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The derivation of the three-index (quadratic) fluctuation-dissipation theorem is improved by apply­
ing a theorem which permits one to interchange the operators in the equilibrium moment functions. 
Analogous relations are obtained for the four-index (cubic) theory and the arbitrariness which re­
mains in the theory in expressing the fluctuation characteristics (nonlinear susceptibilities) is in­
vestigated. 

1. INTRODUCTION 

T'HERE is no need to discuss the great role played in 
contemporary statistical physics by linear fluctuation­
dissipation thermodynamics (the results of Nyquist, 
Callen, Welton, and Onsagerr1- 3 l). The number of 
papers in which it is applied to electric and other 
systems is extremely large. Meanwhile, fluctuation­
dissipation and non-equilibrium thermodynamics is not 
yet exhausted. An important and even more voluminous 
part is concerned with nonlinear theory. The number ... 
of papers touching upon the latter is very much smaller 
(cf. r 4- 7 1 ). Interest in nonlinear theory is warranted 
from the point of view of both theory and application, 
since nonlinear systems and effects are playing a large 
and expanding role at the present time. 

Linear thermodynamics is applicable also to non­
linear systems, but is inadequate for a more or less 
complete account of them. For a more exhaustive 
analysis of the fluctuations in nonlinear systems it is 
advisable to use additional relations from nonlinear 
theory, which have (e.g., in the framework of the 
three-index theory) the same degree of generality as 
the relations from the linear theory, and also, possibly, 
to use other relations with a lesser degree of general­
ity. 

Different variants of the unified (linear-nonlinear) 
theory are possible: Markovian and non-Markovian, 
quantum and non-quantum; transitions from one variant 
to another are possible. In this article only one prob­
lem will be considered: the derivation of relations of 
the fluctuation-dissipation theorem type ( [2J Sec. 127) 
for the three- and four-index cases in the quantum 
non-Markovian variant. In this variant, as in the other 
variants investigated by the author, the three-index 
theory displays complete similarity to the two-index 
theory, i.e., to the usual linear theory. The results 
coneerning this case given in the article have a close 
bearing on the results obtained by Efremov[7 1• The 
formulas (3.9), (3.10) and (3.18), absent in[7l, rein­
force Efremov's results. The method of derivation is 
also improved. 

In the four-index theory, the position is more com­
plicated; in it we can establish a number of general 
thermodynamic relations, of which, however, there are 
not enough to establish completely the fluctuation 
characteristics from the dissipation characteristics 

(without additional reasoning which reduces the extent 
of the generality). In the variant of the theory under 
consideration, generalized admittance functions are 
taken as the dissipation characteristics and correla­
tion functions are established in terms of them. Thus, 
the result of the investigation has a partly negative 
character. In Sec. 4, the degree of arbitrariness which 
remains in establishing the theory in the framework of 
the four-index quantum non-Markovian theory is stud­
ied. 

In this paper, the following simple and useful 
theorem (cf. [aJ, p. 18) concerning the interchange of 
operators in equilibrium moment functions is used. It 
states that, if the averaging corresponds to the equili­
brium Gibbs density matrix exp (/3F - f3d?J) (.Y6 is the 
time-independent Hamiltonian), then 

(B(t)D) = (DB(t + if:\ll)) o= eilli·PH(DB(t)) (1.1) 

for arbitrary D and B(t) (the subscript B in PB 
= ajat denotes that the time-differentiation refers to 
B). 

This theorem enables us to improve the derivation 
of the basic results. This improvement is especially 
important in the nonlinear theory, where the calcula­
tions are of necessity more cumbersome than in the 
linear theory. Application of an analogous method to 
the linear (two-index) case gives an extremely simple 
derivation of the usual fluctuation-dissipation theorem, 
which in our notation (explained below) is written as: 

L+1 
(FlFk + FkFl) =-ill L _ i (G'k- Gk'), - (1.2) 

L=eif311Pt. 

