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An equation describing the behavior of a spin in an external electromagnetic field is obtained in the 
quasiclassical approximation taking radiation effects into account. With the aid of this equation the 
process of radiative polarization is investigated. 

1. INTRODUCTION 

MAGNETIC bremsstrahlung leads to polarization of 
electrons and positrons moving in a field because the 
probability of a radiative transition with a spin flip de­
pends on the orientation of the initial spin. The advan­
tages of such a mechanism of polarization consist of 
the following: 

1) This is the only method of directly obtaining po­
larized beams of high energy, and this avoids the very 
complicated problem of accelerating polarized parti­
cles (in fact it is effective beginning with an energy of 
several hundreds of MeV). 

2) The polarization process does not introduce ad­
ditional changes into the characteristics of the beam 
(intensity, scatter of the parameters), and this distin­
guishes it advantageously from, say, the method of ob­
taining polarized beams by means of scattering. Thus a 
possibility is opened up of designing experiments involv­
ing polarized electrons and positrons which enables one 
to expand the means for the experimental study of elec­
tromagnetic interactions at high energies. 

Sokolov and Ternov[ 11 first indicated the existence 
of the mechanism of radiative polarization in a homo­
geneous magnetic field by calculating the probability of 
a radiative transition with spin-flip starting from the 
exact solution of the Dirac equation in a homogeneous 
magnetic field. The analysis of the kinetics of radiative 
polarization was carried out by them by means of an 
elementary balance equation for the number of electrons 
with a given component of spin along the direction of the 
magnetic field. 

In [ 2 ' 31 the probability was calculated for a radiative 
transition with a spin-flip in the case of an inhomogene­
ous magnetic field of particular interest for applica­
tions.11 In these papers a method was used which uti­
lizes in an essential manner the quasiclassical nature 
of the motion of high energy electrons in an external 
field (cf., [41 ). The value obtained for the probability of 
spin-flip accompanying radiation depends on the sign of 
the component of the spin vector along the v x v direc­
tion, and this indicates the possibility of polarization of 
particles along this direction. 

Of considerable interest is the detailed study of the 
kinetics of radiative polarization, and for this it is nee-

1lThc degree of inhomogeneity is limited by the following condition: 
the e.xternal field must undergo only a small change in a distance over 
which radiation is formed, and this is always satisfied in practice. 
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essary to derive and to investigate the equation for the 
polarization density matrix taking into account the con­
tribution made by the radiation. The present paper is 
devoted to this question. Taking into account the quasi­
classical nature of the motion of high energy electrons 
in an external field the equation for the polarization den­
sity matrix can be conveniently represented in the form 
of an equation for the spin vector t (the average value 
of the spin operator in the electron rest system). In 
this paper an equation of motion has been obtained for 
the spin vector taking into account the interaction with 
the radiation field which is a generalization of the well­
known Bargmann-Michel-Telegdi (BMT) equation (cf., 
for example, [ 51). Then with the aid of this equation an 
analysis is carried out the kinetics of radiative polari­
zation. 

2. DERIVATION OF THE EQUATION 

We introduce the Heisenberg operator for the elec­
tron spin in the rest system a(t) (a+(t) = a(t)), the aver­
age value of which 

bo(t) = (toia(t) ito) (1) 

is the spin vector in the rest system of the particle. 
Without taking into account the interaction with the ra­
diation field the variation of this vector with time for 
particles with a given anomalous magnetic moment is 
determined by the BMT equation (in the quasiclassical 
limit, i.e., for fields slowly varying over a length 
~n/mc, and for narrow wave packets). 

After the interaction with the radiation field has been 
switched on the evolution of the state vector in time is 
determined by the matrix U(t, t0): 

it>= U(t, to) ito). (2) 

The variation of the average value of the spin of a Dirac 
electron with time taking the interaction with the radia­
tion field into account is given by 

(tja(t) jt)-(tola(to) it)= (tojU+(t, to)a(t)U(t, to ito)- (toia(to) ito) 

= <tojU+(t, to)[a(t), U (t, to)] I to> + <to I a(t) - a(to) I to). (3) 

Here the last term determines the variation of the 
average spin in the absence of the radiation field. We 
represent the matrix U(t, to) in the form of a perturba­
tion theory expansion in terms of the electromagnetic 
coupling constant e: 

