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The existence of an electron work function in semiconductors results in depletion of electrons near 
the semiconductor surface. The presence of such a surface quantum charge leads to a bending of the 
conduction band near the surface and to the existence of one or several surface levels. A modifica­
tion of the classical screening theory is offered. 

1. INTRODUCTION 

IT is known that application of an electric field to the 
surface of semiconductors (or the presence of some 
impurities on the surface) causes a near-surface bend­
ing of the energy bands. At the appropriate polarity, 
this bending forms a near-surface potential well for the 
conduction electrons. Schrieffer was the first to note[11 

that in such a well there can exist one-dimensional 
bound states for the conduction electrons. In the papers 
of Duke and Alferieff, [ 2 ' 31 a detailed analysis was pre­
sented for such states in a semi-insulator, and account 
was taken of the influence of the bound electrons on the 
form of the near-surface well. 

In this paper we pay attention to the fact that the 
near-surface bending of the bands should exist in an im­
purity semiconductor (henceforth, for concreteness, we 
shall have in mind an n-type semiconductor) in the ab­
sence of any external influence on the surface. On the 
boundary of any crystal there exists a jump of the poten­
tial energy of the electron, which determines the elec­
tron work function. In semiconductors the work function 
greatly exceeds the characteristic energy of the conduc­
tion electrons (the Fermi energy or the thermal energy). 
Therefore the wave function of the conduction electron 
should have a node on the wall, as a result of which 
there is produced a near-surface region from which the 
electrons are depleted, with a thickness on the order of 
the characteristic de Broglie wavelength of the electron. 
The resultant positive near-wall charge can be regarded 
as equal to the product of the concentration of the im­
purity ions by the thickness of this region. This surface 
quantum charge causes bending of the bands near the 
boundary of the semiconductor. As shown in this paper, 
there always exists in the produced potential well at 
least one surface level, which we call the surface plas­
ma level, since the charge producing it is due entirely 
to the existence of the electron plasma. The energy of 
this level is on the order of the product of the plasmon 
energy by the square root of the ratio of the Debye ra­
dius to the effective Bohr radius of the conduction elec­
tron. The distance between the levels, if there are sev­
eral of them, will be of the same order of magnitude. 

The calculation of the surface plasma levels called 
for a certain refinement of the classical Debye-Huckel 
screening theory. Screening of the surface quantum 
charge (as incidentally of any other positive surface 
charge) can seemingly always be calculated by classi-
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cal theory, provided the characteristic de Broglie wave­
length is at least several times smaller than the classi­
cal Debye radius, i.e., the usual quasiclassical condi­
tions are satisfied. It is shown in the present paper, 
however, that the use of the classical theory for the one­
dimensional distribution of an attraction potential calls 
for much more stringent conditions, namely, for the ex­
istence of a large number of bound states in the well 
formed by the attraction potential. For this purpose, 
the characteristic de Broglie wavelength should be at 
least several dozen times smaller than the dimension 
of the potential well. Thus, with increasing de Broglie 
wavelength, violation of the classical conditions occurs 
from the side of the bound states. Whereas the space of 
the continuous spectrum can still be quasiclassical so 
long as the characteristic de Broglie wavelength is 
smaller than the wall dimension, the bound states will 
no longer be quasiclassical and this leads to an appre­
ciable change in the screening terms. In most semicon­
ductors, as a rule, the de Broglie wavelength is not 
small enough, so that the proposed refinement of the 
screening theory may possibly find applications other 
than in the problem of surface plasma levels. We there­
fore present here also results for ll}e modification of 
the screening terms in the case of a linear charge and 
a point charge. 

For a repulsion potential, no modification is re­
quired at all so long as the usual conditions for the 
quasiclassical character of the potential are satisfied. 

2. QUANTUM SURFACE CHARGE AND SURFACE 
PLASMA LEVELS 

Let us find the density of the quantum surface charge 
for the model of the gas of free electrons in a plate 
representing a one-dimensional potential well with infi­
nitely high walls at x = 0 and x = 1. The wave function 
of the electron in such a plate is given by 

'l'(r)= 12 ,1 exp{i(kvy+kzz)}sinkxx. (1) 
(SL) • 

Here S is the area of the plate; ky and kz are the pro­
jections of the wave vector of the electron; kx = rrl/L, 
l = 1, 2, 3, •... 

