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A theory of instability phenomena is developed on the basis of notions regarding a controllable elec­
tronic phase transition due to the dependence of local level depth on the free electron concentration. 
In order for this instability to be manifest in the volt-ampere characteristic (VAC), a "priming" 
concentration of free electrons produced by an electric field or power is required. The cases are 
considered when the priming carrier concentration is created by the Frenkel ... Pool effect (thermo­
ionization of centers made easier by an electric field) in a semi-insulator with donors, or by carrier 
injection into a dielectric with traps. The VAC obtained can explain the memory and switching phe­
nomena observed, for example, in glassy semiconductors. r 1- 51 A thermodynamic analysis of the 
equilibrium state of a semiconductor with donors is performed, and a phase diagram of the states of 
semiconductor electron gas is plotted with the temperature and donor concentration as coordinates. 
The diagram describes the semiconductor-metal phase transition and yields, in particular, a natural 
explanation of the memory effect. 

A summary of conclusions of the theory is presented and a comparison with the available experi­
mental facts is carried out. It is suggested that experiments involving the field effect can be em­
ployed to distinguish the instability mechanism under consideration from those which essentially de­
pend on the passage of current. Layers with opposite space-charge signs may alternate near the sur­
face in a semi-insulator with donors in the case of the field effect; discontinuous changes in the de­
pendence of longitudinal electric conductivity on external transverse field should be observed in this 
case. 

1. INTRODUCTION 

AT the present time, interest is exhibited in metal­
thin amorphous semiconduetor layer-metal sandwich 
systems, in which S-shaped volt-ampere characteris­
tics (VAC) and memory effects are observed.r 1- 51 

These systems are quite promising for applications. 
Yet the physical mechanism of their action is not clear. 

The observed instability phenomena, especially 
memory effects, are apparently difficult to interpret on 
the basis of the known instability mechanisms. The su­
perheat mechanisms, r 61 although not completely ex­
cluded, have low probability because of the very low 
mobility of the carriers. The double-injection mecha­
nism[ 71 is also little likely, owing to the insensitivity 
of the V AC to the electrode material. In addition, a 
similar instability was observed in r 8 1 in the case of 
field emission into vacuum from a tungsten needle 
coated with vitreous quartz doped with carbon. Such a 
measurement procedure, in principle, excluded double 
injection. We assume that these instability phenomena 
can be explained on the basis of the concept of an elec­
tronic phase transition due to the change of the concen­
trations of the free and bound carriers. Namely, we as­
sume that the increase of the concentration of the free 
electrons leads to a shift and to a vanishing of the local 
levels (or the narrow band), described by the relation 

{1) 

Here E is the activation energy of the local states, n 

is the density of the free electrons, and ii is the charac­
teristic density due to the decrease of E by kT. 

The concentration effect may be connected, for ex­
ample, with the screening of the local states by the free 
carriers. r 9 ' 101 A relation similar to (1) was proposed 
in r 111 on the basis of the mechanisms of antiferromag­
netic ordering and lattice deformations to explain the 
semiconductor-metal transition in oxides and sulfides 
of transition metals. 

Thus, expression {1) should be regarded as a general 
phenomenological relation, in which the value of the 
characteristic constant n is determined by the concrete 
form of the collective interaction. 1> 

Of course, relation {1) is based on a model and de­
scribes only qualitatively the complicated situation that 
takes place, for example, as a result of the overlap of 
the wave functions of the local states and formation of 
the impurity band, both in the initial state at large cen­
ter concentration, and in the case of the "pulling" of 
the local levels. 
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If the concentration effect operates in a system with 
sufficiently large center concentration, then any "prim­
ing" mechanism whereby the concentration of the free 
carriers is increased leads to the appearance of insta­
bility. In particular, if we talk of the instability of the 
VAC, such a mechanism may be injection of carriers 