The object of this article is to obtain nonlinear general­
izations of this theorem. 

2. THE CONNECTION BETWEEN THE COMMUTATOR 
FUNCTIONS AND THE ADMITTANCE FUNCTIONS 
OF THE NONLINEAR THEORY 

The goal we shall set ourselves is the derivation of 
relations between the fluctuation characteristics of an 
equilibrium process, i.e., moments of the internal 
parameters, of the type (Fun ( tn) ... F u 1( t1)), and the 
dissipation characteristics of a non-equilibrium pro­
cess, i.e., the generalized admittance functions 
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First (in the present section), the question of the 
connection between the commutator functions and the 
generalized admittance functions will be considered. 
Admittance functions are introduced in connection with 
the study of the response (in the general case, non­
linear) of a system to varying external forces hu: ( t) 
(cf., e.g.,r1•7• 9 1). Let the external forces ha(t) act on 
the generalized coordinates, i.e., on the internal 
thermodynamic parameters Fa, a = 1, 2, ..•• This 
means that the system is described by the perturbed 
Hamiltonian: 

~per=~- ~>a(t)Fa==dtC-h(t)F, (2,1) 
a. 

where de is the unperturbed Hamiltonian. 
The presence of the perturbing forces ha ( t) leads 

to the fact that the average perturbed values Aa(t) 
= (Fa (t)) of the internal parameters, (the response 
of the ~;~tem) differ from the corresponding unper­
turbed values ( Fa ( t) ) , which are constant because of 
the stationarity of the system and which, without loss 
of generality, can be assumed to be equal to zero. 
Representing the response in the form of an expansion 

.. 1 
(Fa(t)per) = ~ ni' J. .. J Ga, ~ ..... ~.(t; t,., ... , t1) (2,2) 

X h~,.,(t,.) ... h~,(t1)dt,. ... dt~o 

we introduce the admittance functions G, satisfying the 
causality condition 

Ga.p ..... ~.(t,t,., ... ,t1)=0 for t<max(t~o ... ,t,.). (2.3) 

Below we shall denote the pair (/:h, t1) by one index k1, 
with similar notation for other pairs. Since the admit­
tance akkn ... k1 is equal to the variational derivative of 
( F~er) with respect to hkn, ... , hk1 at the zero-point 
h = 0, it is a symmetric function of kn, ... , k1. 

As is known, (cf., e.g.,r1' 7 ' 9l), application of nonsta­
tionary perturbation theory gives the following expres­
sion for the admittance functions: 

G""• ···"• = (1/h.)"P,.([[ ... [F•, F"•J, .. . ]F"•J> 
X1] (t- tn)TJ (tn -tn-t) ... f) (t2 -· tt), 

(2.4) 

where the averaging is performed over the equilibrium 
state; 

TJ6") = 1 for,;> 0, 11(,;) = o for,;< o, 

Pn indicates summation over the permutations of the 
indices 1, ... , n (nl terms). We introduce the notation 

V"m ··· "• = ([[ ... [F•m, F"m-•J, . .. ], F"•]), (2.5) 

in which the equalities (2.4) take the form 

GM•= (i/h.)V""•TJ(t-tt), 

G""'"' = (t/h.)2(V"""''1J(t- t2)TJ(t2- tt) + V""'"'TJ(t- tt)TJ{tt- t2)], 

G""•"•"• = (i/ h.)SP3V"""'"''TJ(t- t3)TJ(ts- t2)T](t2- tt). (2,6) 

We do not need other values of n. 
Below it will be useful to use the symmetry condi­

tions for the functions (2.5) with respect to time re­
versal t -- t. We shall assume that the quantum 
variables Ff:!(t) are eigenfunctions of the time­
reversal operator, i.e., they transform to €f:!Ff:!( -t), 
where ef:l-= 1 for quantities which are even in the time 
and €f:! = - 1 for quantities odd in the time. The equili-

brium moment ( Ff:!m(tm) ... Ff:l1(tl)) is assumed to be 
invariant on time reversal in the following sense: 

