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Conditions are derived for the high-frequency stabilization of the helical instability associated with a 
current flow in the electron-hole plasma in a semiconductor. The results of the calculations are com­
pared with the experimental data for germanium. It is shown that the model used in the calculations 
explains the basic experimental features. 

IN recent years a great deal of interest has been 
focused on the interaction of high-frequency electro­
magnetic fields and a plasma in an unstable state. The 
potential usefulness of work in this direction is due, in 
particular, to the hope of realizing conditions under 
which the externally produced high-frequency fields in a 
plasma can bring about stabilization of certain kinds of 
MHD instabilities. The present work is devoted to an 
investigation of high-frequency stabilization of the heli­
cal instability associated with current flow in the elec­
tron-hole plasma in a semiconductor. At the present 
time this instability represents one of the most fre­
quently encountered in the field. This instability was 
first observed in a semiconductor plasma in experi­
ments reported by Ivanov and Ryvkin lll ; a complete 
theory of the effect was developed by Glicksmanl2 J on 
the basis of a model proposed earlier by Kadomtsev and 
Nedopasovl3 J in the analysis of the plasma in the positive 
column of a gas discharge. 

The stabilization of the helical instability driven by 
a current in an electron-hole plasma in germanium was 
observed and explained by the authors of the present 
workl4- 6 J together with Kadomtsev. CalculationslsJ 
have shown that to explain high-frequency stabilization 
it is necessary to supplement the analysis inl2 J by the 
introduction of boundary conditions at the end faces; 
these conditions require nodes in the perturbation cur­
rents at the end faces. The solution appears in the form 
of a superposition of standing waves. The behavior of the 
system is then described by the Hill equation and high­
frequency stabilization of the current perturbations 
corresponds to operation in the stability regions of this 
equation. In this model the stabilization effect is due to 
the time-correlation between space harmonics with 
different wave number n. In what follows the efficiency 
of the process will be characterized by a modulation 
coefficient 11 c = E/E~ where ~Ec is the electric field that 
drives the instability 2 J and E is the alternating com­
ponent of the field Ec that causes a reduction of the 
amplitude of the current perturbation by a factor of e. 

In the present work, taking account of the two most 
dangerous longwave unstable modes, characterized by 
n = 1 and n = 2, we extend the results of the calculation 
in lsJ ; we find the dependence of 17 c on the length of the 
sample for various modulation frequencies and deter­
mine the limiting values of the fixed electric and mag-

netic fields for which high-frequency stabilization is 
possible. The results of the calculation are compared 
with the experimental data. The calculation and the ex­
periment pertain to the case of an unmagnetized plasma 
which satisfies the condition WeT « 1 where we and T 
are respectively the cyclotron frequency and the mo­
mentum relaxation time for the current carriers. 

If weT « 1 the basic equation that describes the 
helical instability is lsJ 
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and z is the running coordinate in the direction of the 
sample axis, a is the radius of the sample, t is the time, 
De is the electron diffusion coefficient, b is the ratio of 
the mobilities of the electrons and holes, and w0 is the 
modulation frequency of the electric field. In order-of­
magnitude terms {3 is the same as the ratio of the modu­
lation frequency to the instability frequency. Expres­
sions for the dimensionless quantities are given for the 
case of a clean surface in which the parameter 
G = 2De/(1 + b)as :::::< 25 where s is the surface recom­
bination rate. The experimental situation approximates 
the case of a clean surface and the measurements are 
carried out with Ge samples with a natural conductivity 
for several doping levels. Under these conditions it can 
be assumed that the stationary distribution of carriers 
is uniform over the cross section of the sample. 

In the case of weakly injected contacts the boundary 
conditions for the end faces are 

n' I x=o,xi. = o, (2) 

where xL = 0.5 L/a. The choice of zero boundary con­
ditions or nodes at the ends is verified by the experi­
mental data. lBJ 

A solution of Eq. (1) in the form of plane waves 
exp (ikz) does not satisfy the boundary condition in Eq. 
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(2).r21 Since the variables do not separate in Eq. (1), 
the solution of Eq. (1) is sought in the form of an ex­
pansion in characteristic coordinate functions cl>n of 
the operator L which satisfy the boundary conditions 
in (2): 

n'= I: Cn(8)1lln(x), {3) 
n 

where 

«<>n (x) = exp {ipnx} sin XnX, Pn = 1'1 + 'Xn2, 

Xn=nn/xL, n=1, 2, 3 ... 