The electron density n depends only on the coordi­
nate x: 

4 ~ ( 
n(x)=--2 -E J dkvdkzsin2 kxxf(ek), 2) 

(2n) L •=t 



892 0. V. KONSTANTINOV and A. Ya. SHIK 

where 

(3) 

11. is the chemical potential, and T is the temperature 
in energy units. We assume, for simplicity, that the 
electron dispersion is isotropic and quadratic. 

We change over from integrals with respect to the 
transverse quasimomentum to an integral with respect 
to the transverse energy: 

s=_.!._(kl+k,2), (4) 
2m 

so that 

m 1 ~Joo ( 2nlx} n(x)= 111i2 L.i...J de 1-cos-L- f(s+E1), (5) 
l=l 0 

with 

(6) 

Thus, the electron density is the sum of two terms, one 
independent of the coordinate x and equal to the average 
concentration of the donor atoms n0 (if we regard them 
as fully ionized), and an alternating-sign term v(x) con­
taining the cosine of the right side of (5). The integral 
of the last term over the thickness of the plate is equal 
to zero. If this thickness is much larger than the char­
acteristic de Broglie wavelength of the electrons, then 
an appreciable contribution is made to the sum over l 
by a large number of terms. Then the v(x) dependence 
can be readily obtained by using the Euler summation 
formula/ 4 l which makes it possible to accurately re­
place the summation over l by integration in similar 
cases. Thus, 

co co 2l 100 
v(x) ~ - 1i7L [ f dl f de cos ~ x /(e + E1)---;;-f def(s)]. (7) 

n o o ~ o 

We have neglected here terms of higher order of small­
ness in the parameter representing the ratio of the 
characteristic de Broglie wavelength to the thickness of 
the plate. The first term in the right side of (7) de­
scribes the sharp spike of the electron deficiency near 
the boundaries of the plate, representing a quantum sur­
face charge. The second term does not depend on the 
coordinate and describes the homogeneous increase of 
the concentration in the thickness, such that the total 
number of electrons remains constant. 

So far we have not taken into account the self-consis­
tent electric field that results from the excess or short­
age of electrons. This field (which we shall calculate 
below) causes a shift of the excess compensating elec­
trons to the near-surface regions with characteristic 
dimensions of the order of the Debye screening length. 
The action of the self-consistent field on the near-sur­
face electron-density deficit turns out to be, however, 
much less significant, as will be seen from what follows. 
Therefore the surface density of the quantum charge can 
be determined with the aid of (7). 

The first term in (7) decreases in the interior of the 
plate like exp (-2mTx2 /ti 2) in the case of non-degener­
ate electrons, and like 

3 (sin2kFx } 
(2kFX) 2 2kFX -COS 2kFX 

in the case of complete degene~acy (tikF is the Fermi 

momentum). In both cases the integral charge produced 
by the first term is formed over distan~es on the order 
of the characteristic de Broglie wavelength. When the 
thickness of the plate is much larger than this length, 
the near-surface deficit and the volume excess of the 
electrons hardly overlap in space, and the surface den­
sity of the quantum charge can be determined as the in­
tegral of either the first term of the right side of (7) or 
the second over half the thickness of the plate. Obvious­
ly, the latter is simpler. Thus, the surface density of 
the quantum charge Q is given by the expression 

Q = en0A., (8) 

where A is the effective thickness of the charged layer 
next to the wall: 

A=( n1i2)''•.!}_. (9) 
BmT F•t, 

Here Fo, F1;2, and F-1;2 are the standard Fermi in­
tegrals, [ 5 J which depend on the argument 11./T, the 
chemical potential 11. being determined from the con­
centration by means of the equation 

(10) 

In the case of strong degeneracy of the electrons F j 
= [r(j + 2)]-1(1J./T)l+\ so that A= 'l's7T(ti 2/2m!J.) 112. In 
the case of a nondegenerate electron gas F j = exp 11./T, 
so that A= (JTti2/8mT) 112. 