(Fp (tm) ... F~,(t 1 )) = epm ... e~, (F~m (- tm) . .. Fp,(- tt))'. (2.7) 
m 

For this it is necessary that the unperturbed Hamilton­
ian possess the property of invariance. It follows from 
(2.7) and (2.5) that the function ykm ... kl has an analo­
gous property: 

v~m ... ~.(tm, ... 'tt)= e~m· .. e~.v·~m ... ~.(- tm, ... '- tt). (2.8) 

Consequently, if the behavior of the function ykm ... k1 
is known, say, in the region tm > ... >t1, it is not 
difficult to find its behavior in the region t 1 > ... > tm 
also. 

The complex-conjugation operation occurring in 
(2.7) and (2.8) is a specifically quantum effect. The 
transformations corresponding to time reversal were 
studied in[91 • 

3. RELATIONS IN THREE-INDEX FLUCTUATION­
DISSIPATION THEORY 

By direct inspection it is not difficult to see that the 
function 

llmlk = <[[Fm, F'], F"]> = (F'"F'F"- F'FmFk- F"FmFl + F"F'F"'> 

has the obvious properties: 

ymlk = _ ylmk; 

ym!k + yLkm + Vkm! = O. 

\ (3.1) 

(3.2) 

(3.3) 

Hence it is clear that there are only two independent 
functions V. 

We shall relate the above commutator functions to 
correlation functions. Applying formula (1.1), we have 

Using (3.4), we write (3.1) in the form 

ymtk = (1- K)(FmFIF" _ FlFmF•). 

Here and below we use for brevity the notation 

By virtue of the stationarity of the fluctuations, the 
relations 

P• + Pt + Pm = 0, KLM = 1. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

·are fulfilled. From (3.5), by cyclic permutation of the 
indices, we obtain 

v>ml = (1- L) (F"FmF'- FmFkFl) 

or, if we use relations of the type (3.4), but with per­
muted indices, 

y•mt = (1- L) [K(FmF1F")- L-1(F1FmF>)]. (3.8) 

We shall regard the equalities (3.5) and (3.8) (divided 
by 1 - K and 1 - M) as a system of equations for the 
two unknowns ( FmFlFk) and ( FlFmFk). Solving it, 
after a series of transformations performed using 
(3.6) and (3.3), we shall have 

(FmF'P)= (1-M-•)-'[(1-K)-'Vmt•+ (1-L-•)-'V"m'J (3.9) 
= (M-1)-'(L-1)-•(K -1)-'[Mvmz• + v•mt +K-•vt•m]. 

Using this basic result, it is not difficult to find the 
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symmetrized correlation functions also, e.g., the 
cyclically symmetrized function 

R'"'" = (F"'F'F'') + (F"F'"F') + (F'F"Fm) = (1 '- K + M-1) (F"'F'F"). 

For it we obtain 

R'""' =(111 -1)-l (L -1)-l(K -1)-l L/(M + £-1) Vmlk, (3.10) 
(3) 

where the sum extends over the cyclic permutations P 
and contains three terms. Further, the symmetrization 
Rmlk + Rlmk gives a completely symmetrized corre­
lation function. It is also easy to obtain some partially 
symmetrized correlation functions, e.g., the function 
( [Fm, [Fl, Fk J +] +), calculated in[ 7 J, and also the com­
mutator function ( [ Fm, [ Fl, Fk J _ j +), in terms of 
which the variational derivative 

(3 .11) 

at the zero-point is expressed; this function was also 
found in [7l. 

In order to obtain the three-index analog of the fluc­
tuation-dissipation theorem (1.2), it remains to ex­
press the functions ymlk occurring in the right hand 
side of the derived formulas (3.9), (3.10), etc., in 
terms of the admittance function amlk, using the 
second of the formulas (2.6). 

