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Oscillation of the intensity of laser radiation during sinusoidal variation of the resonator Q factor is 
considered. The dependence of the amplitude of the intensity oscillations on the pump power, fre­
quency, and Q-switching amplitude is derived. 

THE problem of forced oscillations of laser intensity 
arises in connection with the analysis of the behavior of 
a laser system when its parameters vary with time. 
Since the laser radiation intensity behaves like an os­
cillator characterized by a certain frequency and damp­
ing coefficient, the values of which are determined by 
specific parameters of the laser[l'2 l, temporal varia­
tions of these parameters are expected to lead to 
resonant phenomena. 

The process of radiation-intensity oscillation upon 
modulation of the resonator losses was analyzed by 
Ratnert3 l. Under the conditions of very low modulation 
amplitude, he reduced the problem to a solution of an 
ordinary linear differential equation with a driving force, 
and in the analysis of the behavior of the system at large 
amplitudes he confined himself to stating several quali­
tative considerations. 

As will be shown below, the process of temporal 
variation of the intensity of laser radiation when the 
resonator Q varies in time is described by an oscilla­
tory equation with a specific nonlinearity, which leads to 
a large number of singularities inherent in non-auto­
nomous systems with asymmetrical linear character­
isticsr4'5l. 

Let us consider the case of single-mode generation, 
assuming the electromagnetic field to be spatially homo­
geneous. To describe the temporal variation of the 
number of photons in the resonator, we use the kinetic 
equations 

no-n 
n=---sDNn, 

't'p 

. N = -y(t)N + DNnL. 

(1a) 

(1b) 

Here n is the inverted population per unit length of the 
active medium, n0 the inverted population produced in 
the system by the pump power W in the absence of 
stimulated emission, D a coefficient proportional to the 
Einstein coefficient, and L the resonator length. The 
parameter s assumes different values, depending on 
whether the generation follows a four-level or a three­
level scheme. In the former case s = 1 and in the latter 
s = 2. The quantity T pis determined by the formula 

Tp=T/ (f+xW-r), (2) 

where KW is the probability of the transition of the ac­
tive center into the excited state under the influence of 
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the pump, and T is the time of spontaneous decay. The 
coefficient y (t) of the loss of photons in the resonator 
will henceforth be written in the form 

y(t) =yo+ Ay(t), (3) 

where yo is the time-independent loss. 
This system was considered in the self-excitation 

regime, and therefore Eq. (1b) does not contain a term 
describing the increment of the number of photons due 
to the luminescent decay of the upper leveL 

Introducing in place of N the function 
DnoL-yo a-1 N ex-1=--ex-l, 

syoD-rp sD't'p 
(4) 

where a = DnoL/y o, and eliminating the variable n from 
(1), we obtain 

We shall assume that the time variation of the loss is 
harmonic with an amplitude E, i.e., 

1\y(t) =~sin (l)t. (6) 

Expanding the function ex- 1 at a series and confining 
ourselves to terms of order x3 , which enables us to con­
sider values of x in the range lx- 11 :S 2-3, we obtain 
a second-order nonlinear differential equation with an 
asymmetrical nonlinear characteristic 

:i[ a-1 ] mo2 x+- a+2+--(3x+x3) +-(3x+x3) 
3-rp 2 6 (7) 

+-~-m02 (3x + x3)sin mt=~ m02 - 6m cos rot --6-(a + 2)sinmt. 
6yo 3 3-rp 

Here 

mcf = (a -1)yo I 't'p· (8) 

We seek the steady- state periodic oscillation regime, 
which in first approximation can be represented in the 
form 

x = c + r sin (rot+ ll) = c + Beimt + B"e-imt. (9) 

Strictly speaking, we should seek a solution containing 
not only harmonics with frequency w, but also ultra­
harmonic and subharmonics with frequencies 2 w, 3 w, 
w/2, and w/3, the amplitudes of which may turn out to 
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be arspreciable when W approaches Wo/2, Wo/3, 2Wo or 
3 wo 5J. If we confine ourselves henceforth in the analy­
sis of the results to the frequencies w - w0 , then the 
chosen approximation is quite satisfactory. 

Recognizing that the parameters of lasers in which 
the active medium is ruby or neodymium glass lie in the 
range 

y0 ~ 107 - 1()9 sec-1 "P ~ 10--o- 1()---' sec 

(J)o ~ 1()5- 1()6 rad/ sec a ~ 1 - 1()2, 
(10) 

and in addition UYo « 1 and (wTpf1 « 1, we obtain after 
discarding the small terms 

62(1)2 =r2 [(a-~)2 + (1)2 b2] 
(J)o• (J)o2 !h'p2(J)o• (11) 

5c3+3c+4 a-1 
a= 12c ' b=-4--(8+3c+c3)+3; 

2 4-c3 -3c 
r2=a c . (12) 

Here r 2 = 4BB*. Starting from these equations, let us 
trace the variation of r as a function of the change of 
the Q-switching amplitude ~,the modulation frequency 
w, and the pump power level W. 

From (11) we get w/wo: 

~=(-62 ____ 1_b2+a)''• ± (-6-2 ____ 1_b2)'/, (13) 
(J)o 4(J)o2r2 3&rp2(J)o2 4(J)o2r2 36-rp2(1) 02 · 

Figure 1 shows the resonance plots of r against w/wo 
for 01 = 11, Tp = 10-3 sec, and Yo= 108 sec- 1 • The dashed 
line shows tlie curve describing the location of the 
resonant extrema. The form of this curve is given ap­
proximately by the formulas 

rextr ~ 36;p i b, 

(J)extr/ (J)o = -ya, 
(14) 

(15) 

It is seen from Fig. 1 that when ~ :;; 103 sec -1 the 
curves become analogous to the resonance curves 
obtained by solving the linear equations. At large values 
of ~ , regions where certain periodic solutions become 
unstable appear in the amplitude-frequency curves. The 
instability limits are determined by the points at which 
the tangents to the curves are vertical. 