As already mentioned, owing to the influence of the 
self-consistent field, the concentration of the excess 
electrons screening the quantum surface charge differs 
from zero only in the near-surface region, with the 
characteristic thickness on the order of the Debye 
screening length K -\ where 

2 4nnoe2 F -v, 
x=---. 

eT F•t, 
(11) 

If this length is much larger than the effective thickness 
of the quantum-charge layer, then, just as for the model 
of nondegenerate electrons, we can speak of weak spa­
tial overlap of the distributions of the quantum surface 
deficit and of the screening excess of electrons. We can 
then regard the quantum charge as a surface charge 
with a density given as before by formula (8). This 
charge produces near the surface a field 

4n emT 
E=-Q=-Fo. 

s eli2 
(12) 

For a degenerate electron gas the field depends only on 
the concentration of the electrons and on the dielectric 
constant of the semiconductor, which for most semicon­
ductors is of the order of 10, so that at concentrations 
larger than 10 18 em - 3 the field reaches values on the 
order of hundreds of kilovolts per centimeter and high­
er. This greatly exceeds the field usually produced by 
different surface contaminations. Bearing in mind the 
possibility of such contaminations\ we shall not consid­
er concentrations smaller than 10 6 cm-3, since the field 
of the surface quantum charge does not exceed several 
kV /em in this case. 

The field of the surface quantum charge causes bend­
ing of the conduction band, producing a near-surface 
potential well for the electrons. In the usual classical 
theory of screening, it is easy to find the course of the 
electrostatic potential cp under the boundary condition 
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FIG. 1. Plot of the potential energy of the electron near the surface 
and surface plasma levels. 

set by the field of the surface quantum charge (12): 

4nQ 
tp=---e-•x. 

8% 
(13) 

This expression is valid at distances larger than the 
thickness of the surface quantum-charge layer .\, With­
in the limits of this layer the potential can be regarded 
as constant and equal to its value at x = 0. 

The dashed line of Fig. 1 shows the solution (13), and 
the solid line shows the true variation of the potential. 
This variation is given for the non-degenerate case. In 
the case of extreme degeneracy, the course of the po­
tential in the layer .\ has a small oscillating increment 
with an amplitude smaller by a factor of Ale than the 
depth of the potential well produced as a result of the 
aforementioned oscillations in the distribution of the 
quantum-charge density. In the degenerate case there 
exists also other oscillations connected with the singu­
lar character of the screening. [ 6 1 When Ale < 1 the 
latter occur at distances that are larger than K-\ with 
a potential that is already quite small, so that the oscil­
lations likewise have no significant effect in our prob­
lem. 

In the near-wall potential well there can be produced 
bound states-surface plasma levels, likewise shown in 
Fig. 1. Let us find the value of the electric charge due 
to the electrons localized on these levels. Obviously, 
the concentration of the bound electrons nb depends 
only on the coordinate x and is determined by 

where l/J[3(x) is the wave function of the electron in a 
state with binding energy E. Since Ef3 < 0, it follows 
that f(e) < f(E + Ef3), so that the integral value of the 
charge density of the bound electrons per unit area, ~' 
satisfies the inequality 

"" 
Qb=e Jnb(x)dx>4NQ, (15) 

0 

where Q is the surface density of the quantum charge, 
determined by formula (8), and N is the total number of 
levels in the near-wall potential well. Thus, if surface 
plasma levels exist, then the charge of the electrons 
localized on rt.em is at least four times larger than the 
surface quantum charge and is obviously of the opposite 
sign. The foregoing classical theory of screening does 
not answer the question of what compensates for this 

excess of negative charge. We present below a more 
consistent semiclassical theory of screening, which 
answers this question and makes it possible to deter­
mine the limits of applicability of the classical theory. 

3. SEMICLASSICAL THEORY OF SCREENING IN 
THE PLASMA OF AN ELECTRONIC 
SEMICONDUCTOR 

To explain the features of screening in the case when 
the Debye screening length is only several times larger 
than the de Broglie wavelength, let us consider first the 
simpler problem of screening of a flat charge imbedded 
in the electron plasma of a semiconductor. We can 
imagine, for example, that this charge is due to a plane 
layer of excess concentration of ionized donor impurity, 
on both sides of which there extends a semiconductor 
with uniform concentration. In our case it is important 
here that this flat charge does not give rise by its pres­
ence to the sharp potential jump that takes place on the 
boundary of the semiconductor, and causes only a 
smooth change of the potential, connected with the 
screening. 

We shall see that screening of a positive flat layer 
is qualitatively different from screening of a negative 
layer. We shall therefore consider first a positive flat 
layer, near which the energy of the electron forms a 
one-dimensional potential well. 

