (1- e-z) + 3/zs6!1oaZe-Z] cos3<PJ. 

+ 1/I024(J.Ioa) 2 [1 + 1/z(e-{3z- 3e-Z) + ... ]cos 5<pJ. + ... (3.10) 

Here a == (K/ A) 2, A2 == k~ - K2, Z == .fBAz, and finally 

(3.11) 

Consequently, in this case the expansion coefficients 
x~) and x<;> coincide in terms of the parameter JJ.o 
w1th the coefficients x~>(oo) and x<_f>(oo) of the expansion 
of the wave number k 1 in the parameter JJ.oo· However, 
x1[' ~ ( K a) 2 already differs from x<l>( oo) by a numerical 
factor. A similar difference takes place also for the 
higher-order coefficients. The latter circumstance is 
connected with the difference between the amplitudes of 
the fundamental mode cos q; 1 at the boundary of the 
half -space and at z - oo. Indeed, 

Eoo = [1- 3/wz<(J.Ioa)" + ... ]Eo. (3.12) 

Thus, in the plane {k2, E0 lEe} the conditions for 
self-trapping to a strictly one-dimensional distribution 
are realized on the curves shown in Fig. 1. The points 
lying above this curve correspond to the "opacity" re­
gion, since the solution of the weakly nonlinear bound­
ary-value problem leads to lime (z, q;J) == 0 as z-oo, 

Before we consider the region lying below the afore-

mentioned curve, we note that the conditions of self­
trapping to strictly one-dimensional distributions can 
be investigated also for the case when the field on the 
boundary is represented in the form of the asymptotic 
expansion 

e(<pJ.,Z=O)=cos<pJ. + ~ezn+I(O)[loncos(2n+ i)<pJ., (3.13) 
n>l 

which degenerates, when JJ.o - 0, to the boundary con­
dition considered above. Calculations show that when 
z - oo the amplitude of the fundamental mode cos q; 1 
is of the form 

(3.14) 

The condition for self-trapping to a one-dimensional 
distribution is then realized on the surface in the space 
of the parameters {k2v E 0 lEe, e 3(0), ... }, which char­
acterize the field at the boundary. 

4. In the investigation of the boundary-value problem 
for a half-space in the case when the conditions of self­
trapping to a strictly one-dimensional distribution are 
not satisfied, and the point of the plane {k21 , E 0 lEe}, 
which characterizes the field on the boundary, lies be­
low the curve shown in Fig. 1, we confine ourselves to 
an analysis of flux-free field distributions, - (o IJ! /oz)z;o 
== k0 == 0. Let k~ < k~ - K 2 , and then the nonlinear ap­
proximation has a solution 

e<01(<pJ., z) =cos <PJ. cos kuz ==cos 'PJ. cos <PJI (4.1) 

(where k~1 == k~- K 2 - k~), satisfying the boundary con­
dition and the condition of being bounded at z - oo, For 
an unbounded space, such a choice of the fundamental 
non-one-dimensional mode leads to the two-dimensional 
periodic field distributions investigated in l 2 ' 31 • It is 
natural to assume that when the condition k~ < k~ - K 2 

is satisfied, or more accurately, in the region lying 
above the curve shown in Fig. 1, proper non-one-dimen­
sional distributions are excited in the medium at z - oo, 

FIG. I 

Assuming that the wave vector (k 1 , k 11 ) depends on 
the amplitude Eo, we find that in the approximation fol­
lowing the linear approximation the solution takes the 
form 

e(IJ ( 'P-L• 'PJJ) = e/'l ( 'PII )cos 'PJ. + e.''l ( <pu) cos 3<p J., ( 4.2) 

In this case the dependence of the functions e~ 1 > and e~ 1 > 
on the longitudinal variable is determined by the system 
of equations 

