
SOVIET PHYSICS JETP VOLUME 31, NUMBER 5 NOVEMBER, 1970 

NONLINEAR INTERACTION OF A LOW-DENSITY RELATIVISTIC ELECTRON BEAM 

WITH A PLASMA 

R. I. KOVTUN and A. A. RUKHADZE 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 

Submitted November 5, 1969 

Zh. Eksp. Teor. Fiz. 58, 1709-1714 (May, 1970) 

The propagation of a stationary electrostatic wave of finite amplitude in an infinite plasma through 
which a low-density relativistic electron beam moves is investigated. The dispersion equation which 
relates the frequency with the wave vector and the amplitude of the wave field is derived. In the limit 
of infinitesimally small amplitudes this equation becomes the dispersion equation of the linear theory 
and contains the two-stream instability, so that the wave amplitude increases with time. At large am­
plitudes, for which the electrons in the beam can be trapped by the wave, the two-stream instability is 
stabilized and the only solutions of the dispersion equation correspond to stationary nonlinear oscilla­
tions. 

1. INTRODUCTION AND SUMMARY 

IT is well known that a strong electrostatic instability 
can develop in the interaction of an electron beam with a 
plasma when the directed velocity of the beam is greater 
than the thermal velocity of the particles. l1, 21 Many au­
thors have investigated the consequences that arise in a 
plasma as a consequence of this instability. In particu­
lar, a large number of papers are devoted to the quasi­
linear relaxation of the beam in the plasma. [3 - 51 This 
approach is applicable if the thermal spread of the 
velocities of the beam electrons is large so that the 
instability can be described in terms of a kinetic theory. 
On the other hand, in most experiments an essentially 
monoenergetic electron beam interacts with the plasma; 
in this case the two-stream instability is hydrodynamic 
and the quasilinear theory does not apply, at least in the 
early stages of the development of the instability. 

It is of interest to formulate a nonlinear theory for 
the interaction of a beam with a plasma and to investi­
gate the consequences of the development of the hydro­
dynamic instability taking account of the fact that in a 
low-density beam (under certain specified conditions) 
it is possible for a single-mode instability to develop, 
i.e., only that mode grows whose growth rate is a maxi­
mum. For example, this is the case when the beam is 
weakly modulated at a frequency that corresponds to the 
plasma frequency of the plasma reJ (or, what is essen­
tially the same thing, when an electrostatic wave at the 
plasma frequency is launched in the beam-plasma sys­
tem). Using the asymptotic method of Krylov and 
Bogolyubovr 71 for a single oscillatory mode it is possi­
ble to obtain a generalized dispersion equation that 
takes account of the finite wave amplitude. Analysis of 
this equation shows that the oscillations are unstable at 
low amplitudes so that the amplitude increases with 
time. On the other hand, if the amplitude of the wave 
exceeds some critical value, which is determined by the 
parameters of the beam and the plasma, the generalized 
dispersion equation admits only real solutions, which 
correspond to a stationary nonlinear wave. Starting 
from this picture it may be assumed that in the interac-
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tion of a low-density beam with a plasma an electro­
static wave with wavelength corresponding to the maxi­
mum growth rate for the two-stream instability will 
grow until the wave amplitude reaches the critical value. 

The critical field for the wave can be estimated 
easily from simple physical considerations. It is known 
from the linear theory that in the absence of an external 
magnetic field (or with an infinite magnetic field, in 
which case the oscillations become one-dimensional) 
the wave with the maximum growth rate is the one for 
which ku = wLo where k is the wave vector, u is the 
acoustic velocity and wLo = [41Te 2n0/m] 112 is the plasma 
frequency; the maximum growth rate is given by 

where n1 and no are respectively the electron density in 
the beam and the plasma in the laboratory coordinate 
system (the system fixed in the plasma), w is the fre­
quency of the wave, and yo= (1- u2/c 2r 112 . It is evident 
that the beam will excite a wave in the plasma i.e., its 
energy will be transferred to the plasma, if the beam 
energy in the system fixed in the wave is greater than 
the peak potential in the wave. This condition can be 
written in the form 

m ( w )2 z u- k Yo4 > e<Po'\'o, 

where <I> 0 is the peak potential in the wave in the labora­
tory coordinate system. 1> In the opposite limit the elec­
trons in the beam are trapped by the wave and there is 
no relative motion of the beam with respect to the wave. 