In determining the electron density, we start from 
the general quantum-mechanical formula for the elec­
tron concentration 

(16) 
M 

The wave function of the electron >ltM(r) and its energy 
EM are given by 

(17) 

where L is a normalization length. Motion parallel to 
the plane with concentrated charge (x = 0) is described 
by plane waves, and motion in the x direction is de­
scribed by the function 1/Js(x), where s is a quantum 
number describing both the state of the continuum and 
the states of the discrete spectrum and the well. The 
symbol M denotes, obviously, the aggregate of the pro­
jections of the wave vector ky and kz and of the sym­
bol s. The wave function 1/Js(x) will be determined by 
different methods, depending on whether it corresponds 
to the state of the continuum 1/Jc(x) or to the state of the 
discrete spectrum l/J[3(x). 

For the continuum states we use the quasiclassical 
approximation 

'llc(x)= Y 2m exp{ ~ J Pc(x')d<z:'} 
TcPc(X) -L/2 

(18) 

where 

p,(x)= Y2m(Ec+e'l'(x)), (19) 

T c is the period of the classical motion from the point 
x = -L/2 to the point x = L/2 and back: 

L£2 

Tc=2m J Pc-1(x)dx. 
-L/2 

(20) 
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The wave function (18) is obviously normalized to 
unity. 11 

Expression (16) with allowance for (17)-(20) leads to 

n(x)=~Jdk.dk,{~ 2mf(e+E,) + ~ l'i'p(x) 12 /(e+Ep)}. 
(2n) .l..J T,p,(x) .l..J 

• p ~ij 

In the quasiclassical approximation 

(22) 

where ~Ec is the distance between the levels of the 
continuum. Replacing in (21) the summation over c by 
integration with respect to Ec and changing over from 
integration with respect to ky and kz to integration 
with respect to E, we obtain 

n(x) =11c(x) +nb(x), 

where nc(x) is the density of the electrons of the con­
tinuum: 

21'2 m '!."' "' dE, n,(x)=-(-) J deJ f(e+E,), (23) 
(2n) 2 h2 

0 0 l'E, + ecp 

and nb(x) is the density of the bound electrons, deter­
mined by formula (14). In the expression for the density 
of the electrons of the continuum it is convenient to add 
and to subtract the integral with respect to Ec from 
-e~ to 0. Then expression (23), together with the added 
integral, leads to the classical formula for the electron 
density 

( ll+ecp) nc~=N,F•t, -T- , 

And the indicated subtracted integral gives the non­
classical decrease of the electron density 

- .j"ifp 

~n,=- (:~~ (;)"'j de J dyf(eJ._y2 -ecp), 

(24) 

(25) 

so that nc(x) = ncz(x) + ~nc(x). This decrease of the 
electron density arises here principally as a result of 
the increase of the velocity of the electrons of the con­
tinuum in the attracting field. The quasiclassical wave 
function (18) is inversely proportional to the square root 
of this velocity. 

The classical theory of screening contains neither the 
nonclassical decrease ~nc nor the term nb due to the 
presence of the bound electrons. We shall show that in 
the classical limit these terms in fact cancel each other. 
Using the expression for the wave function ¢{3(x) of the 
type (18), with allowance for (22), we get 

2 ( )_l'2m6(Ep+e1P) 'E 
'iJp X - L1 p, 

2nfi yEp+ eq> 
(26) 

where Fl (x) is the step. function, equal to zero and unity 
for negative and positive arguments, respectively. 
Changing over from summation with respect to the en­
ergies Ef3 to integration, and making the change of var-

iable )Ef3 + e~ = y, we can easily obtain an expression 
that coincides exactly with (25), but is of opposite sign. 

The fact of local compensation of the increase of the 
electron density as a result of the presence of bound 

ONaturally, such a quantum-mechanical approach is valid only 
when the electron mean free path exceeds the characteristic dimension 
of the potential well, which is of the order of K- 1. 

electrons and the decrease of the density of the elec­
trons of the continuum as a result of their acceleration 
in an attracting field contains the answer to the question 
raised at the end of Sec. 2. Thus, in the classical theory 
(in the region where this theory is applicable) the charge 
density which enters the Poisson equation should not 
contain terms due to the electrons of the bound states. 

The use of the quasiclassical function of the bound 
state in the form of (26) and the replacement of summa­
tion by integration are valid only at a sufficiently large 
number of bound states in the well. This proves the 
statement made above concerning the limits of applica­
bility of the classical theory of screening. On the other 
hand, if the number of bound states in the well is small, 
then expressions (14) and (25) no longer cancel each 
other locally, and the character of the screening 
changes. In this case the excess of electrons, due to the 
bound states, and the deficit due to the acceleration, are 
somewhat separated spatially, so that there is only in­
tegral compensation. 