(4.3) 
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If the inequalities 

tf9Az < k1-2 < N == k,z- xz (4.4) 

are satisfied, the asymptotic expansion of the solution 
of the boundary-value problem for a half-space takes 
the form 

e(cpl-, z)= [1- - 3 - flo (~) 2] cos <Pl- cos <PII 
128 k11 

+ - 1- flo (~) 2 cos 3cp 1- cos 3cpll + - 3- flo (~) 2 cos <P 1- cos 3<Pii 
128 A 128 k,l 

+ - 3- (~) 2 
flo cos 3<jlj_ cos <PI I 

128 kj_ 

- 1~8 [(~f +3 ( ;J_f] flocos3cpj_exp(-19kj_'-A'z). (4.5) 

Elimination of the secular terms leads to the relation 

(4.6) 

The latter shows that, accurate to terms of order J..L~, 
the connection between (k1, k 11 ) and E0 coincides with 
that established earlier. [ 2 • 3 l However, by virtue of the 
fact that the amplitude of the fundamental non-one­
dimensional mode at z - oo 

Eoo= [1- 1~8 11o( ~I r + ... ]Eo (4.7) 

differs from E0 , a difference between the corresponding 
expansion coefficients in (4.6), compared with the case 
of non-one-dimensional distributions in all of space, 
arises already in the next higher approximation. Indeed, 
analysis shows that 

9 
k1-' + k11 2 = k,'- x2 + 16 floX 2 

3 2 2 [ 1 9 9 ] 27 ( 11ox2) 2 

+2048(floX) k '- 2 +k2+'k'2 -1024-k-,-+ .... 
w X l- II II ( 4•8) 

Thus, if the parameters of the fields on the boundary 
correspond to the region of the plane {kl, E0 /Ec} 
bounded from above by the solid line of Fig. 1, and 
bounded from below by the line ki = % (k~ - K 2 ) shown 
dashed in Fig. 1, then the solution of the boundary-value 
problem for the half-space shows that proper non-one­
dimensional periodic field distributions are excited in 
the medium at z - oo. These distributions are charac­
terized by a wave vector (k 1 , k 11) that depends on the 
amplitude. The properties of the latter were investi­
gated in detail in [ 2 ' 3 J. 

However, when k~ < % (k~ - K 2 ), non-one-dimen­
sional fields with a more complicated structure are ex­
cited far from the boundary. Indeed, in this case, even 
in the approximation that follows the linear one, there 
arises a two-dimensional mode of a new type 

cos 3cpl- cos va'<Pih v32 = (k,2 - x2 - 9kl-2) I k112 < 1. (4.9) 

Moreover, it can be shown that in all the succeeding 
approximations the presence of this mode leads to the 
occurrence of secular terms which cannot be eliminated 
by assuming that the wave vector (k 1 , k 11 ) depends on 
the amplitude of the fundamental mode cos ifJ 1 cos ifJ II. 
We note that when k1_ < (k~ -K 2 )/(2n + 1)2, n > 1, there 
will be excited in the next higher approximations modes 
of the type 

cos(2n + i)q;·1- cos V2n+I<PII, 

Consequently, when k 1 - 0 the field distribution in the 
space z > 0 will have a more and more complicated 
structure. 

5. We have investigated above the conditions of self­
trapping to strictly one-dimensional weakly nonlinear 
field distributions. It is also possible to investigate in 
similar fashion the boundary-value problem in the case 
when the field distributions are close to the exact solu­
tions corresponding to a plane wave of finite amplitude. 

We turn, however, to a case when the field distribu­
tion specified on the boundary of the half-space is close 
to an exact one-dimensional periodic distribution with 
finite amplitude. We confine ourselves to a current­
free distribution in a transparent medium (k2 - K 2 > O). 
The exact one-dimensional solution of Eq. (2.1) is[ 2 ' 3 l 

(5.1) 

Here ~ = x,j k~ - K 2 ; cn(y; :tt 1) is the elliptic Jacobi 
cosine with modulus 

Putting e(x, z) =? e 00(X) + a 0e(x, z), where the amplitude 
a 0 << 1 characterizes the deviation of the field on the 
boundary of the half-space from the zero boundary con­
dition, we arrive at the equation 

