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Fluctuations of the amplitudes and phases of opposite waves in a ring laser are considered by taking 
into account the coupling between them by means of back scattering. The calculations are performed 
for single-mode operation and various levels of output power lying between near-threshold values and 
such high field strengths that saturation becomes important. Concrete expressions are obtained for 
the spectral densities, moments and amplitude correlation coefficient for the opposite waves. Expres­
sions are also derived for the line widths of each of the waves and for the line width of the difference 
frequency. The influence of coupling between waves on the shape of the amplitude and phase shift 
fluctuation spectra is elucidated. It is found that in the presence of coupling the wave width is not 
completely determined by the frequency-fluctuation spectral density at zero frequency. 

I T the present time there are no papers containing a 
consistent calculation of the fluctuations of the ampli­
tudes and phases of opposing waves in a ring laser in 
weak and strong fields, and also with allowance for the 
coupling between the waves via the back scattering. 
Several results were obtained inu1 andl21 , but only for 
the case of a weak field. Inl11 the fluctuations were 
calculated by a quantum approach, in which the fluctua­
tion sources were not introduced explicitly in the equa­
tion, and were not calculated. We introduce into the 
equation for the field the fluctuation sources whose 
intensities have been calculated in l3J. We make use 
here of the results ofl31 . 

The purpose of the present investigation was to 'cal­
culate the fluctuations of the amplitude and of the phase 
of each of the opposing waves, and also the fluctuations 
of the phase difference between the opposing waves. The 
latter can be of great practical importance from the 
point of view of clarifying the limiting capabilities of 
laser gyroscopes. 

1. FUNDAMENTAL EQUATIONS 

We specify the field in the form of a sum of two 
opposing waves and write down the abbreviated equa­
tions for the amplitude and phases of these waves with 
allowance for the coupling between them: 

dE 1,2 roo { , 1 } roo , -at=2 4rtx1,2-Q E1,2 =F2Qim1,2IE2,1sm(«<>+~h,2)+ roosa~,2(t), 
(1.1) 

d<p1 ,2 Q roo ' roo E2,1 roo 
-d-= ±-2 --2 4nx1,2--2Q -E lm1.2icos(<ll +tt1,2)+E-sphl.2(t). 

t 1,2 1,2 ) 
(1.2 

Here K~,2 and K~,2 are the real and imaginary parts of 
the complex polarizability, n is the resonator frequency 
difference for the opposing waves, due either to rotation 
of the laser or to the introduction of some independent 
element, lm1,2l are the moduli of the coupling coeffi­
cients via the back scattering, J 1,2 are the phases of the 
coupling coefficients, Ea 1,2(t) and Eph;,2(t) are the 
sources of the amplitude and phase fluctuations, and 
Q is the quality factor of the resonator. The quantities 
K~,2 and K~, 2 and the fluctuation-source intensities were 
calculated in l 3J • 

2. FLUCTUATION OF AMPLITUDES OF OPPOSING 
WAVES IN THE ABSENCE OF A COUPLING BE­
TWEEN THEM 

Under certain conditions, which will be specified in 
greater detail below, the equations for the amplitudes 
of the opposing waves (1.1) can be linearized relative to 
the mean values, and the fluctuations can be calculated 
by using the correlation approximation. Putting E1,2 
=Eo + 6E1,2 and expanding in a series in 6E1 or 6E2, 
we obtain the equations for the·fluctuations: 

dllE1,2 
-d-t -+AIIE1,2+B6E2,1 = roo6a1,2(t). (2.1) 

- iJx/' 
A=- 4rtrooaEo2 o(aE;2) , 

Here (i, j = 1, 2; i ¢j). 
From (2.1) we determine in the usual manner the 

spectrum of the amplitude fluctuations for the opposing 
waves: 

(2.2') 

Thus, the spectral density of the amplitude fluctua­
tions (and of the intensity fluctuations) constitutes a sum 
of two Lorentz lines: a broader line with width A + B, 
and a narrower one with width A- B. Since (E a i E a j )0 

< 0, obviously the narrower line always has a higher 
intensity. It follows from this, incidentally, that the 
correlation function of the opposing waves (6 Ei 6 Ej )w 
is always negative. 