We shall introduce the functions gmlk alkm 
bkml, ... , each of which possesses the pr~pert/: fmlk 
= 0 outside the region tift> tz > tk; the functions are 
taken to be equal to - ym kjn2 inside the region in 
which they are non-zero. Then, obviously, the function 
- ymlk/1i 2 is written in the form of a sum with six 
terms: 

Using the symmetry property (3.2), half the functions 
introduced can be eliminated from this expression by 
expressing them in terms of the remaining ones 

-Ji-2 vmzk = gmlk + alkm + bkml - glmk - amkl - bklm. (3 .12) 

Further, because of (3.3) the equality gmlk + amlk 
+ bmlk = 0 is fulfilled, i.e., (3.12) takes the form 

-Ji--2V'"'" = gmzk + alkm _ gkmz_ akml_ gzmk _ amkz (3.13 ) 
+ gklm + aklm. 

We now use the time-symmetry property (2.8). Intro­
dueing the time-conjugation operation 

v~m ... ~,(tm, ... , 1!)= v·~,, ... ~.(- tm, ... ,- tz), (3.14) 

we can write the equality (2.8) for m = 3 thus: 

Vmlk = Vmlk. 

Putting (3.13) into this, we obtain 

Consequently, (3.13) is transformed into the equality 

vmlk = -Ji2(gmlk- glkm + rkl- glmk- glmk + gmkl (3.15) 
_ glkm + g'nlk). 

Putting this expression into the second of the equalities 
(2.6) and taking into account only those terms which are 
non-zero in the region considered t > max ( t 1 , t2), we 
have 

Gmlk = gmlk + gmkl (3.16) 

for any relationship between the times. Therefore, 
(3.15) takes the form 

vmlk = _Ji2(Gm'" _ G"m +time conj .) . (3.17) 

Putting (3.17) into (3.10), we obtain 

[ 
GZkm + Glkm Gmlk + Gmlk 

(F'"F'Fk) = - li2 M ----'----+ __ ____:._:_ __ 
(K -1) (M -1) (L -1) (K -1) 

Gkml+ Gkml ] + K-t---,-,:-:-----,-,--:-::---
(M-1)(£-1) . 

(3.18) 

In an analogous way, we can express other correlation 
functions and also the function (3.11), in terms of 
amlk. In this way, the results of[ 7J are easily derived 
from the more general formulas given above, but not 
vice versa. 

In the formulas obtained one can of course trans­
form to the spectral representation. In this the opera­
tors Pm, pz, and Pk occurring in (3.4)-(3.10) are re­
placed by iwm, iwz and iwk· Because of the station­
arity, the relation wm + wz + Wk = 0 is fulfilled, so 
that we can write out only two independent frequencies. 

Thus, all the three-index fluctuation characteristics 
can be completely expressed in terms of a dissipation 
characteristic such as the three-index admittance 
function. Consequently, the same program as in the 
usual (two-index) fluctuation-dissipation theorem is 
carried through completely in the framework of the 
three-index theory. 

4. THE FOUR-INDEX RELATIONS 

We shall try to fulfil the above program in the four­
index theory. We shall consider the function (2.5) for 
ill= 4: 

(4.1) 
It is not difficult to see by direct inspection that the 
following symmetry relations are fulfilled 

vnmlk + vmnlk = 0, 

vnmlk + V'"'"" + V'"'"" = o, 

vnmlk + vmnkz + pknm + v•zmn = 0. 

(4.2) 

(4.3) 

(4.4) 

If we take the set of 24 functions V obtained by all the 
possible permutations of the indices, the relation (4.2) 
reduces the number of independent functions to 12, then 
(4.3) reduces it to 8, and (4.4) reduces it to 6. 