0In the particular case when the concentration effect (I) is deter­
mined by the screening of hydrogenlike local centers by a non degenerate 
gas of free electrons we have ii = m€(kT)2 /2?Th2 q 2 , where m is the effec­
tive mass of the electron. 
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from the contacts, 2 > the Frenkel-Pool effect (thermo­
ionization of the donors, facilitated by a strong electric 
field), autoionization of the donors, superheat processes 
(for example, impact ionization), ionization due to Joule 
heating, etc. We shall consider in detail as examples of 
the volume and contact "priming" mechanism, the 
Frenkel-Pool effect in a semi-insulator with donors, 
and the injection of carriers into a dielectric with 
traps. Both these phenomena are frequently observed 
in high-resistance layers, particularly in glass-like 
semiconductors. [ 14 - 171 

2. THE FRENKEL-POOL EFFECT IN A SEMI­
INSULATOR WITH DONORS 

In a semiconductor with weakly ionized donors (semi­
insulator), the role of the priming mechanism that sup­
plies free carriers may be the Frenkel-Pool effect, 
namely thermoionization of the donors facilitated by a 
strong electric field. The problem is homogeneous and 
the system of equations defining the VAC consists (using 
dimensionless quantities) of an expression for the cur­
rent 

j=nF, (2) 

the electroneutrality equation 

Nd-nd-n=O, (3) 

where the concentration of the filled donors is 

nd= Nd8(Ed) (4) 
1 +(N0/n)exp(-Ed) 

Here Nd is the donor concentration, Nc is the effective 
density of the states in the conduction band, 

6(Ed) ={ 1, Ed> 0 
0, Ed< 0 

The units of energy current, and field are 

kT ( ekT )';, (5) 
E=kT, f=q~tNF, F= qx' x= 4nq2N · 

Here q is the electron charge, 11 the electron mobility, 
E the dielectric constant, T the temperature, and N an 
arbitrary unit of concentration. 

The level shift, with allowance for the Frenkel-Pool 
effect, is written in the form 

(6) 

where the characteristic field in dimensional units is 
given by :ih = E(kT) 2 /q3• After simple transformations 
we can easily obtain an equation for the volt-ampere 
characteristics j{F): 

jp{Nct[1- 6(Ed)]- ~ }+ (Nct- ~ )Ncexp(-Ect)=O. (7) 

The equation Ed = 0 defines on the (j, F) plane a 
curve 

2lThe concentration instability occurring upon injection was con­
sidered by us briefly in [ 12 ] for the simplest "capacitor" model of 
space-charge limited currents (SCLC). In a somewhat later paper [ 13 ] 

a relation similar to (I) was postulated with a reference to [ 11 ] for a 
description of the effects of switching in glass-like semiconductors. It 
was assumed there that the current transport is by the Zener mecha­
nism. 

FIG. 1. 

shown by the dash-dot curve of Fig. 1. Outside this 
curve is located the region of "metallic" conductivity, 
and the VAC has, in accordance with (7), the form 

(9) 

The region of semiconductor conductivity is bounded 
by the curve (8) and by the F axis. Inside this region, 
the VAC is described, in accordance with (7), by the 
equation 

( ; ) 
2

- ( Nd- ; ) Ncd0 X exp [ ( ;·) '/, + ii~] = 0, (10) 

where N~d = Nc exp (-Ed). An analysis of expression 
(10) enables us to find the characteristic J(F) plots in­
side the region (8). The total VAC are obtained by con­
tinuing these curves as straight lines (9) outside the 
region (8). A VAC family is shown qualitatively in 
Fig. 1. The parameter of the family is the donor con­
centration Nd, which increases with increasing number 
of the curve. Moving along a definite VAC in the direc­
tion indicated by the arrow in Fig. 1, the system passes 
through all the states with continuously increasing con­
centration of the free electrons n. This becomes obvi­
ous if the VAC are intersected by the straight lines j/F 
= n = const. 