M + [1 + 3ae.,2 (x)]e = -3aa0e.,(x)e2 - aa02e3 (5.2) 

with the boundary condition e(x, z) \z =o = e(x, 0). In the 

linear approximation the solution is given by 

(5.3) 

Here I v and r n are the negative and positive eigen­
values of the Lame operator, Ev and En are the cor­
responding eigenfunctions, [ 3 • sJ en (1: = exp ( -,Jr n 1:), 
and 

It is known[ 3 ' 5 l that in this case the Lame equation 
leads only to three non-positive eigenvalues 

(5.4) 

Thus, in the linear approximation the condition for 
self-trapping of the perturbed field on the boundary to 
a strictly one-dimensional distribution at z - oo re­
quire that c 10) = 0 for all non-positive eigenvalues of 
the Lame operator. In the opposite case there are ex­
cited in the medium non-one-dimensional modes of the 
type 8v(V cos U-rvs ), and at ao << 1, far from the 
boundary, there are excited proper non-one-dimension­
al distributions close to the exact one-dimensional dis­
tribution (5.1). Several properties of the latter were 
considered in [ 2 ' 3 l. 

Let us assume that the field on the boundary satis­
fies the self-trapping conditions in the linear approxi­
mation. The next higher approximation in the parame­
ter a 0 leads to the equation 

Ae<'l+[1+3ae.,2 (s)]e(l>=-3ae.,(s) [~cn<01 8n(s)en(~) r (5.5) 

with zero boundary condition or, after expanding e11 ) in 
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terms of the system of eigenfunctions of the Lame op­
erator, to the system of equations 

( :;2-rm)eJ11=-3a _EIDlm(n',n")c~~ c~~!. En•(\;)en"(~). (5.6) 
n',n" 

where 

For positive eigenvalues r n the solution of (5.6) takes 
the form 

(II '\' IDln(n',n") (OI (OI 
e, =- 3a 1...., .· Cn• Cn" [en•(\;) e,. .. (\;)- En(\;)], 

[Tfn•+l'fn"J2-fn (5,7) 

provided only [ ,Jr n' + ,Jr n"l2 * r n· However, no essen­
tial complications arise also in the opposite case. For 
negative eigenvalues r v we obtain 

(5.8) 

Here 
(Il 3 '\' !Dlv(n', n") (O) (O) 

Cv = a~ Cn'Cn"• 

n',n" [l'fn•+ffnnJ2-fv 
(5.9) 

Thus, in order for the conditions for self-trapping 
to be satisfied not only in the linear approximation but 
also in the next higher approximation it is necessary to 
satisfy the conditions c~01 = c~11 = 0 for all the non­
positive eigenvalues of the Lame operator. Otherwise 
there are excited far from the boundary non-one-dimen­
sional distributions with the fundamental mode fS v(~) 

X COS {,f-r vs) and with amplitude a~c011 1 which at ao 
<< 1 are close to the exact one -dimensional fields (5.1). 

Consequently it is possible to distinguish among 
types of boundary fields satisfying the self-trapping 
conditions with accuracy up to n-th order of smallness 
in the amplitude of the perturbation on the boundary. 
Far from the boundary, there are excited in this case 
non-one-dimensional fields that are close to strictly 
one-dimensional fields with the amplitude of the funda­
mental non-one-dimensional mode of (n + 1)-st order of 
smallness (in terms of the characteristic amplitudes of 
the perturbation on the boundary). 