Because of (1.1 ), the operator eif31ipk leads to a 
cyclic permutation of the indices: 

As a result of this we have 

[ [ [Fn, Fm], F'], F"] = (1- K) [ [F", Fm], F']F" 

(we are using the notation (3.6)). Writing out 
[[ Fn, Fill], Fl) in detail and using the notation 

(1- K)-1Vnmlk = W"'"'", Qnmlk = (FnFmF'F"), 

consequently we shall have 

(4.5) 

(4.6) 

wnmlk = Qnmlk + Qlmnk- Qmn!k- Qlnmk. (4.7) 

As a consequence of relations of the type (4.5), the 
number of linearly independent functions Q is reduced 
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to 6, which is the same as the number of independent 
functions V or W. The equality (4.7) establishes the 
correspondence Q - W. It is clear from the following 
treatment that the correspondence between the inde­
pendent functions Q and W is nondegenerate and it is 
possible to establish inverse formulas for the trans­
formation W- Q, i.e., to solve (4.7) for the functions 
W, i.e., for V also. To do this, we add to (4.7) the 
following equations, obtained from (4.7) by the inter­
change (n, m) {l, k) and the interchange (n, l) (m, k): 

wmnkl = Qmnkl + Qknml - Qnmkl - Qkmnl, 
(4.8) 

Wlknm = Qlkn·m + Qnklm _ Qklnm _ Qnlkm 

(the remaining interchange (n, k), (m, l) of the normal 
divisor of the group because of (4.4) does not give an 
independent equation.) Going over to the cyclic factor 
group of three permutations, corresponding to the 
symmetry (4.3), to (4.7) and (4.8) we add the analogous 
equations, obtained, say, by the permutations ( nml ) 
and having the form 

Wmlnk = Qmlnk + Qnlmk _ Qlmnh- QnmUt, 

Wlmkn = Qlmkn + Qkmln _ Qmlkn _ Qklmn, 

wnkml = Qnkml + Qmknl- Qknml_ Qmnkl, 

(4.9) 

The remaining permutation of the above three indices, 
because of (4.3), gives nothing new. By using permu­
tation relations of the type (4.5), all the functions Q 
occurring in (4.7)-(4.9) can be converted to the un­
known functions 

X= Qnmlk, X = Qlmnk, y = Qlnmk 1 fj = Qmnlk, 
(4.10) 

z = Qmlnk 1 z = Qnlmk, 

After this the above equations take the form of a sys­
tem of equations 

-1 -1 0 0 :I wnrnlk 

K £-1 J-1 -K 0 0 wmnl;_l 

LK NK --K -M-• 0 0 y l'lllknm 

-1 -1 0 0 fj 
vv~mlnk ' (4.11) 

- _y-I -K 0 0 K ;y-• z wlmkn 

-A- - L-t 0 0 !YK MK z wn.~ml 

(NMLK-= 1). 

This is found to be nondegenerate and permits us to 
express x = ( FnFffiFlFk) in terms of W or V. The 
solution of this system is given in the Appendix. It is 
obvious that the result obtained there enables us also 
to calculate the symmetrized correlation functions. 

We recall now that our basic problem is to express 
the correlation functions in terms of the admittance 
functions. For this it is necessary to use the third of 
the formulas (2.6}, which takes the form 

with the notation 

gkk,k,k, = (i/ li)'Vkk,k,k,r](t- t3)TJ(t3- t2)r](t2- tz), (4.12} 

It is consequently not difficult to see that the function 
Gkk~zk1 uniquely determines the function (4.12) and 
vice versa. 

To express the function ynmlk in terms of Gnmlk 
or gnmlR we shall introduce certain (so far undeter­
mined) functions a nmlk, bnmlk, ... , each of which goes 
to zero outside the region tn > tm > tz > tk, like fmlk. 