The total intensity of both Lorentz lines determines 
the amplitude dispersion 

<IIE·2) = roo2 (sai2)oA- (saisa;)oB (2.3) 
' 2 A2 -W ' 

It is seen from this equation that on approaching the 
limit of the instability region of the two-wave regime 
(the stability limit corresponds to A = B), just as when 
the generation threshold is approached, the relative dis­
persion of the amplitude of each of the opposing waves 
increases without limit. This means that in these cases 
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the correlation approximation becomes inapplicable. 
The condition for the applicability of the method of 
linearization and of the correlation approximation fol­
lows directly from (2.3): 

Wo2 (6ai2)oA -(S.;sa;)oB ~ 1 
2Eo2 A 2-B2 "' . 

(2.4) 

Let us consider the asymptotic expressions for the 
spectral densities of the fluctuations of the amplitude 
and of the intensity of the opposing waves. In a weak 
field 

wo2No [ 1 
( OE;OE~.;)., = -2- w2 + (a+ ~)2wld2a2Eo• 

± w2 +(a- ~\2wo2dJ-a2Eo• ]. 
(2.5) 

Here No is the intensity of the noize in the zeroth ap­
proximation in the field. 

It follows from (2.5) that even in a weak field the form 
of the spectrum of the amplitude fluctuations in the ring 
laser, generally speaking, differs from a Lorentz form. 
It is easy to verify, however, that at not too small 
deviations from the center of the Doppler line, when 
IJ. ;::: Yab• the line shape is indeed close to a Lorentz 
shape, as confirmed by the experimental data of[41 • In 
a strong field we have 

(2.6) 

(2.6') 

It follows from (2.6') that with increasing field the rela­
tive dispersion of the amplitude and of the intensity of 
the opposing waves tends to a constant value. 

From (2.2) and (2.2') we can readily obtain an ex­
pression for the spectral density of the correlation 
coefficient of the intensities of the opposing waves: 

(OE/-OE/)., 
p.,= (O(E;2)2)., 

In a weak field 

(A2 + B 2 + ro2} (6a;6a;)o- 2AB(6a/-) 0 (2 7) 
(A2 + B 2 + ro2} (sa;2}o- 2AB(saisa;)o' • 

2a~ (~rop)2 
p.,=- a2+~2 002 +(~wp) 2' (2.8) 

where A.Wp = wodaE~v' a 2 + {32 • 

Expression (2.8) for the correlation coefficient in a 
weak field was investigated by us in[sJ. Here we com­
pare the result with the experimental data of[41 , where 
a plot is given of the frequency dependence of the corre­
lation coefficient. Unfortunately, the parameters of the 
laser with which this plot was obtained (detuning, 
resonator bandwidth, power) are not given in[41 • Cal­
culations in accordance with formula (2.8) for two values 
of the correlation coefficient Po and p Awp yielded the 
following values of these parameters: IJ. f':j 1.1 Yab• 
woda~ f':j 9.2 x 104 rad/sec, Awp f':j 5.02 x 104 rad/sec. 
If we now use these parameters and plot the correlation 
coefficient of the intensities against the frequency in 
accordance with formula (2.8), then we obtain good 
agreement with experiment (Fig. 1). The circles in this 
figure show the experimental points. The discrepancy 
in the region of high frequencies can be attributed to the 
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FIG. I. Plot of the correlation coefficient. 

fact that it is no longer possible in this case to neglect 
the quantity (~ ai ~ aj)0 , as was done in the derivation of 
formula (2.8). At high frequencies the correlation coeffi­
cient of the noise sources for the opposing waves 
(~a i ~a j )0 I(~~ i) 0 begins to play an important role, since 
the intensity correlation coefficient tends to this value 
as w-oo, and not to zero as would follow from (2.8). 

In a strong field we obtain from (2.7) 

(2.9) 

We consider further the fluctuations of the ampli­
tudes of the opposing waves in the case when the corre­
lation approximation becomes inapplicable. We confine 
ourselves here to a weak field, when the equations for 
the amplitudes of the opposing waves can be written in 
the form 

dE1 2 wod 
--'-=-2-[rt- aaE1,22- ~aE2,12]E1,2+ ooo6a1,2(t). (2.10) 

dt 

Here TJ = 1 - 1/Qd is the excess of the pump level over 
the threshold value. 