6. In conclusion we note that a number of properties 
of the boundary value for a half space can be revealed 
in the analysis of the exact integral relations that re­
sult from the local conservation laws (divergent forms) 
of the nonlinear nondissipative electrodynamics. In­
deed, in the case of a plane geometry the system (2.1), 
(2.2) leads to the following divergent forms: 

aTu aT" 
a;:+---a;;=O, (6.1) 
aTxx + aTx, = O. 

ax az 
Here 

T, =~( aE )2 + _!_E2 (aqr )2 _ _!__ ( aE )2 _ _!_E2 ( aqr )2 
2 az 2 az 2 ax 2 ax 

++(kw2-x2)E2+f( ;yE<, (6,2) 

Txx= -~( aE )2 -~E2( aqr)2 +~(~)2 +~E2(aqr)2 
2 az 2 az 2 ax 2 ax 

+ + (kw2- x2)E2 + ~ ( ;y E<, 

T,x= Tx, =!!!.._ aE +E2 aqr aqr. 
az ax az ax 

In addition, Eq. (2.2) is a divergent form. Integrating 
(2.2) and (6.1) with respect to the half-space and as­
suming that when z - oo there is realized a strictly 
one-dimensional distribution with a plane front (for ex­
ample, a plane waveguide layer is excited( 1 - 41 ), we ob­
tain the exact integral relations 

00 aqr -1 dxE2(x,O) (a;-) 0= koo J dxE2(x, oo) == S, (6.3) 

S"" dx [ aE(x, O) (.!!!!....) + E2(x, 0) ( aqr) ( aqr) ) = 0, (6.4) 
-00 ax az 0 ax 0 az 0 

Soo [ 1 ( aE ) 2 1 2 ( aqr) 2 1 ( aE ( x, 0) ) 2 
dx -- -1--E (x 0) - -- ---

-oo 1 az 0 ' 2 , az 0 2 ax 0 

- ~E2(x, 0) ( aqr ) 2 + _!__ (k,,2- x2)E2 (x, 0) + _!__ (~) 2 E4 (x, 0) 1 
2 ax o 2 4 E, . 

•00 1 1 2 

=2 Jax [-(kw2_ x2 )E2 (x, oo)+- (---'::_) E 4 (x, oo)] .(6.5) 
-oc 2 4 E, 

In the derivation of (6.3)-(6.5) we used the assumptions 

lim E(x,z)=O, 
aqr 

lim--=0, 
Z-+<~a ax 

aqr 
-lim-=koo, 

z-oo az 
and also the explicit form of the first integral of the 
one-dimensional equation for E(x, oo), 

For the case when the amplitude E(x, O) and the nor­
mal derivative of the phase (o>¥/oz) 0 are specified on 
the boundary, the integral relation (6.3) determines the 
normal derivative of the phase at z - oo. The unknown 
quantities in this case are (oE/oz) 0 and >V(x, 0). We 
can, however, consider a different formulation of the 
boundary-value problem, in which the amplitude E(x, y) 
and the phase >V(x, y) are specified on the boundary. In 
this case the known quantities are the normal deriva­
tives (oE/oz)0 and (o>¥/oz) 0 • Assuming that the field at 
the boundary is characterized by a plane front, we find 
that (6.4) leads to orthogonality of the tangential and 
normal derivatives of the field amplitude, and (6. 5) 
leads to the obvious relation 

00 dE 2 1 1 1 ~ )2 ] l dx [-(a;) 0 +2 (kw2 - x2)E2 (x, 0) + T\JE: E4(x, O) 

The latter, at a specified value of the energy flux 
through the boundary S, determines in the space of the 
parameters characterizing the field at the boundary 
E(x, 0) a region outside of which the self-trapping to a 
plane waveguide layer is impossible. For example, if 
the field on the boundary is given by 

E (x, 0) = Eo exp [- (x / x.L) 2] 

then the allowed region in the plane { h, z1 } , where 

h=--?<2-(Eo ) 2
, l.L=x.L l'x2 - kw2 

x2 - k.,2 E, 

is designated by the shaded area in Fig. 2. 
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FIG. 2 

It should be noted that an analysis of the exact inte­
gral relations, and also of inequalities similar to (6.6), 
is, in our view, of undisputed interest in connection with 
the fact that the results of the investigation are not con­
nected with any particular form of the asymptotic ex­
pansions in terms of a small parameter. 
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