In the region of weak fields F < F all tbe j(F) plots 
are linear. At small Nd < ii the concentration effect is 
negligible and the resultant VAC is the one customarily 
obtained for the Frenkel-Pool effect (curve 1). With in­
creasing Nd, the VAC retain their monotonic character 
up to Nd = (3 + 2 -v'2)ii, when a VAC with one vertical 
tangent appears. In the region 

(3 + 2]12)ii < Nct < ( Ed0 -In :c)n 
there appear VAC of the usual S-type (curve 2) and of 
the S-type with a section AB in which the current de­
creases (curve 3). The negative differential resistance 
on the V AC of the type of curve 2 appears as a result of 
the concentration dependence of the level depth. The 
coordinates of the extremal points for the VAC of the 
usual S-type and of the S-type with decreasing current 
are determined by the expressions 

where 

(lla) 

(llb) 

Nct+n lf(Nct+n) 2 _ 2N_ (12) 
n2,1 = --2-± V 4 dn. 

When Nd >> 6ii. we get n2 ~ Nd - ii and n1 ~ 2ii.. We 
note immediately that expression (lla) determines the 



904 SANDOMIRSKII, SUKHANOV, and Z HDAN 

coordinates of the threshold point (F 1 , j 1 ) in the case 
of loop-like VAC (see below). 

When moving along the curve 3, the state of the semi­
insulator changes in the following manner: on the sec­
tion OA the Fermi quasilevel lies above the donor level. 
The donors are weakly ionized and their attraction to 
the bottom of the conduction band is connected mainly 
with the action of the Frenkel-Pool effect. On the sec­
tion AB, owing to the concentration mechanism, the do­
nor level Ed moves rapidly towards the edge of the 
conduction band and crosses the Fermi quasi-level. 
Therefore the concentration of the free electrons n in­
creases catastrophically. In order for the system to be 
able to pass continuously through all the possible 
states, the field F in the semi-insulator should de­
crease, and strongly enough so that the current also 
decreases (if the donor concentration Nd is large 
enough). 

On the section BC, the pulling of the donor level to­
wards the edge of the conduction band at a result of 
both mechanisms terminates, the concentration n 
changes little, and the VAC becomes gradually ohmic, 
with metallic conductivity beyond the limits of the 
dashed region. 

The interval 

corresponds to loop-like VAC such as curve 4. It is re­
markable that these curves have states with different 
conductivity at zero field. This leads to a possible 
mechanism of "electric" memory, observed for exam­
ple in amorphous materials. [ 3 ' 5 1 

Finally, when Nd ~ 4ii 2/e2N~d' the equilibrium con­
centration of the free electrons turns out to be sufficient 
for the vanishing of the bound states, and VAC are re­
alized of the type of the straight line 5, corresponding 
to "metallic" conductivity. 

The described VAC were obtained under the assump­
tion that the space-charge density p(n) = 0; this as­
sumption is violated, for example, if the concentration 
at the contacts differs from the concentrations in the in­
terior of the sample. Allowance for the space charge 
greatly modifies the unstable sections of the V AC. It 
can be shown that the contact conditions forbid the exist­
ence of part of the segment OD on curve 4 (the dashed 
line in Fig. 1). At the same time, a new branch of the 
VAC, emerging from the origin can appear in some in­
terval of contact concentrations and for definite sample 
parameters. 

3. MEMORY EFFECT 

For a deeper understanding of the memory effect, let 
us carry out a thermodynamic analysis of the stability 
of different possible states of a semi-insulator with do­
nors in the absence of current. 