Using the symmetry properties (4.2} and (4.3), we shall 
have 

(i j /i)3Vnmlk = anmlk _ amnlk + bmlnk _ bnlmk 

_ (alnmk + blnmk) + (almnk + blmnk) + cnmkl _ cmnkl 

+ dmlkn _ dnlkm _ (clnkm + dlnkm) + (clmkn + dlmkn) 

+ enkml _ emknl + j>nkln _ Jnklm _ ( elknm + jlknm) 

+ (elkmn + jlkmn) + hknml_ hkmnl + qkmln _ qknlm 

_ (hklnm + qklnm) + (hklmn + qklmn), (4.13} 

Here eight undetermined functions appear. The proper­
ties (4.4) establish two additional relations between 
them 

b+c+d+e-q=O, a+b+d-f+h=O. (4.14} 

Using the time-symmetry property (2.8), we obtain 
the relations: 

e=c+a, 1=-a, h=a+li, q=-li (4.15) 

(the time-conjugation notation (3.14) is used), which 
enable us to write (4.14) in the form 

a + b + d + a + li + a = 0, a + a = c + c. (4.16) 

It remains to use the relation (4.12), which determines 
a, and consequently also a (a= g). 

Now all the available relations have been exhausted 
and the arbitrary functions introduced remain incom­
pletely determined. After (4.15} and (4.12) have been 
used, there remain three arbitrary functions, say, b, 
c and d. The relations (4.16} connect their time-even 
parts, determining, as it were, one more function (a 
half plus a half). In all, two functions remain undeter­
mined and the function ynmlk can be set arbitrarily in 
two regions out of 24. This arbitrariness is not for­
tuitous and has its analog in the non-quantum Markovian 
theory. It is possible to remove this arbitrariness only 
by going beyond the bounds of the theory described and 
using some additional assumptions which reduce the 
degree of generality. We recall that, up to now, the 
generality of the treatment has been exactly the same 
as in the usual fluctuation-dissipation theorem. 

From the results given it is possible to obtain vari­
ous consequences, e.g., (making li - 0) the formulas of 
non-quantum fluctuation-dissipation thermodynamics. 

Thus, in the four-index theory we have found a linear 
transformation V - Q of the commutator functions V 
into the correlation functions Q which is inverse to the 
transformation Q - V. In contrast to the transforma­
tion Q - V, the transformation V - g of the commu­
tator functions into the admittance functions gnmlk 
cannot be inverted since it is found to be degenerate. 
Therefore, arbitrariness remains in seeking a trans­
formation g - V; as the investigation has shown, the 
correlation functions were, roughly speaking, one-sixth 
undetermined. 

The negative answer to the question of the existence 
of a linear transformation form g to V is not fortui­
tous. To be convinced of this, it is useful to apply the 
theory to the particular case of a linear system, for 
which all the admittance functions g, apart from the 
two-index one, are equal to zero. If a linear transfor­
mation g - V existed, the vanishing of g would imply 
the vanishing of V, and then, because of the proven 
transformation V - Q, the fourth moments Q would 
consequently also disappear, which is absurd. 

It is of interest to seek nonlinear formulas by which 
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the moment Qnmlk would be expressed not only in 
terms of gnm7k but also in terms of other admittance 
functions, say, two-index functions. In favour of such 
formulas is the fact that for a purely linear system (in 
which the fluctuations are Gaussian), the moment 
Qnmlk is expressed bilinear ly in terms of glk. It is 
easy to see this if we use the usual (two-index) fluctua­
tion-dissipation theorem and the simple formulas for 
the Gaussian case, which in the non-quantum variant 
have the form Qnmlk = QnmQlk + QnlQmk + Qn~ml. 

In conclusion, however, we shall give another solu­
tion of the problem of surmounting the arbitrariness 
remaining in the four-index theory. We shall express 
the function ynmlk in terms of gnmlk and the function 

ynml>= 1i 6([[Fp~r,Fp~r],Fp~r]) at (4.17) 
i bh" for h (t) == o. 