Expression (14) for the density of the bound electrons 
can be reduced to the form 

n (x)=4nt. ~Fo((~.L-Ep)/T)I•'• (x)l2 (27) 
b o .l..J Fo(!'/T) ..,p , 

p 

where the length X is given by formula (9). 
We shall henceforth assume for simplicity that in the 

well there exists only one level with energy equal to 
-E0, which is described by the wave function l/J0 (x). In 
addition, we shall assume that the potential energy of 
the electron is much lower than its characteristic ki­
netic energy. Under these conditions, the expression 
for the concentration is given by 

n,z =no + ~ncl, n =no+ ,~n,z + ~nc + nb, (28) 

where 
e<P F_,,, 

~n,z=no--F , 
T 'b 

~n, = - 2_no ( ecp) 'i• .!.!..._, 
in T Fy, 

nb = 4noi.11Jo2 (x). 

(29) 

(30) 

(31) 

Thus, the problem of screening reduces to a simulta­
neous solution of the Poisson equation 

d2cp 4ne[ ecpF-'h 2 (ecp)'"Fo 2 ] --=--- -n0 --+---=no - --4nol.¢o (x) '(32) 
dx2 e T Fv, yn T F•t, 

and the Schrodinger equation 
fi2 d2¢o 

- 2m dx2 - eq:'ljlo = - Eo'ljlo. (33) 

This system should be solved separately in each con­
crete case. In the next section we present a solution of 
this system by a variational method for the problem of 
screening of a surface quantum charge. 

The system (32) -(33) (or the more general system 
for any number of bound states) corresponds to the 
Hartree self-consistent field approximation. Generally 
speaking, this system could be supplemented with ex­
change terms (the Hartree-Fock approximation). These 
terms, however, would lead in our case to small correc­
tions of the order of (Nc) 2.£ 7 ' 81 

If the charged plane carries a negative charge, then 
the potential is e~ < 0, and in this case there are no 



PLASMA SURFACE STATES IN SEMICONDUCTORS 895 

bound states. It is now necessary to use for the wave 
function of the continuum electrons an expression of the 
type (26), which contains a theta function. Formula (16} 
then leads directly to the classical expression (24). 
Thus, screening of the negative charge by electrons al­
ways has a classical character, provided, of course, 
that the potential satisfies the quasiclassical condition. 

Analogous calculations can be carried out also to de­
termine the screening terms for charge distributions 
having a cylindrical or spherical symmetry, starting 
from the general formula (16) and using semiclassical 
wave functions lJIM(r) for cylindrical and spherical po­
tential wells. The general property of compensation of 
the non-classical decrease of the electron density ~nc 
by the excess due to the electrons of the bound states in 
an extremely classical potential well, i.e., when many 
levels are contained in the well, is retained in this 
case. On the other hand, if the number of levels is 
small, then it is necessary to take separate account of 
the two indicated terms in the Poisson equation. We 
present without derivation the result obtained for the 
nonclassical decrease of the electron density 

fl.n =- - 2- J dkx dky dk, [el8.-e~-l'I/T + 1]-1, 
' (2n) 2 w0 

(34) ft2 2 2 k 2 
Bit = - ( kx + ku + , ) . 

2m 

The integration region rl.cp is different for different 
symmetries of the potential cp(r). If this is a flat dis­
tribution which varies only along the x axis, then the 
region rl.cp is a flat layer perpendicular to the X axis 
and extending from kx = -(2mecp/li 2} 112 to kx 
= (2mecp/li 2) 112, If the potential has cylindrical symme­
try with respect to the z axis, then the region ncp is a 
cylinder of radius (2mecp/li 2) 112 , the axis of which coin­
cides with the z axis. If the potential has spherical 
symmetry, then the region n cp is a sphere of radius 
equal to (2mecp/ti 2 ) 112• 

For a plane layer, expression (34) is identical with 
(25). The classical part of the electron density is al­
ways given by (24). When the potential energy of the 
electron is smaller than its characteristic kinetic en­
ergy, the integrals (34) can be easily expressed in 
terms of the standard Fermi integrals. We can thus 
obtain the following results. 