The corresponding Fokker- Planck equation for the 
joint probability density of the intensities is of the form 

iJw 2 iJ 
- =-~-- { [oood(TJ- aaE ·2- ~aE .2)E-2 

dt .f:j iJ(E;2) ' 3 ' 

iJ(wE-2) } (2 11) 
+ 2wo2No] w + 2woWo iJ(E;;) , • 

It is easy to verify that this equation is satisfied by the 
following stationary solution: 

w(E12,E22)=Cexp{- a~2 [(E/ TJ ) 2 
4N2 a(a + ~) 

+(E2 TJ )+2 ~(E2 TJ )(E2 TJ )]} 2 a(a+~) ~ 1 -a(a+~) 2 -a(a+~) ' 

Here N = Mowoa/d, 
(2.12) 

C = { v n N j [ 1 - !lJ ( _a~ x - - TJ ) 
a a 0 Ny2a NY2a 

X exp {- (a2- ~2)a2 (x- TJ )2}dx}-I 
4aN2 (a+ ~)a · 

From this solution we get the moments 

(E;n)=CVn Njxn/2[1-!P(a~~-TJ )] 
a a 0 Ny2a 

{ (a2- ~2)a2 ( TJ )2} X exp - x- dx 
4aN2 (a+ ~)a ' 

(2.13) 

m ( m ) ( aa2 ) -(m+2J/4"" 
(E·nE.m)=C-r - - J xn/2 

' ' 2 2 2N2 
0 
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{ (a2- ~2)a2 ( TJ }2 a2~2 ( TJ }2} Xexp - x- --- x--
4aN2 (a+ ~)a 8aN2 ~a 

X D-{m+2)/2 ( _~a (x- _2!.}} dx. 
N'f2a fla 

(2.14) 

The integrals in these expressions cannot be evalua­
ted in the general case. We therefore calculate them in 
two limiting particular cases, when the correlation ap­
proximation is not valid. 

1. 17 « N. Then in the zeroth approximation in 77/N 
we have 

1/n(a-~)N( ya2-~2}-I 
(E;2) = f· a(a + ~) a arctg ~ , (2.15) 

2aN2 { Wf'a2- ~2 ( ya2 _ ~2 )-I} 
2 2 2 1- 2 arctg--- , (2.16) 

a (a - ~) a ~ 

2~N2 {'fa2-~2( ya2-p2)-I } 
(E;2El)= 2 2 2 --- arctg -1 . (2.17) 

a(a-~) ~ ~ 

When the limit of the stability region of the two-wave 
regime is approached ({3 ~ a~ 0.5), all the moments 
remain bounded and equal to 

8 N2 
(E;4)=--, 

3 a2 

4 N2 
(E12El) =--2 • (2.18) 

3 a 

From (2.15)-(2.17) we can readily obtain expres­
sions for the relative dispersion of the intensities of the 
opposing waves near the generation threshold, and also 
of the correlation coefficients between them. In particu­
lar, when J1. ~ Yab ({3 = a/2 ~ 0.25) we obtain 

2 (E;4) -- (E1)2 
(J = ) :::::0.39, 

\E/ 
(ErEl)- (Er) 2 

p = (E;4)- (Ej2)2 :::::-0.19. 

When J1. ~ 0 ({3 = a ~ 0.5) 

u2 ::::: 0,41, p ::::: -0,22. 

(It follows from the correlation approximation that 
P = -{3/a). 

2. a - f3 « a. In the zeroth approximation in a - f3 
we obtain 

(2.19) 

(2.20) 

Here 

(2.21) 

When 17 = 0 these expressions go over into (2.18). 
It follows from (2.19)-(2.21) that far from the gen­

eration threshold, when 17 » N, 

Hence 

TJ ( N2) (Er)=- 1+-- , 
a TJ2 

4 TJ2 ( N2) (E;4)=-- 1+3-
3 a2 TJ2 

(ErEl) = (E;4
) 

2 0 

u2 = 0.25, p ::::: -1. 

These results agree with the results oflrJ. 

(2.22) 

3. FLUCTUATIONS OF THE PHASE AND OF THE 
FREQUENCY 

We put in (1.2) f/Jr,2 = 'CPr,2 + OqJr,2 and iP = 4> + O<P, 
and write the equations for the deviations 

Here 

. wo 
l>cp1,2 = Eo (CIIE1,2 +D1>E2,1 + Sph 1,2), 

. wo 
611> =-=-[(C-D) (liE I -11E2)+ (Sphl- Sph2) ]. 