Using in the differentiation the usual methods which led 
to (2.4), we obtain 

ynmlk= ([[Unk,Fm],Fl] + [[Fn,Umk],Fl] + [[Fn,Fm],Ulk]), (4 ,18) 
un•= [F",F"]tJ(tn-t,). 

Transforming the last term by means of the formula 

[[A,B],C] + [[B,C],A] + [[C,A],B] = 0, 

and putting in it A = Fn B = Fm and C = ulk we 
' ' ' write (4.18) in the form 

ynmlk = jinkmlt](tn _ tk) _ jimknlt](tm- tk) 
+ ( jilkmn _ jilknm) t] ( t1 _ tk). 

If into this we substitute (4.13), we shall have 

(if fi)'Ynmlk = (c + e + f _ h _ q)nmlk _ (c + e + d _ q)mlnk 

+ (d- f + h)lnmk + anmkl_ (a+ b + e + h)mlkn + (b + e + h)lnkm 
+ ankml_ cmkln _(a_ c)lknm _inter, 

(where "inter" denotes the analogous expression with 
the indices n and m interchanged) or 

(i j fi)'Ynmlk = gnmlk + bmlnk _ (g + b)lnmk + gnmkl + 
+ (d- C) mlkn - (g + d- c) lnkm + gnkml- cmkln - (g- clknm) 

-inter. 

by virtue of (4.12) and (4.14)-(4.16). Hence it is clear 
that, knowing the behavior of the function ynmlk in the 
regions tm > tz > tn > tk, tm > tk > tz > tn and tm 
> tz > tk > tn, we can uniquely determine the functions 
b, c and d, i.e., completely remove all the arbitrari­
ness. 

APPENDIX 

Writing Eq. (4.11) in the form 

Ds == [D6t, D6,]s = W, 

where D65 is a 6 x 5 matrix, we have 

x = det [WD65] / det D. 

To calculate the determinants in this expression it is 
convenient to transform them by combining columns. 
Adding the third column to the first and subtracting it 
from the fourth, then adding the fifth column to the 
second and subtracting it from the sixth, and, for the 
determinant D, first adding the fourth and sixth col­
umns to the first, we shall have, after factoring out K3 

X= il' ILl, 
w, 0 1 0 0 0 
w, 0 L-1 MN-1 0 0 
w, N-1 K 1- L,\ 0 0 A'= w. 0 0 0 0 
w, 0 0 0 K fA! -1 
w. N(1-M) 0 0 .YK :lf-N 

0 0 0 0 0 
0 0 L-1 MN-1 0 0 

Ll=K L(1- N) N-1 K 1- '"-v 0 0 
0 0 0 0 0 
0 0 0 0 K Lvi -1 

M-1 N(1- M) 0 0 !\"K llf-N 

We shall represent the first column as a sum of two 
columns, the first of which has three zero lower ele­
ments and the second three zero upper elements. After 
this i:l.' and i:l. are decomposed into a sum of two deter­
minants, each of which is equal to a product of two 
simple third-order determinants. In this way we ob­
tain easily 

il' =N(1- M) (LM -1)[(K -N)W1 + (LN -1)W2 + (iiJN- 1)W3 ] 

- (N -1) (MN- 1) [ (KM- 1) W, + (N- M) W, + (LM -1) W.]; 
il = K(1- M) (1-N) (LM -1) (MN -1) (LN -1). 