On the amplitude-frequency characteristic 3, corre­
sponding to ~ = 2 x 104 sec-\ there are observed two 
instability regions, AB and CD. This means that even in 
the case of an adiabatic slow growth of w, the amplitude 
r increases continuously to the point A (w/w 0 = 2.972), 
and experiences a jump with further increase w, to the 
value r defined by curve BC. This "increase" is far 

FIG. 1. Dependence of ron 
the frequency ratio w/w0 for dif­
ferent values of the Q-switching 
amplitude~: 1-~ = 2 X 103 

sec-•, 2-~ = I o-4 sec-•, 3-~ = 2 
X 104 sec-•, 4-~ = 105 sec-•. 

from instantaneous. The steady-state periodic regime 
with the new value of r will be preceded by a certain 
transient process, during which the radiation intensity 
can change in a non-periodic manner. A similar situa­
tion occurs also in the region of the point c. Here r 
changes jumpwise from a value 2.67 to 0.03 (naturally, 
after the attenuation of the corresponding transient 
process). 

It must be emphasized that even such an insignificant 
amplitude of the Q modulation as ~ = 3 x 10-4 y 0 pro­
duces, at the corresponding frequencies, abrupt changes 
in the value of N. In the case under consideration rextr 
= 2.67, the ratio Nmax/Nmin turns out to be ~ 200, the 
width of the spike b. T at half the intensity at r > 1 is 
determined by the formula 

2 ( In 2) !'iT= -;; arc cos 1 - -r- (16) 

and reaches here a value 10-6 sec, while the phase ll 
which enters in (10) is ll - 0, whereas far from reson­
ance ll - TT/2. 

The presence of strong resonant phenomena is typical 
precisely of solid-state lasers. Here, as a rule, the 
quantity 01/Tp, which determines the dissipative proces­
ses of the system, turns out to be much smaller than 
w0, which determines the region of resonant frequencies. 
In gas lasers, on the other hand, these quantities, are 
approximately the same order and the resonant phenom­
ena will not be so clearly pronounced here; in addition, 
in this case the instability regions should also vanish. 

Let us consider now the dependence of r on ~, shown 
in Fig. 2. At frequencies w/w 0 !:: 0.95, this dependence 
turns out to be monotonic, and when w/w 0 > 0.95 a more 
complicated picture is observed. The amplitude charac­
teristics must contain here the instability region, and for 
the values of 0.95 < w/wo < 1.00 there are two such 
regions. The presented curves demonstrate that there 
can exist several regimes of system behavior, some of 
which are stable and some are not. 

To study the dependence of r on the pump power at 
fixed~ and w, we find from Eqs. (11) and (12) that 

12C't'p(J) { [ 62 ( 1 w2 c4 + 3c2 +Be ) 2] '·'} 

a - 1 = Yo(5c3 + 3c + 4} (J) ± -;:2- ;;;--+ y0 5c3 + 3c + 4 · 
(17) 

The obtained equality is best analyzed for the case of 
rare- earth lasers, since here 01 - 1 = W /W thr - 1, 
where Wthr is the threshold pump power, and Tp prac­
tically coincides with T. 

Figure 3 shows plots of r against W for the values 
yo= 108 sec-\ Tp = 10-3 sec, w = 105 rad/sec, and two 

2 ------~---~-

a 
5·10 5 

~.sec· I 

FIG. 2. Dependence of ron the Q-switching amplitude~ at different 
frequencies w/w0 . 
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FIG. 3. Plot of r against a-! at~= 5 
X 102 sec- 1 (curve I) and~= 2 X 103 

sec- 1 (curve 2) in the case w = 105 

rad/sec. 

values of~ (~ = 5 x 102 sec-1 and~= 2 x 103 sec-1 • At 
~ = 2 x 103 the curve has two regions where the periodic 
solutions become unstable. 

The location of the resonant curve on the frequency 
scale can be roughly estimated by starting from the 
formula 

(18) 

which is obtained for the maxima of the curves as r - 0. 
It follows therefore that at small excesses of the thres­
hold value of the pump power the violation of the stable 
generation regime is due to the low frequencies 
w :s ·./y o/Tp. In addition, under these conditions the 

damping time of the transients, if it is assumed that it 
is of the order of Tp, is also the largest. The resonant 
effects at frequencies w- 106-107 rad/sec for values 
yo= 108 sec-1 and Tp- 10-3-10-4 sec become manifest 
as values Ql - 10-102 , which is rarely attainable in ex­
periment. 

Summarizing the foregoing, we note that periodic 
variation of the resonator Q in time leads to a periodic 
variation of the intensity of the laser emission. In the 
region w - w0 , even slight Q-switching amplitudes 
-10-4 y 0-10-5 y 0 are capable of causing abrupt changes 
in intensity. The solution shows that at the same laser­
system parameters the oscillations of the intensity may 
correspond to different periodic regimes, some of which 
are unstable. The presence of the instability region 
makes it impossible, in principle, to tune adiabatically 
the amplitude of the oscillations by slowly varying the 
parameters of the system. 

In conclusion, I wish to thank Academician I. v. 
Obreimov for continuous interest in the work, and B. L. 
Livshitz and Ch. K. Mukhtarov for useful discussions. 
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