Eo 

C -2 fh;' 
=-4naE0 ---

a(aEr)' 
-2 axl 

D=-4naE0 ---. 
a(aE;2 ) 

(3.1) 

(3.2) 

It follows from (3.1) that the spectral densities of the 
frequency fluctuations of both opposing waves are the 
same: 

·Wo2 
(ll«fr)co = E 02 ((C2 + D2) (IIE;2)., + 2CD(6E;IIE;)co +(sphl).,]. (3.3) 

The spectral density of the frequency-difference fluctua­
tions is 

. wo2 
(011>2)., = 2 E 2[ (C- D) 2( (/IE?).,- (I>E;OE;).,)+ (6phl).,- (sph;6ph,)w]. 

0 (3.3') 
Thus, the spectrum of the fluctuations of the frequen­

cies of the opposing waves differs significantly in form 
from the spectrum of fluctuations of the noise sources. 
This difference is due to the influence of the amplitude 
fluctuations on the frequency fluctuations. 

Let us calculate now the phase advance and the phase 
difference, due to the presence of fluctuations, within a 
timeT. From (3.1) and (3.2) it follows that if the time T 

is much larger than the correlation times of the ampli­
tude and the sources ~phi (t), then we obtain a diffusion 
law for the phase advances and for the phase difference, 
i.e., (Oq;i7 ) = 2Df{JT and (O<P~) = 2DiPT' The diffusion 
coefficients Dq; and Dcp are determined respectively by 
the spectral density of the frequency fluctuations and of 
the frequency difference at zero frequency: 

D~ = 1/2 (11~;2)o, Dq, = 1/z (O<i>2)o. 

The coefficients Dcp and D<f>, as is well known, deter­
mine the width of the spectral line. 

When a~« 1 we have 1 > 

When aE~ » 1 

Wo2a 112 + Vab2 (a) 
D~= 4 112 N~' Dq,=4D~. 

Thus, in a weak field the phase diffusion coefficient, 
and consequently the line width, decrease in inverse 
proportion to the power. With increasing field, the rate 
of decrease slows down and finally in a strong field the 
line width tends to a constant. 

All the obtained expressions are valid in the case 
when the correlation approximation is applicable. It can 
be shown that the condition for the applicability of the 
correlation approximation corresponds also to the con-

l>When b2 > (a-J3)2 this formula coincides with the corresponding 
formula of Belenov [ 2 ] for natural fluctuations. 



FLUCTUATIONS IN RING LASERS 889 

dition under which it is possible to use a diffusion law 
for the change of the mean-square phase advance and 
the phase difference. In the opposite case the correla­
tion time of the amplitude fluctuations turn out to be 
comparable or larger than the time T '""' 1/D. It is 
necessary here to take into account the deviations from 
the diffusion law. 

In the other extreme case, when the correlation ap­
proximation is not applicable and the correlation time 
of the amplitude fluctuations turns out to be much lar­
ger than T - 1/D, it is possible to disregard completely 
the amplitude fluctuations in the calculation of the 
mean-squared phase advance. The line width is then 
determined only by the intensity of the phase-fluctuation 
source. 

4. INFLUENCE OF COUPI.JNG BETWEEN OPPOSING 
WAVES 

Let us assume that the frequency difference n and 
the coupling are such that the frequencies of the oppos­
ing waves are identical (the waves are mutually synch­
ronized). In this case, in the absence of fluctuations, the 
phase difference 41 between the opposing waves is a con­
stant quantity. In the presence of fluctuations, the phase 
difference 41 changes, but under weak-coupling condi­
tions (see rsJ) this changes much more slowly than the 
change of the amplitudes. It is therefore possible to re­
gard 41 in the equations for the amplitudes (2.1) as a 
determined quantity. 

We represent the amplitudes of the opposing waves 
El,2 in the form El,2 =Eo + AE1,2 + oE1,2. Here Eo are 
the amplitudes of the opposing waves in the absence of a 
coupling or fluctuations, AE1,2 are the corrections due 
to the presence of the coupling, and 6E1,2 are the fluc­
tuations of the amplitudes. It follows from (2.1) that 

fj,E ==F~E Alm1,2l sin(<l>+ih,2)+Bim2.d sin(<l>+tt2,1) 
1,2 2Q o A2-B2 

and that the spectrum of the amplitude fluctuations in 
the presence of coupling coincides in first approxima­
tion with the spectrum of the amplitude fluctuations of 
the opposing waves in the absence of coupling. 