1l If there is to be no broadening of the wave spectrum owing to the 
excitation of thermal oscillations by the beam the following condition 
must be satisfied: 

1 "fS WLo ( nt )'f, 1 ( <llo )-'{, 1 ( <llo )-'/, ->-- - - In- >- In- , 
L 2 u 2no Yo <llT L <llT 

where Lis the linear dimension of the system and <I>T is the amplitude 
of the thermal noise. It follows, in particular, that <I> 0 ~ <I>T. Strictly 
speaking, it is only when this condition is satisfied that the one-dimen­
sional approximation can be used. 
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Consequently, there is no energy exchange between the 
beam and the wave, both remaining in a stationary state. 
Equating the kinetic energy of the beam and the poten­
tial of the wave we find the following steady-state ampli­
tude: 

m 2 3 ( nt )''• ell>o ~ - YmaxYo3 =-mu2yo - . 
2 8 2n0 

(1.1) 

The relative energy density of the electrostatic field in 
the plasma is given by the relation 

Eo2 9 ( n 1 ) '" 
Bnntme2y0 ~ 256 ~ ~•vo, (1.2) 

where f3 = u/c. It is evident that this ratio will also 
characterize the relative energy spread of the electrons 
in the beam as the instability develops. It follows from 
Eq. (1.2) that when 

(nt I no)'1>yo~2~ 1 (1.3) 

the relative energy density of the electrostatic oscilla­
tions excited by the electron beam in the plasma will be 
small, as will the energy spread of the beam. This con­
dition also supports the assumption made above con­
cerning the nonrelativistic nature of the motion of the 
beam in the coordinate system fixed in the wave. 

The estimates given above will be justified and trea­
ted analytically in what follows. 

2. BASIC EQUATIONS 

As indicated above, we are interested in one-dimen­
sion electrostatic oscillations in a system consisting of 
a relativistic, monoenergetic, low-density electron 
beam and a plasma. The hydrodynamic equations that 
describe this system are well-known:[2 J 

8211> 
az• =4n _Ee(n"-N0 ), 

Here a refers to the electrons in the beam and the 
plasma while No is the density of the neutralizing ion 
background. 

For steady-state oscillations, which are of interest 
here, all quantities are functions of the argument 
wt- kz. In view of this circumstance it is convenient to 
transform to a reference system fixed in the wave, in 
which the equations in (2.1) become stationary. It is 
then a simple matter to find two integrals of the motion: 

narVar = VarUczr, 
me2 me• 

--::-:7==::::=;:::;+ ell>,= , (2 2) 
}'1- v"//e2 i1- u..l/e2 • 

where uar is the velocity of the electrons and 11 is 
the density of the electrons at points for which gr = 0 
(the subscript r is used to denote quantities in th~ mov­
ing coordinate system). Introducing the notation 

(2.3) 

from Eq. (2.2) we find 

1/ w", 
n"r=V"r V W _ "' . 

ar e'Vr 
(2.4) 

In the derivation of this expression it is assumed that 
e<I>r « mc 2 , as is the case for a low-density beam that 
satisfies (1.3). Substituting Eq. (2.4) in Poisson's equa­
tion in the moving coordinate system we have 

8211>, \'1( 1/ W"' ) 
""FT=4ne ~ V"r V W _ 11> -Nor . 

Zr a. ar e r 
(2.5) 

We now take account of the fact that the velocity of 
the plasma electrons in the moving coordinate system 
coincides with the velocity of the wave at points for 
which <I>r = 0, that is to say, wpr = w/k while the elec­
tron velocity in the beam is given by 

We assume further that the wave being considered here 
corresponds to a wave characteristic of a beam-plasma 
system with a maximum growth rate 

Ymax=/w-ku/= -y3' y0- 1 (...!:!..._)''', 
2 2no 

while w ~ ku. As a consequence of (1.3) the beam veloc­
ity ubr is nonrelativistic in this case and Wpr » Wbr· 
On the other hand, it is evident from Eq. (2.5) that non­
linear effects must be considered for wave propagation 
in the plasma even when e<I>r - wbr if wpr » e<I>r, 
although the plasma term can be linearized. As a result 
from Eq. (2.5) we have ' 

11 or is the density of the background which neutralizes 
the charge of the beam in the moving coordinate system. 
Thus, the problem of propagation of a wave of finite 
amplitudes in a beam-plasma system reduces to the 
analysis of Eq. (2.6) with a small nonlinearity 11br « llpr· 

3. NONLINEAR DISPERSION EQUATION 

In analyzing Eq. (2.6) we must consider two cases: 
a) Wbr > e<I>r 0 and b) Wbr :5 e<I>ro• where <I>ro is the peak 
potential in the wave <I>r· In the first case the electrons 
in the beam can overcome the potential hills in the wave 
and the beam is displaced with respect to the wave, 
transferring part of its kinetic energy to the wave. In 
the second case the beam electrons are trapped by the 
wave and, on the average, the beam does not move with 
respect to the wave. It will be evident that in this case 
the beam cannot transfer its energy to the wave, so that 
the system reaches a stationary state. 