U(t, to)= I+ iT(t, to)= I+ i(T1 (t, to)+ T2 (t, t0) + ... ]. (4) 
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From the condition of unitarity of the scattering matrix 
we obtain2 ) 

T,- T,+ = 0, i(Tz+- T,) = 2Im T2 = T1+h (5) 

Taking these relations and (1) into account we can re­
write (3) in the form 

\;(t) -\;(to)= (t0 1T,+cr(t)T,- 1/ 2 [cr(t)T1+T1 + 1'1+T1cr(t)] 
+ i[a(t), ReT,] Ito)+ \;o(t)- \;o(to). (6) 

Here t 0 (t0 ) = t(t0 ), since the interaction with the radia­
tion field is switched on at time t0 • 

We now proceed to the evaluation of the individual 
terms in (6). The matrix T 1 contains the operator for 
the creation or the annihilation of a photon, and there­
fore the matrix element 

(to I T,lto) = 0, (7) 

since the state vector I t0 ) describes the states of an 
electron in an external field in the absence of the radia­
tion field. This circumstance has been taken into ac­
count in (6). In evaluating terms containing the combi­
nation T 1 + T 1, one should take into account the fact that 
the only matrix elements of T1 which are different from 
zero are those for the transition into the one-photon 
states: 

= J d3k ,E<toiT,+Ito,k)(k,toiTdto), (8) 
.s,A. 

where the integration is carried out over the momenta 
of the photon, while the summation is carried out over 
the spins of the electron (s) and the polarizations of the 
photon (A.). In (8) (k, to I T11 t0 ) is the matrix element 
for the transition into the one-photon state with the pho­
ton (k, A.). In agreement with the results of [ 41 it has the 
form 

where 

Q(t)= A(t) + icrB(t) 
e+ e' , 

A =-----u-(e v), 

B = :: [ e' ( n- v + v 7)] 
E' = E -nw, n = k/w, w is the photon frequency, E: is 
the electron energy, v is the electron velocity, e is the 
polarization vector of the photon. 

The characteristic time for the variation of the ma­
trix elements of the operator T 1 is the radiation time 
T ~ T0 ly, while the characteristic time for the variation 
of O'(t) (t(t)) is To (To, for example, is the period of 
revolution of the particle in the field), and, therefore, 
with an accuracy up to terms - 1/y ( y = E:/m) we can 
neglect the variation of O'(t) during the time of forma­
tion of the radiation. Taking this circumstance into ac­
count we have 

2lWe note that the state vector introduced above is a two-component 
spin or, whilte U(t, t0 ) is a 2 X 2 matrix operating in the space of these 
spinors. ReT 2 and ImT 2 denote respectively the hermitean part and the 
antihermitean part divided by i of the operator T 2 • 

e2 d3k ' ' ie 
= 4111i J 2JtuJdtddt,_ENexp{- ;:[<u(t2 -ti)-k(r2 -ri)J}. 

'" '· ~ (10) 
N = Sp {[ Q,+a(t)Q,-cr(t)Q,+Q,t Q,+Q,cr(t) ] 1~ \;<J } . 

Utilizing the relation QO' = O'Q + 2 [B XO'], it is not 
difficult to evaluate the trace in (10): N = NA + NB, 
where 

NA = -[(A,B, +A,B,)i;], 
(11)* 

Nn = -2i[B,BJ] + B2(i;B,) + B, (i;B,)- 2i;(B 1B2). 

The expression obtained for N contains terms of 
two types: quadratic in B (NB- n 2 ) and linear in 
B (NA ~n.); these terms lead to different physical con­
sequences, and, therefore, we investigate them sepa­
rately. We multiply N in (10) by t: 

Ni;=NB\;=2{(B 1i;)(B2i;) -\;2 (B1B2 ) -ii;[B,BI]}. (12) 

it can be seen (cf., [ 31 ), that the term NBt is ex­
pressed in terms of the square of the matrix element of 
the radiative transition with spin-flip. We note that 
here we are considering an ensemble of electrons (in 
the language of one of the representations of the density 
matrix) so that, generally speaking, I t 1-i. 1. The further 
evaluation of the integral (10) coincides with that car­
ried out in [ 31 3 ) since terms involving given structures 
in t can be picked out uniquely. Thus, the answer fol­
lows directly from the last formula in [ 3 l: 