It is easy to verify that the expression for the free 
energy (we use henceforth dimensional quantities) 

n2 Nd (13) 
fT =fro+ nEd0--kT- NdkT In---

2ii Nd-n 
n2 + nkTln - nkT 

(Nd- n)Nc 

FIG. 2. Plot of the function 32ff/3n 2• 

Z vd 

FIG. 3. State diagram of an electron gas in a semi-insulator with 
donors. The free energy ff (n) and the V AC [j(F) I, which are charac­
teristic of each region, are shown. 

leads to the equation of state 
ofT n2 n 
-=Ed+kTln 0, Ed=EdD--=-kT, (14) 
on (Nd-n)Nc n 

from which follows an expression for the concentration 
n, identical with that obtained from (3) and (4). Accord­
ing to Sec. 2, when 

n: 4 n;2 
nln--<Nd<---

Ncdo e2 Ncdo 

Eq. (14) has three roots corresponding to the extrema 
of fT: 

n = n; ~ (NdNcd0) '". 

n=n, ~ 2iiln (ii/n;), n=Nd. 

The stability of these states is determined by the 
sign of the second derivative 

{)2fT kTn2-n(Nd+n)+2Ndn (15) 
on2= n n(Nd-n) 

a plot of which is shown in Fig. 2. The roots of the 
equation IT"(n) = 0 are given by expression (12). It is 
seen from the figure that the states with n = n1 and 
n = Nd correspond to minima of IT, and the state with 
n = ns corresponds to a maximum of fT. The stability 
or metastability of the semiconducting (n = ni) and me­
tallic (n = Nd) state is determined by the sign of the 
expression 

AfT=iT(Nd)- iT(n;)=Nd [ Ed0 - :ndkT ( 1 + ~~2 ) 

+kTln Nd 2 -kT(1-~)]. 
(Nd- n;)Nc Nd 

Figure 3 shows qualitatively a diagram of states ob­
tained on the basis of an analysis of relations (13)-(16), 
and plotted in the coordinates T = kT/Ed and vd 
= Nd Iii. Here ii = iiEd_lkT is the free-electron concen­
tration, at which the bound states disappear. We as­
sume that the product nEd. /kT does not depend on the 
temperature. Above the line 1 (vd = (3 + 2-l2)r), ac-
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cording to (15), there is located a region in which 5'""(n) 
> 0, i.e., the free energy F (n) has no inflection points 
and possesses only one minimum. The VAC correspond­
ing to this region have no singularities. 

Region I, bounded by the curves 1 and 2 (vd = nsli'i, 
i.e., vd = 1- T ln (vch), vc = Nc /ii) and the abscissa 
axis is a region of only semiconductor (S) states. (The 
free energy has one minimum with n = ni and inflection 
points, and the VAC corresponding to this region have 
an S-shape.) In region II, bounded by curves 1, 2, 3 
( !).5'" = 0, Nd c::J 2ns) and the abscissa axis, there exist 
on the fr (n) curve two minima with n = ni (stable semi­
conductor (S) state) and n = Nd (metastable metallic (M) 
state). In regioniii under curve 4 (ni = ii, i.e., vd 
= ( T2/vc) exp (1/T)) the situation is reversed. Regions II 
and III correspond to loop-like VAC. Region IV is char­
acterized by a free energy that has inflection points at 
single maximum with n = Nd (metallic state). The cor­
responding VAC have an ohmic character with concen­
tration n = Nd. 

The existence on the phase diagram of regions II and 
III with two stable states makes it possible to explain in 
natural fashion the memory effect. Indeed, in region II 
the semiconducting minimum of the free energy lies be­
low the metallic minimum. Therefore, if the system is 
converted by the electric field into a metastable metal­
lic state, it can be easily returned to a more stable 
state, i.e., one can say that the system has a readily 
erasable (reversible memory). In region III, the metal­
lic minimum is stable and the return of the system to 
the initial semiconducting state (erasure) calls, gener­
ally speaking, for a special action (irreversible mem­
ory). We note that by varying the temperature and con­
centration of the donors it is possible to transfer the 
sample from one band to another, and consequently from 
a state "without memory" into a state with "memory" 
and vice versa. 