Let us consider now the phase fluctuations. The 
equations for the small phase fluctuations take the form 

dllq>12 wo wo 
--· =--=-(C6E12+D6E2I+~phi2)--MI261l>, (4.1) 

dt Eo ' ' " ' 2Q ' 

d(}tl> wo Wo (4 2) 
-=--=-[<C-D) (6E~-6E2J+<sphl- sph2)J--2QMil<l>. • 

dt Eo 

Here 
- Wo 

M1,2 = -1m1,2l sin(<l> + tt1,2)± A 2 _ B 2 [(CA -DB) lm1,2l 

Xcos(cll + tt1,2)+(CB- DA) I m2,d cos(<Ii + tt2,1)], 

M=Ml-M2=-Imd sin(iii+tti)+Im21 sin(<l>+tt2) 

C-D - -
+ wo A_ B[lmd cos(<l> + tt1) +I m2l cos(<l> + tt2) ], 

~ is the stationary value of the phase difference in the 
absence of fluctuations. We note that M is proportional 
to dS2/d41 in the absence of fluctuations, and conse­
quently vanishes on the boundary of the synchronization 
band. 

We write down the stationary solution of Eq. (4.2): .. 
6<l>(t)= w~ J {(C-D)[IlEI(t-t')-6E2(t-t')]+sphi(t-t') 

Eo 0 

(4.3) 

Substituting now (4.3) in (4.1) and (4.2), we obtain the 
spectral density of the fluctuations of the frequency of 
each of the waves and the frequency difference of the 
opposing waves: 

(ll~r)w=(ll~;2)~l+ MIM2wo2 (b<l>2)~l' (4.4) 
wo2M2 + 4Q2w2 

4Q2w2 . (OJ 

(bit>2)w= wo2M2+4Q2w2 (1!<1>2)..,. (4.5) 

Here (oqJj_)~l and (6412)~l are respectively the spectral 
densities of the frequency fluctuations and of the fre­
quency difference of the opposing waves in the absence 
of coupling, determined by formulas (3.2) and (3.3). 

Thus, the spectral densities of the frequency fluctua­
tions and of the frequency difference of the opposing 
waves depend strongly on the magnitude and phase of 
the coupling coefficients. The spectral density of the 
fluctuations of the frequency difference at w = 0, due to 
the coupling between the waves, vanishes. The influence 
of the coupling on the spectral density of the frequency 
fluctuations of each of the waves reduces to the addition 
or the subtraction, depending on the sign of the product 
M1M2, of an additional Lorentz line of width woM/2Q. 

Let us write out the value of the product M1M2 : 
- - wo 

M 1M2 = lmd lm21 sin(<l>+tt1)sin(<l>+tt2)+ A2 -B2 

X [(CA -DB) lmd 1m2 I sin(tt1- tt2) + 1/ 2 (CB- DA) (lmd 2 

+(CB -DA) 2]Imd 1m2 I cos(iii + th) cos(<Ii + tt2)+(CA -DB) 

X (CB- DA) [I m1j> cos2(iii +ttl)+ lm212 cos2(iii + tt2)]} 

In particular, at equal coupling coefficients, i.e., when 
lm1l = lm2l = lml and •h = .92 = .9, we obtain 

C-D -
M = 2wo A_ B lmlcos(<l> +tt). 

In another particular case, when the moduli of the 
coupling coefficients are equal, and the phases differ 
by rr, we have 

wo2(C + D)2 - M2 
M 1M2 = (A+B) 2 lml 2 cos2(<l>+tti)-4, 

M = -2lmlsin(CD + tl1). 

From this we can conclude that near the center of the 
synchronization band, when sin('i + J) Rl 0 in the former 
case and cos('i + J1) Rl 0 in the latter case, the spectral 
density of the frequency fluctuations at zero turns out to 
be much smaller than at w :.2: w0M/2Q. The value of the 
spectral density of the fluctuations of the frequency of 
zero is approximately 

• • (0) . (0) 

(llcpr)o ~ (ll<p;2)o - 1/4(b<l>2)o . 

Near the boundary of the synchronization band, to the 
contrary, M is close to zero, and M1M2 > 0, and conse-
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z' FIG. 2. Plots of the spectral 
densities of the frequencies of 
the opposing waves (curves 1, 2) 
and of the frequency difference 
between them (curves 1', 2') 
near the center of the synchro­
nization band ( 1, 1') and near 
its boundary (2, 2'). 

quently the spectral density of the frequency fluctuations 
at zero turns out to be very large. Approximate plots 
of the dependence of the spectral densities of the fre­
quencies of the opposing waves and of the frequency 
difference between them near the center of the synch­
ronization band and near its boundary are shown in 
Fig. 2. 