Introducing the expression 

rz = - (1- N) 2(1- M) 2 (1- £) 2(1- K) 2 (NM -1) (ML- 1) (LK - 1) 
X(KN-1)(NL-1)(MK-1) = [(1-N)(1-M)(1- L)(1- K))2K' 

X (NM- 1)'(ML- 1) 2 (N£ -1) 2, 

i.e., r = ( 1 - L)( 1 - K)i:l., which is invariant with re­
spect to the cyclic permutations (N, M. L, K) and 
taking the first of the formulas (4.6) into account we 
have, consequently, 

rx = N(1- L) (1-M) (LM- 1) (K- N) Ji""''" 
+N(1- K) (1-M) (LM -1) (LN- 1) V'"""' 

+ N(1- K) (1- L) (LM -1) (MN- 1) V'""'" 
+ (1-L)(1-N)(MN-1)(KM-1)V'"'"" + (1-L)(l-K)(J'/N-1) 

X(N -M)Vlmkn + (1- K) (1-N) (MN- 1)(LM -1)W"'""'· 

Because of the relations (4.2)-(4.4), we can put our 
result into a different and, in particular, more sym­
metric form. Thus, subtracting the expression 

1/,N(LM -1) (1- K) (1-M) (LN -1) (Jinmlk + Jilknm 
+ vmnkl + Jiklmn) + '/,(1 _ L) (1- N) (MN- 1) 

X (KM -1) (Jimlnk + jinkml + jilmkn + jiknlm), 

which vanishes by virtue of (4.4), and taking (4.2) into 
account we obtain 

l'(FnFmF'F') = [K-'(1- M) (KN -1) (N + LK) ynmlk 
+ (1-L) (MN -1) (M -t-KN)Vmlkn -t-N(1-K) (LM -1) 

x (L + NM) Jilknm + MN(1- N) (KL- 1) (K + Jl/L) Jiknml] 
- 1j,[K-'(1- M) (NK- 1) (1 + K) (1 + NL) Jinmlk + 

+ (1- L) (MN -1) (1 + N) (1 + MK) Jimlkn + N(1- K) (LM- 1) 
X (1 + M) (1 + LN) r1knm + MN(1- N) (KL -1) (1 + L) · 

x (1 + KM) Jilknm] + 1j,[N(1- M) (1- K) (ML -1) (NL -1) 
x (Vmnkl_ Jiklmn) + MN(1- L) (1- N) (LK- 1) (MK -1) 

. (Jilmnk _ jinklm)]. 

Here, each expression in square brackets is con­
structed in a cyclically symmetric way and has a 
property of the type (4.5). 

1 Voprosy kvantovoi teorii neobratimykh protsessov 
(Problems of the Quantum Theory of Irreversible 
Processes) (Collection of papers translated into 



QUANTUM NONLINEAR THEORY OF THERMAL FLUCTUATIONS 869 

Russian), IlL, M. 1961. 
2 L. D. Landau and E. M. Lifshitz, Statisticheskaya 

fizika (Statistical Physics), Fizmatgiz, 1964 (English 
translation published by Pergamon Press, 1968). 

3 M. L. Levin and S.M. Rytov, Teoriya ravnovesnykh 
teplovykh fluktuatsi1 v elektrodi amike (Theory of 
Equilibrium Thermal Fluctuations in Electrodynamics), 
Nauka, 1967. 

4 R. L. Stratonovich, Zh. Eksp. Teor. Fiz. 39, 1647 
(1960) [Sov. Phys.-JETP 12, 1150 (1961)j. 

5 R. L. Stratonovich, Vestn. Mosk. Univ., Fiz., 
Astron. No.4, 84 (1967) [Moscow Univ. Phys. Bull. 

(Faraday Press Inc.). 
6 R. L. Stratonovich, ibid. No. 1, 40 (1969). 
7 G. F. Efremov, Zh. Eksp. Teor. Fiz. 55, 2322 

(1968) [Sov. Phys.-JETP 28, 1232 (1969)j. 
8 L. P. Kadanoff and G. Baym, Quantum Statistical 

Mechanics, Benjamin, 1962 (Russ. Transl., IlL, M. 
1964). 

9 G. F. Efremov, Zh. Eksp. Teor. Fiz. 51, 156 
(1966) [Sov. Phys.-JETP 24, 105 (1967)j. 

Translated by P. J. Shepherd 
195 