~bLB 1 { 2 8 [ v'v] } 
--=-- 6--v(i;v)+---.- , 

~t T 9 5y3 Jv! 
(13) 

where 
e2 1 

a=--=-. 
4nli 137 

A direct evaluation of t.t1 AI c.t presents no diffi­
culties, but one should have ih mind the following cir­
cumstance: a) the structure of this term is [F x t], 
where F is an axial vector constructed from the vec­
tors of the problem. Terms of this type lead to a rota­
tion of the vector t (about F), but not to a change in its 
modulus; b) the term t.t1 A/ t.t is proportional to 
Planck's constant n, sincJ it is linear in B, and, at the 
same time, as will be seen below, there are rotational 
terms which do not contain n. In this sense the term 
t.t1 A/ t.t is a correction term to the description of ro-

' tation. 
We now proceed to the term in (6) with Re T2 • In or­

der to evaluate it, it is necessary to know the Green's 
function for the electron in an external electromagnetic 
field. We utilize the Green's function evaluated by 
Schwinger. [ 6 1 In his paper he has given a formal ex­
pression for the Green's function which is valid in all 
orders in n, and the Green's function is calculated ex­
plicitly in the approximation linear in the field (in fact 
the terms -n°). As is shown in the Appendix, starting 
with this Green's function it is possible to obtain 

t 

(toiReTzlto)= J (tala-~: (HRcr)l to)dt. (14) 
to 

*[82 8tl =82 X 8 1 • 

3llt is necessary that the difference of times should satisfy t-t0 };> r. 
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The quantity a contains a divergent integral related to 
mass renormalization, in future we shall not need it; 
J.L = a/27r; 

{ v(vH) } HR=Y H-----[vE] 
1+1/'v 

is the magnetic field in the rest system of the electron, 
if H and E are the fields in the laboratory system. 
Carrying out simple calculations and utilizing consid­
erations concerning the dependence of u on the time 
analogous to those presented above we obtain 

t . J f.te {tol![a,ReT2]1to)= -;-[i;HR]dt. 
to 

Thus, we have obtained that 

~~2 = f.te (i;HR]' 
M e 

(15) 

(16) 

i.e., we have obtained a rotational term proportional to 
the anomalous magnetic moment of the electron. 

Finally, the difference appearing in (6) 
~bO 

i;o(t)-i;o(to)=-~t 
M 

describes the variation of the spin vector of the elec­
tron in an external field in the absence of an interaction 
with the radiation field. In the quasiclassicallimit one 
can obtain directly from the equation for the spin opera­
tor of the Dirac equation (cf., for example, [ 5 l) 

~bo e [Ev] (17) 
M=~[i;HE], HE=H+1+1/y" 

Thus, the picture of the phenomenon under considera­
tion is the following. In the absence of an interaction 
with the radiation field the spin precesses in accord­
ance with Eq. (17). The switching on of the interaction 
with the radiation field leads to two types of effects. 
First, new forms of rotational terms appear which are 
related to the acquisition by the electrons as a result of 
the interaction with the radiation field of an anomalous 
magnetic moment (16). The sum of (16) and (17) gives 
an equation for the variation of the vector t for an 
electron with an anomalous magnetic moment in an ex­
ternal field (the BMT equation)41 Moreover terms of a 
new type appear-those that change I t 1. As a result we 
obtain the following equation of motion for the spin of an 
ensemble of electrons in an external field taking radia­
tion effects (13), (16), and (17) into account: 

:5= _!:_[b(!IHR+HE)]-_!_(b-2_v(i;v)+-8- (~]), (18) 
dt e T 9 51"3 lv I 

where HR is defined by (14), HE is defined by (17), 1/T 
is defined by (13). One should keep in mind that the ro­
tational terms in (18) are of order ti0 (we do not take in­
to account corrections of higher order in ti to the rota­
tional terms since they are negligibly small, and do not 
lead to new qualitative effects). The terms altering I tl 
are of order li2, yet they should be retained, since they 
lead to new qualitative effects-the variation of It 1. 
Nevertheless, such a distinction in the orders of magni-

41In this sense the calculation carried out above represents a direct 
derivation of the BMT equation. One could also argue in the opposite 
direction: starting with the general representation for ReT 2 (14), in­
dependently of the coefficients, it can be easily seen that this term is of 
a rotational type, but then it can be equal only to the term with the 
anomalous magnetic moment in the BMT equation. 

tudes simplifies the solution of the kinetic equation (18) 
and enables one in many cases to consider separately 
the effects of rotation and of the variation of I t 1. 