Cylindrical case: 
e<p F_,,, 

/).nc=-no---, 
T F1;2 

00 

(35) 

( mT )'h 1 
no(p)= 2nf12 F-'1,-;:;-'i'o2(p), J p¢o2(p)dp = 1. (36} 

0 

It is interesting to note that in this case the nonclassi­
cal decrease ~nc cancels exactly the classical incre­
ment ~ncz, so that the screening is effected only as a 
result of the density of the bound electrons nb(p). 

Spherical case: 

1 
n0(r)=--\jlo2(r) (e-MIT+ 1)-1, 

2n 

00 

J r2¢o2 (r)dr= 1. 
0 

(37) 

(38} 

It should be noted that in the spherical case the non-

classical correction ~fie turns out to be smaller than 
~ncz since ~fie ~ cp3 / 2 and ~fiel ~ cp. Therefore, the 
quantum effects have little influence in screening of a 
point charge. 

4. SCREENING OF SURFACE QUANTUM CHARGE 

When the classical condition for the bound states is 
violated, the classical screening theory developed in 
Sec. 2 is no longer valid. In this case, to find the elec­
tron density near the boundary, it is netcessary to start 
from the general formula (16) in which, however, the 
wave functions of the electrons of the continuum 1/Jc(x) 
cannot be taken in the form (18), and must have the 
form 

\jl,2(x)=~[ 1- cos~ J p,(x')dx']. 
'l'cPc(X) h 0 

(39) 

We therefore get in lieu of (21) the following expres­
sion for the density: 

n(x)=-2-J dkydk, 
(2n) 2 

X { L -r,;,7x) [ 1- cos ~ J p,(x') dx'] /(e + E,)+ ¢ 02(x)t( 8 - Eo)}· 
c 0 

(40) 

If we assume the de Broglie wavelength for the elec­
trons of the continuum to be smaller than the charac­
teristic dimension of the potential well and the potential 
energy f the electrons smaller than their characteris­
tic kinetic energy, then the term containing the cosine 
reduces to the density of the surface quantum charge 
concentrated in the narrow layer. We arrive in this 
case at formula (8) for the total value of discharge, and 
take it into account by means of a suitable boundary 
condition. The remaining terms of formula (40) lead to 
the already known expressions (29)-(31). It is therefore 
necessary to solve (32} and (33) with the boundary con­
ditions 

_d<p/ - 4nQ \jlo(x)lx~o=O. (41) 
dxx=o-e' 

Solutions of Eqs. (32) and (33) is equivalent to finding 
the minima of the following functionals: 

e Joo ( d<p) 2 noe2 F -'f, 00J Wt=- - dx+---- <jJ 2 dx 
Sn 0 dx 2T F';, 0 

4 no e'l, Fo ""s ""s - ----=-~---· cp'/, dx + 4nol- <jJ\jlo2 dx, 
3l'n yr F , o , 

(42) 

ft2 00 d¢ 2 00 

We= 4nol- [- J (-0 ) dx- e J <jJ\jlo2dx] . 
2m 0 dx 0 

(43} 

The functional (42) describes the energy of the electric 
field per unit surface area; it should be varied with re­
spect to cp, taking ?];0 to be given. The functional (43) 
describes the analogous per-unit energy of the electron 
system; it should be varied with respect to 1/J0 with cp 
given. 

We choose the following trial functions: 

(44} 

(45) 

A" function of the form (45) was used for the calculation 
of the near-surface states in l 91 • The question of the 
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FIG. 2. Binding energy of the surface plasma level and depth of near­
surface potential well for GaAs and InSb. 

choice of this function for an analogous problem is dis­
cussed also in [ 101 • 

The conditions for minimizing the functionals (42) 
and (43) and the first boundary condition (41) enable us 
to find the variational parameters cr, {3, and cp0, expres­
sing them in terms of the parameter N< of the problem. 
It is possible to find the range of values of this param­
eter in which a single level exists in the well, as was 
assumed in the calculations. It turns out that 

0.33 < "" < 1.4. (46) 

If N< > 1.4, then there is no bound state at all in the 
well, but then the proposed theory is not valid, so that 
this conclusion cannot be regarded as reliable. In other 
words, within the framework of applicability of the 
given theory there always exists at least one bound 
state. 

When N< s 0.33, there appears a second bound state 
and it must be taken into consideration in the calcula­
tion, by introducing one more wave function. 