Wbr > e<I>ro· Using the asymptotic method of Krylov­
Bogolyubovl7J we seek the solution of Eq. (2.6) with its 
small nonlinearity in the form <I>r = <I> or cos if 
= <1>0r cos (krzr +~).where <1>0r and~ are slowly vary­
ing functions if (1.3) is satisfied. In the zeroth approxi­
mation in the smallness parameter these quantities can 
be regarded as constant. 21 Substituting the solution in 
this form in Eq. (2.6), multiplying by cos if and averag­
ing over if, we have 

2lWe note that (1.3) also implies that the higher harmonics are small. 
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where llpr = noyo, k = krYo, 1Por = IPoYo and K(77) and E(77) 
are complete eliptical integrals with the modulus 

(3.2) 

In this form Eq. (3.1) is still not convenient since it 
contains the electron density of the beam llbr at the 
points for which IPr = 0. It is more convenient to con­
vert to an average spatial beam density iibr = nll', aver­
aging Eq. (2.4) with respect to w for this purpose (the 
modulation of the electron density in the plasma by the 
wave is negligibly small). As a result we find 

:rtntr 
'llbr =--(1- 0 5'1]2)-'io 

2K(TJ) ' . 
(3.3) 

If we also assume that n1 = yon1r, then Eq. (3.1) can 
be transformed to the final form 

1 _ WLo2 _ WLI2 8C(TJ) O (3.4) 
ro2 y03 (ro-ku) 2+2em-1k2<1>0 K(TJ) ' 

where C(77) = 1)-4((2- 1) 2)K(17)- 2E(17)]. When 1) varies 
from 0 to 1 the ratio 8C(1])/K(1J) varies from 1 to 8. 

Equation (3.4) represents the desired dispersion 
equation for the nonlinear wave in the beam-plasma 
system and relates the frequency w, the wave vector k, 
and the wave amplitude ~Po when Wbr > e!Pr· In the 
linear limit, in which !Po- 0, so that 1) - 0, this equa­
tion becomes the well-known dispersion relation of the 
linear theory. L2J 

Wbr ~ e!Pro· In this case the electrons in the beam 
are trapped by the wave and execute bounded motion be­
tween the potential hills. Solving Eq. (2.6) we keep in 
mind the fact that the right side becomes infinite at the 
electron turning points i.e., the points for which wbr 
= e1P0r cos (krzr + J ). Hence, in carrying out the aver­
age over w = krzr + J the turning points must be elim­
inated from the region of integration by a small interval 
(of order Fn7ilo). The contribution of the poles at these 
turning points can be introduced by means of the Green's 
function and it is found that this procedure leads to a 
correction of order (nun0 ) 213 , which is beyond the ac­
curacy of the present approximation. The remaining 
procedure for obtaining the dispersion equation is com­
pletely analogous to that given above and we find 

1- WL02 + 2 WLI2m [1- 2 E(TJ) ] =0, 
ro2 e<llok2 K(YJ) 

(3.5) 

in which the modulus of the integrals is 

-{ 1/2yo3m(ro/k-u) 2+e<I>o }''• 
'I]- 2e<llo · (3.6) 

It is evident that Eq. (3.5), in contrast with Eq. (3.4), 
only has real solutions w, which correspond to stable 
stationary oscillations of the system. This result is 
completely reasonable because when Wbr < e~Pr 
the beam electrons are trapped by the waves so that 
there is no relative motion between the beam and the 
wave and no energy transfer. 

4. ENERGY OF THE STEADY-STATE WAVE 

Thus, we find that an electrostatic wave in a beam­
plasma system can only reach a stationary state at 

sufficiently large amplitudes such that the electrons in 
the beam are completely trapped by the wave. It is of 
interest to determine the minimum value of the peak 
potential of the wave IP oM as a function of the param­
eters of the plasma and beam, thus determining the 
critical value at which the wave can become stationary. 
For this purpose we take the limit 17 - 1 in Eqs. (3.4) 
and (3.5). Using these equations we find 

(4.1) 

It is then evident that the steady-state can be reached 
only at frequencies below the plasma frequency. Using 
the condition 11 = 1 and eliminating the frequency w from 
Eq. (4.1) we obtain the following expression for the sta­
tionary amplitude of an electrostatic wave excited by 
the two- stream instability: 

e<lloM = 2'i•mu2 - 1 y0 • ( n )''' 
2no 

(4.2) 

The relative energy density of an electrostatic field in 
the plasma is given by the relation 

(4.3) 

The relations in (4.2) and (4.3) differ from the ap­
proximate relations given in (1.1) and (1.2) only by 
numerical factors. It is interesting to note that to an 
accuracy within numerical factors of order unity these 
results also coincide with the results of the quasilinear 
theorylsl, which are valid when the beam excites a 
broad spectrum of oscillations in the plasma. 
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