3. THE ANALYSIS OF THE KINETIC EQUATION 

For the sake of simplicity we consider the case of a 
purely magnetic field, i.e., we set E = 0 in (18). Equa­
tion (18) can be rewritten in the form of a system of 
equations for the components of the vector t along the 
e1 = v/lvl, e2 = v/lvl andes= [e1xe2] axes. We now 
have 

where 
J.te e vH 

r.!=vfllvl, ro=-H,,+--.-
e e lvl2 

Hu = vH, Ii = (vV)H 

(It is assumed that H does not explicitly depend upon 
the time). If the particles move in a homogeneous field 
along a circular trajectory, then w = 0: the coefficients 
n and 1/T do not depend upon the time. We write out 
the resulting solution (cf., also [ 7l): 

~~ (t) = tL(O) cos (Qt +a) exp ( - 8/gt IT), 

~2(t) =~.dO) sin (Qt +a) exp (- 8/gtf T), (20) 

~s(t) = -8/5i3 + (~3 (0) + 8/5l'3)e-t!T; 

here t 1 (t) = V d(t) + d(t) • 
It can be seen that the spin rotates about the e3 axis, 

while the 1;1 and 1;2 components decay during a time 
~ T, while the nondecaying term -8/5 ..f3 in 1;3 gives a 
finite polarization which does not depend on the initial 
value of the vector t. In this manner asymptotically 
(i.e., after a time t >> T) one obtains a spin vector of 
length 8/5 ..f3, directed along - [ v x v], i.e., against the 
field for electrons and along the field for positrons. 

We now assume that the particle in a homogeneous 
field moves along a helical line, then the second term in 
w which depends on the field gradients naturally van­
ishes and we have for w: w = J.LeH 11/E. In the expression 
for t(t) the essentially new feature compared to (20) 
consists of the fact that a nondecaying part appears also 
in the component 1;1, so that asymptotically a vector is 
obtained situated in the (1, 3) plane and rotated from the 
e3 axis by an angle ~ w/0 = y - 1H 11 /H 1 . The motion 
along a helical line can be obtained from a circular mo­
tion by a Lorentz transformation parallel to the mag­
netic field. Since -t2 = s 2-the square of the spin 4-
vector, then the degree of polarization of the particles 
(measured by I t I) must be the same in both these 
cases. The same result also follows naturally from the 
solution of the system (19) if one takes into account that 
in deriving Eq. (18) in that part of it, in front of which 
the factor 1/T appears, terms of order 1// were 
omitted compared to those that were retained; the role 
played by these terms leads only to a change in t~s and, 
consequently, in the defree of polarization by a quan­
tity of the order of 1/y . 

In an inhomogeneous field it is usually possible to 
neglect the first term in comparison to the second. 
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Generally speaking, the degree of polarization changes 
(compared to the case of the homogeneous field), since 
a specific physical mechanism-the presence of real 
field gradients-comes into play. This change can be 
found, if w/0 >> 1/y; in the opposite case the coeffi­
cients in (18) in front of 1/T are insufficiently accurate 
(however, then the corrections to the degree of .Polari­
zation are negligibly small-of t}'le order of 1/y ). 

Further, we consider the practically interesting case 
Jf ?n inhomogeneous field when the orbit of the particle 
differs insignificantly from a plane circular one. Then 
the ratio of the frequencies w/0 turns out to be small­
of the order of the ratio of the dimensions of the devia­
tion from a plane circular orbit to its mean radius. The 
system (19) was solved by approximations in terms of 
tt.is small parameter. In the linear approximation the 
following expressions are obtained for the spin compo­
nents 

here 

t 

~+(l)= eg(t) [ ~+(0)+ i J ro(,;)~3<0l(,;)e-8(•ld't], 
0 

t d t 

~(t) =~3<0l(t)-exp (-J ;) lm~(O) J w(t)el<•ldt; (21) 
0 0 

8 8 t dt 
~+(t)=st(t)+ i\;2(t) \;3<0l(t)= ---+(~(OJ+-=) exp (-J -) 