It is interesting to compare the limit (N<)2 = 0.33 
with the predictions given by the classical theory. Using 
the form (13) for the potential well next to the wall, we 
can obtain on the basis of the Bohr-Sommerfeld quan­
tization procedure the following condition for the ap­
pearance of the N-th level in the well: 2> 

( 1 F02 ) 'I• 1 cl 1 1 ( ) 
N= ---- +-for (t.x)x =- (N-'/ ) 2 • 47 

:n/.x F -v,F•t, 4 1t < 

2 ) -1 t We have set here the quantity F 0 (F -1; 2 F 1; 2 equal o 
unity (it actually ranges from 1 to 1.18 when J.L/T is 
varied from -co to oo), Using (47), we can find that the 
classical estimate for the limit (N<)~l = 0.1, which dif­
fers greatly from ( N<)2 = 0.33. 

For such semiconductors as GaAs, InSb, InAs, and 
GaSb, the value of N< ranges from 0.1 to 0.6 at room 
temperature and from 0.3 to 0.9 at nitrogen tempera­
ture, 3 > when the concentration changes from 1016 to 
1019 em - 3, so that the classical theory is not suitable 
for the description of the surface states in these com­
pounds. The semiconductors Ge, Si, and PbTe have 

2lThe estimate of the distance between levels, referred to in the in­
troduction, can be obtained with the aid of formulas (13) and (47). 

3lSuch estimates ofAK were carried out in accordance with the 
formula 

Y-;;- hro pi ' - 4nnoe' 
1-x= ---,where ropJ - ' 

8 T eff em 

which follows from (9) and (II). 

somewhat smaller values of N<, but even for them the 
number of levels in accordance with the classical esti­
mate is smaller than three when the concentration ex­
ceeds 1017 cm-3• 

It should be noted that calculation of a model that 
takes into account only one level cannot claim high ac­
curacy, and is more illustrative in character, inasmuch 
as the necessary inequality N< < 1 is satisfied in the 
region (46) with a very small margin, so that the errors 
that are not accounted for by the theory, the order of 
which is AK, are large. However, in the region of exist­
ence of two or three levels, the proposed theory can be 
used for the calculation with high accuracy, whereas 
the classical theory results in this region in an error 
on the order of magnitude of the calculated quantity it­
self. 

The order of magnitude of the binding energy E0 of 
the surface plasma level and of the depth of the poten­
tial well ecp0, obtained with the aid of the trial functions 
(44) and (45) for gallium arsenide (dashed curve) and in­
dium antimonide (solid curve) at T = 300 °K are shown 
in Fig. 2. In order to assess the validity of the series 
expansion in terms of ecp0, the figure shows also the ef­
fective kinetic energy of the electron Teff 
= TF1;2 /F -1;2. The curves for Eo and ecp0 have been 

1 17 -3 drawn only up to the concentration no = 1.4 x 0 em 
for GaAs and n0 = 1017 em - 3 for InSb. At low concen­
trations, a second level appears and the calculation 
must be revised, to take its appearance into account. In 
the calculations for InSb, we took into account the de-

. th t t• [ll] pendence of the effective mass on e concen ra 1on. 
The scattering of the electrons leads to a broadening 

of the surface plasma levels, so that to resolve the lat­
ter it is necessary to satisfy the condition 

EoT/fl > 1, (48) 
where T is the relaxation time, which can be estimated 

h 0 b"l"t [12' from the experimental data on t e carr1er mo 1 1 y 
13 1, We have estimated the validity of the inequality (48) 
in the strong-doping region, where its violation is the 
most probable. The estimate shows that at n0 = 1018 -
1019 em - 3 we get E0 Tin ~ 10 for InSb and E0 T lti ~ 1 
for GaAs. The aforementioned limitation on the relation 
between the mean free path and the Debye radius turns 
out to be less stringent than (48). The condition (48) is 
satisfied very well in semimetals, owing to the large 
mean free path at low temperatures. For these mate­
rials, however, calculation of the surface states must 
be carried out with allowance for the presence of two 
types of carriers and for the anisotropy of the disper­
sion law, and this complicates the theory. 

The present paper was reported at the symposium of 
the Odessa University and the L. D. Landau Institute of 
Theoretical Physics. The authors are grateful to the 
participants of the symposium for a stimulating dis­
cussion. 

Note added in proof (28 March 1970). The presence of the usual 
Tamm-Shockley surface levels produces, of course, a surface bending 
of the bands, which can lead to vanishing of the plasma surface levels. 
We assume that these levels are missing or that their influence is offset 
by an external electric field. 
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