The switching effect due to the presence of an S­
type VAC and loop-type VAC (Sec. 2) is an electronic 
phase transition of first order, controlled by the elec­
tric field that transfers the system from regions I and 
II into region IV. In the case when the double shift is 
due to the screening by the free carriers, the switching 
effect can be interpreted as a Mott phase transitionl181 

induced by the Frenkel-Pool effect. In fact, assume 
that in the absence of the external field there is satis­
fied the Mott condition of stability of the semiconduct­
ing state: l19 1 

(17) 

where for Debye screening, rscr = (€kT/4rrq~) 112, acar 
is the characteristic dimension of localization of the 
wave function (the Bohr rays at F = 0), and N = Nd is 
the total concentration of the free and bound electrons, 
and A = const ( ~ 1). 

The Frenkel-Pool effect leads to a decrease of the 
activation energy and to an increase of acar: 

h h 
a car= {2mEd (F)} •;, {2m[Ed0 - (F I F)'i> kT]'I•. 

(18) 

Substituting r scr and acar in (17), we obtain the 
critical field at which the "metallic" and semiconduct­
ing states are equally stable (equal sign in (17)): 

Fcr=F[Edo_Ndt.']' n=me(kT)' (19) 
kT ii ' 2rr.h'q2 • 

It is easy to verify that when A = 1/!2 the value of 
F cr coincides with the corresponding expression ob­
tained for the critical field from a thermodynamic 
analysis with allowance for the level shift by the Fren­
kel-Pool effect. 

4. INJECTION INTO A DIELECTRIC WITH TRAPS 

The qualitative physical picture of instability upon 
injection into a dielectric with traps, with allowance for 
the concentration effect, is as follows. The electrons 
injected into the dielectrics are distributed between the 
conduction band and the trap level. At a definite voltage, 
when the concentration of the free electrons becomes 
sufficiently large, the concentration effect leads to a 
decrease of the depth of the level and to a cascade-like 
increase of the electron concentration in the conduction 
band as a result of the release of the traps. It is obvi­
ous that this effect leads to an S-type VAC. 

The system of equations describing injection into a 
dielectric layer of thickness L consists of an expres­
sion for the current, in which we retain in accordance 
with the usual SCLC approximation[ 201 only the drift 
term (2), and the Poisson equation 

dFI dx=- n- n,. (20) 

The position of the trap level is given by the relation 
(1), Et = Et- n/ii, and the concentration of the filled 
traps nt is given by formula (4), in which the index d 
must be replaced by t. The unit length x is given in (5). 
The boundary condition is chosen to be the condition of 
the "virtual" cathode, F(O) = 0. 

We assume for the characteristic values of the con­
centrations the following inequality, which is reasonable 
for dielectric layers with defects, and which are opti­
mal for the development of the instability process: Nt 
>> ii, N~t· We approximate the function (4) with allow­
ance for (1) in different regions of variation of n by 
means of straight-line segments. When ii > N~t and 
the concentration effect (screening) develops after com-
plete filling of the traps (deep traps), we have · 

(21) 

where 
p = N, I Nc~ 0, Nct 0 = N, cxp ( -E1°), n, """ ii lt1 (n I Net") 

is the effective concentration of the free electrons at 
which the trap levels are released as a result of screen­
ing. 

If ii < N~t. then the screening sets in already in the 
case of weak filling of the traps (shallow traps), and 
then 

where n~ = 2fi. 

{
pn, n < 11,' 

nt= U, n>n/, 
(22) 

Let us solve the problem for the case of deep traps. 
Since the electron concentration in the dielectric de­
creases in the direction from the cathode to the anode, 
it follows, generally speaking, that within the limits of 
the dielectric layer there will exist three regions: 0 s x 
:S x0 -region with "vanished'' trap levels, x0 :S x :S x 1 -
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region with completely filled traps, and x1 s x s L-re­
gion with weakly filled traps. The characteristic points 
xo and X1 are determined by the equations 

(23) 

In the case of weak currents, all three regions are re­
alized. With increasing current, the points X1 and Xo 
shift to the anode and vanish gradually, so that in the 
case of sufficiently strong currents the entire volume of 
the dielectric becomes "free" of the trap levels. 