Let us determine now the mean-square phase advance 
of each of the opposing waves and the phase difference 
between them within the time T. It follows from (4.3) 
that the mean-square phase advance within a time 7 

much larger than the correlation times of the ampli­
tudes and of the noise sources, is equal to 

(6«1>,2)= 2Q (1-exp{-~M-r:})<B<Ii2)~0> (4.6) 
rooM 2Q · 

Thus, at T « 2Q/woM the mean-square phase shift 
varies in accordance with the diffusion law, and the 
diffusion coefficient of the phase difference does not 
depend on the coupling and is equal to n:;>. On the other 
hand, if T » 2Q/woM, then the mean-squared phase shift 
tends to a constant quantity. 

Let us determine now the width of the fluctuation band 
of the phase difference. It is easy to see that the prin­
cipal role in the calculation of the width of the phase­
fluctuation band is played by the value of the diffusion 
coefficient at the instants of time T ~ 1/D. We can 
therefore conclude that if WoM/2Q « n~> (this inequality 
always holds near the boundary of the synchronization 
band), then the width of the phase-difference fluctuation 
band is the same as in the absence of couplings. In the 
opposite case, the phase-difference fluctuation band is a 
very narrow line (a delta function in the limit). Let us 
consider further the mean-square phase advance of 
each of the opposing waves. From (4.1) and (4.3) it fol­
lows that 

M1M2 <o> 
(6cp;,2) = (llq;;,2)(0) + "'"M2 (llitJ2) 0 't 

llf1M2Q ( { Mro0 }) (0) -2-- 1-exp ---'t (61il2) 0 • 
M3ffio 2Q 

Thus, at T « 2Q/woM the phase advance of each of the 
opposing waves varies in accordance with a diffusion 
law with the same diffusion coefficient as in the ab­
sence of coupling, i.e., Dq; = n~>. When T » 2Q/woM, 
the mean-squared phase advance is equal to 

. MIM2Q (0) 
(llcp;l) =(&p;2)0 -4--Da,. 

M3roo 

It follows therefore that w0M/2Q « D <o>, then the line 
width of each of the waves is equal to fhe line width in 
the absence of couplings, i.e., ~wph = n~>. This rela-

tion is always valid near the limit of the synchronization 
band. On the other hand, if 

rooM.._ n<o> + M1M2 n<o> 
2Q-~ M2 a,, 

then the line width of each of the opposing waves is de­
termined by the spectral density of the frequency fluc­
tuations of these waves at zero: 

~roph = (6cP;2)o /2. 

We can conclude from the foregoing that in the pres­
ence of coupling between the waves the spectral density 
of the frequency fluctuations of each of the opposing 
waves and of the frequency difference between the waves 
are not constant quantities. In addition, the line widths 
of the generated waves are not always determined by 
the value of the spectral density of the frequency fluc­
tuations of these waves at zero frequency. Near the 
limit of the synchronization band, the line width of each 
of the waves and the width of the fluctuation band of the 
phase difference are equal to the spectral density of the 
frequency fluctuations and the frequency difference, 
respectively, far from zero. Near the center of the 
synchronization band, the line width at sufficiently large 
coupling is equal to the spectral density of the fre­
quency fluctuations at zero, which is very difficult to 
measure because of the presence of technical fluctua­
tions. In the intermediate case, when the coupling is 
insufficiently large or else the frequency deviation is 
closer to the limit of the synchronization band, the law 
governing the mean-squared phase advance differs from 
a diffusion law, and we obtain for the line width a more 
complicated expression. The foregoing conclusions are 
very important, since all the methods known to us of 
measuring the line width are based on measurements of 
the spectral density of the frequency fluctuations. 

We do not consider here the case when the frequency 
deviation n lies outside the synchronization region. An 
examination of this case is of great interest from the 
point of view of practical applications, but entails great 
mathematical difficulties. It is clear from simple con­
siderations that if the frequency difference n is much 
larger than the width of the synchronization band, then 
the coupling between the waves via the back scattering 
will have a slight effect. The results obtained without 
allowance for the coupling will then be valid. 

The results of the present paper were discussed with 
Yu. L. Klimontovich. I take the opportunity to express 
my gratitude to him. 
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