5y3 5y3 0 T 

t 8 1 
g(t)= S(--y+iQ)d't, 

0 9 

t d 
t<t>=g<t>+ J_:_· 

o T 

The difference from the case of the homogeneous field 
consists of the fact that in /:;1 and ?;2 nondecaying 
terms of small ( ~ w/0) amplitude appear; in ?;3 there 
is a decaying term linear in w/0. The nondecaying cor­
rection to ?;3 appears only in the next approximation, 
and has the form: 

8 t d t ' 
~\;3 =-exp (- s....:.) Re Ja,; (l) ('t)ei(T) J (I) (-r,)e-g(t,)d-r,. (22) 

5y3 o T o o 

In a specific case the configuration of the field de­
termines the law of motion for the particle which deter­
mines the dependence on the time of the functions O{t), 
w(t), and T(t). After evaluating the integrals appearing 
in (21), (22), we obtain the desired behavior of the spin. 

As an illustration we write out the asymptotic form 
of the solution for the spin vector in the case when the 
particle performs small oscillations in an axially sym­
metric magnetic field with an inhomogeneity index n: 

8 z0 n'l• -
~t'"=-----n' sinl'nroot, 

5l'3 R n- (v~) 2 

8 zo n2 -
~;;2as cos l' n Wot 

5l'3 R n -(w) 2 

(23) 

S3"' =- 5~3 + 5~3 ( ~ f n _ ~:~)' cos 2-{n root. 

Here w0 = 1/R; R is the equilibrium radius; z 0 is the 
amplitude of the vertical oscillations. 

APPENDIX 

EVALUATION OF (to IRe Tal to) 

In the interaction representation in the Furry pic­
ture the scattering matrix formally has the same form 
as in quantum electrodynamics of free particles: 

t 

R (t, t0 ) = T exp{- ie J dt J d3x iliFY~'i'FA~}, (A.1) 

'" where 1/JF(x) is the operator for the electron-positron 
field in the given external field. As before, Wick's the­
orem holds for the expansion of the T-products into a 
sum of normal products, but the contraction of the fer­
mion operators will now be the Green's function in the 
given field. Since we are evaluating the average value 
of Re T2 between one-electron states, it is clear that 
the photon operators must be contracted, i.e., we are 
dealing with a self-energy diagram. We write out the 
average value of R2 (t, t 0 ) over the one-electron states. 
From what has been said above it follows that 

(pJR2 (t, t0) Jp) = ie2 J d'x J d4x'<Dv+(x) u,(p)v~G(x, x') 

xv•D~v(x-x')u,(p)<Dv(x). (A.2) 

Here G(x, x ') is the Green's function for the electron 
in an electromagnetic field, D/-L 11 (x - x') is the photon 
propagator. In formula (A.2) we have also utilized the 
quasiclassic representation for Jp) (cf., [ 41 ). 

The explicit form for the Green's function G(x, x') 
we find in [ 6 1 in an approximation linear in the field. 
Substituting this Green's function into {A.2) we have 

2 t 00 d H 

(pJR2 (t,t0 ) Jp) =-e-1 dt J d3x<1Jp+(x)u,(p) [J ~J e-im~s-wJdw 
( 4n)' '" u s o 

x[2m(2- :)-2mw(1- :) i2 ea~·F~v]u,(p)<Dv(x). (A.3) 

Utilizing the explicit form for u{p) from [4 1 one can 
rewrite this expression in the two-component form. 
Then taking into account the fact that 

J d3x(<lJ+ ... <lJ)=(iJ ... Ji), Jto)=cpJi) {A.4) 

(cp is a two-component spinor), we have 
I 

(pJR,(t, to) Jp) =(to I T,Jto) = l at( tala-~: (HRO') I to>, (A.5) 

where[ 61 

a m2 ""ds 1 

a=-- J-Jdu(1 + u)exp[- m2us], (A.6) 
2n e 0 s 0 

~ = im2 _5!_] ds] dw !!_ (1- !!_) exp[- im2 (s- w) ]=___<:_ (A. 7) 
n 0 0 s s s 2n 

HR was defined in (14). Thus, in the approximation lin­
ear in the external field the matrix T 2 is hermitian. 
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