Accordingly, the entire current interval also breaks 
up into three sections: 

The characteristic currents are determined by the rela­
tions 

.r1 (ii) =L, .ro(io) =L. (24) 

Solving the system of equations under the assumed 
approximations for all three regions of the dielectric, 
and joining together the solutions at the points Xo and 
x1, we obtain expressions for the limiting points Xo and 
x1, the characteristic currents h and jo, the field dis­
tribution F, and the dependence of the current on the ex­
ternal voltage V. We present only the VAC: 

- v 
U=-, 

I 0 

i 1=-, 
/O 

4 2 V0 = 3 n,L, 

Nt 
p=--, 

iV ct~ 

j 0 = 2n,2L, 

Here the current J is assumed to be positive. 
The qualitative form of the VAC (25) is shown in 

Fig. 4 (curve 1) for the case of very deep traps, when 
n~ >> NtN~t (g2 >> p). The coordinates of the extrema 
are determined here by the expressions 

V,= Vo, i2 = io. (26) 

In dimensional notation 

1- ,_16rrqn,'L'2 8rrq2 ~tn,' 2L' o - 3e io'= _ _:_.:__::_ __ 

~,. _ 2rrqN,'L' 2 . , 4rrq21lN,'Nct0'L' 
Y I- ) I = --=._:__ ___ _ 

e 

For the case of shallow traps, using expression (22) for 
nt(n) and proceeding in the same manner as in the analy­
sis of the deep traps, we obtain expressions for the 
VAC: 

_f''<1+~{[1+p(-;--1)r-1 l>· O~J~1 . (27) 
U-[J'h, 1?1 

The coordinates of the extremal points are 

. io 
.71=4' 

1 l 4 I 2 l 2= l o= 3 n, L , 

i2= j 0=2n/2L. (26a) 

The qualitative form of this VAC is shown in Fig. 4 
(curve 2). We note that (27) is obtained from (25) if we 
put in the latter g = 1 (N~t = ns), and with it J1 = 1. 

For the capacitor model of the SCLC, considered in 

J = i/iext 

FIG. 4. Volt-ampere characteristics for 
the case of injection into a dielectric with 
traps: !-deep traps, 2-shallow traps. 

[ 12 J, the threshold voltage corresponded to the average 
electron concentrations which the entire sample "met­
allizes." For the investigated model with distributed 
resistance, the threshold voltage corresponds, natur­
ally, to metallization of only part of the sample, for ex­
ample in the limiting case of a large number of shallow 
traps, only to one quarter of the sample. 

If the concentration effect is due to screening, 
switching can be regarded as a Matt transition upon in­
jection. 

Indeed, as a result of the increase of the concentra­
tion of the electrons in the system and the decrease of 
the screening radius, the inequality sign in the Matt 
condition (17) is reversed, i.e., a transition to the "me­
tallic" state becomes possible. 

5. CONSEQUENCES OF THE THEORY. CRITICAL 
EXPERIMENT 

It is useful to list the characteristic consequences of 
the developed theory and to indicate some obvious quali­
tative considerations that should be reflected in experi­
ments. 

1. The Frenkel-Pool mechanism. According to 
Sec. 2, in this case the high-resistance branch of the 
VAC should follow the usual Frenkel law 

I V [ Ect0 - dqv/~i 1 oo exp - kT . 

In the conducting state IcoV and depends on the temper­
ature like the mobility. The threshold and the residual 
voltages V1 and V2 are proportional to L. However, if 
the contact concentrations of the electrons are lower 
than the concentrations in the volume for the conducting 
state, then V2 may become independent of L. According 
to (11a), the threshold voltage decreases with increas­
ing temperature. 

The switching kinetics is determined by the self­
accelerating (as a result of the concentration effect) 
process of ejection of electrons, and the total duration 
of this process, characterized by the switching delay 
time, turns out to be 

ii 1 [ Ed0 (qV/eL)'f,] 
'fscr ~ Nct (Sv)Nc exp kr-- q kT ' 

(28) 

where v is the thermal velocity of the carriers, S is 
the cross section for capture by the donor centers, and 
V > Vl' We see from (28) that T del decreases rapidly 
with increasing overvoltage V- V 1. The switching time 
proper is determined by the ejection from very shallow 
"drawn" centers. 
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It is obvious that an alternating signal with frequency 
1/T del will not switch a system into the conducting state 
even when V > Vl' It is also clear that the presence of 
T del is connected with the finite time of ejection of the 
electrons when the levels are drawn, and this inertia of 
the system becomes manifest in the form of an inductive 
contribution to the reactive part of the impedance. More 
accurately, one should speak of a negative capacitance 
that is observed directly, in particular, in [ 211 • It fol­
lows naturally from this model that the memory effect, 
the mechanism of which was discussed in detail in 
Sec. 3 do exist. 

Apparently the laws considered above are in best 
agreement with the experimental data obtained in 
[3,5,22] 

2. Injection mechanism. According to Sec. 4, this 
mechanism on the high-frequency branch is character­
ized by VAC of the SCLC type in the presence of traps 
and by the presence of a conduction activation energy 
that depends on the voltage; in the conducting state, the 
activation energy should be zero, and the VAC should 
follow the SCLC law-quadratic in the case of unlimited 
injection from the contact, and linear if the current is 
limited by the contact. [ 20 1 Similar regularities of the 
switching effects were observed in tetracene. [ 231 

If follows also from this model that the threshold 
voltage V1 depends quadratically on the sample thick­
ness L. In the case of unlimited injection, the residual 
voltage is V2 ""'L2, and if the current is limited by the 
contact we have V2 ""' L and Vz depends on the temper­
ature like the contact concentration ncont· In the case 
of deep traps the threshold voltage V 1 is independent of 
the temperature, whereas the threshold current in­
creases exponentially (""' exp ( -Et/kT)), and in the 
case of shallow traps V1 decreases exponentially with 
increasing temperature (""' exp (Et/2kT)) and J1 in­
creases weakly with temperature. 

The characteristic features of the considered insta­
bility mechanism should become manifest also in the 
dynamic properties of the system. Namely, at an alter­
nating-signal frequency exceeding the reciprocal time 
of capture by the traps, and at an amplitude V > V2, the 
injected electrons remain in the conduction band, so 
that the conducting state is immediately realized. It can 
be shown that in thin samples there can exist several 
conduction states, i.e., memory effects are possible. 

3. Field effect. As the critical experiment for the 
identification of the concentration instability, an exper­
iment is proposed with a field effect, making it possible 
to "cut off" all the instability mechanisms that are di­
rectly connected with the flow of current and with dis­
sipation of energy. 

An analysis shows that under the conditions of con­
centration instability there should be observed singu­
larities compared with the usual field effect that be­
comes manifest in the distribution of the space charge 
and in the anomalous dependence of the longitudinal 
conductivity on the external transverse electric field 
a(F ext)· 

In systems with a memory effect, in which several 
equilibrium conductivity states exist, there should al-

ternate near the surface layers with different signs of 
the space charge, and jumps should be observed on the 
a(F ext) dependence. The latter are connected with the 
fact that as the limiting field is monotonically varied, 
the continuity of the electric induction cannot be satis­
fied upon continuous variation of the concentration of the 
free electrons at the boundary. 

Jumps of two types are possible. If the semiconduc­
tor is in a metastable state, then the entire sample can 
be switched by a transverse electric field into an abso­
lutely stable state. On the other hand, if the sample was 
in an absolutely stable state, say semiconducting, then 
this jump is connected with the formation of only a 
near-surface metallic conductivity channel. 

The authors are grateful to V. L. Bonch-Bruevich an 
and Sh. M. Kogan for discussions and to D. I. Khomskil 
for a number of critical remarks. 
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