This approach to the solution of Eq. (1) is essentially 
a perturbation method; the right side of Eq. (1) is a 
quantity of order a/L when the solution in the form of 
(3) is substituted, and is small in long samples. 

The subsequent analysis is carried out in a two­
mode approximation. Forming a system of functions 
which are orthogonal to cl>1 and cp2 in accordance withrsl 
and averaging over the coordinate x (Kantorovich 
method) we convert Eq. (1), a partial differential equa­
tion, into a system of two ordinary first- order differen­
tial equations in the functions c1{8) and c2(8). Solving 
this system with respect to each of the functions c1 and 
c2 we obtain a second- order equation of the form 

ift + 2ect + 'XCt = 0. (4) 
The expressions for the coefficients € and K are 

e=2(pt2+ P•2)-2_-~(~+.!....) (1+1Jsin~8), 
2 4 Pt P2 

where 

The solution of Eq. (4) can be written conveniently in 
the form 

Ct =const·exp (- J ed8) u(6), 

where u(ll) satisfies the equation 

u+('X-e2-e)u=O. (5) 

The high-frequency stabilization effect can be realized 
when the development of the instability is determined by 
Eq. (5) in the absence of the high-frequency field, or 
when 

e(TJ=O) >0, 'X(TJ=O) <0. (6) 

The condition in (6) indicates the range of values of cr 
for which high-frequency stabilization is possible: 

Here, crmin and crmax are given by the following ex­
pressions: 

4 Pt2+P•2 
Um!n = 4(pt + P2) (Pt2- PtP2 + P•2)-- 4(p2- Pt) 

2 Pt + P2 

X { (Pt2+Pto2+P•2) (Pt2 +PtP•+P•2 - ~) 

(7) 

+ _1_[ 1 + 8 (8/3} 2o12p22 1 ] }''• 
2 2 (Pt + P2) 4 1-cos(p2- Pt)XL ' 

Umax = 8PtP2 (Pt2 + P22- _!...). 
Pt + o2 2 

Equation (5), which governs the function u, is in the 
form of a generalized Hill equation. rsJ In this case, the 
criteria which determine the region of stable behavior 
of the system for low characteristic frequencies reduce 
to an equation for stabilizing values of 11 c: 

(8) 

The expressions for p and q which appear in Eq. (8) can 
be written conveniently in the form 

If the sample is not too long (L/a ::;; 25) it follows 
from Eq. (8) that 71c ~ ..fWoL/a. The physical meaning 
of this relation can be understood easily because an in­
crease in the modulation frequency implies that the cor­
rection due to the high-frequency field in the average 
equation (5) falls off with time (a similar situation 
arises in the dynamic stabilization of the inverted 
pendulum r71 ) while the correlation between modes is 
reduced with increasing sample length. rsJ 

The results of calculations of the actual values of 
71c(L/a) obtained for the lower boundary of the high­
frequency stabilization region cr ~ crmin and the rela­
tion with the experimental data are discussed in detail 
below. 

In an experimental test of this analysis use has been 
made of germanium with a value of conductivity close 
to the natural value (Po= 45 ohm· em). Samples with 
weakly injected tin contacts having transverse dimen­
sions 1 x 1 mm and a length varying from 3 to 15 mm 
were used. The method of determining the time in which 
the instability grows is similar to that used inr41 • In the 
experiments we detect oscillations in the potential with 
point probes located at the side surfaces of the samples. 
The length of the electric field pulse Ec = 1Q.O J.J.Sec and 
the length of the high- frequency field pulse E is of the 
order of 50 JJ. sec. Pulsed operation is used in order to 
avoid heating of the lattice by current flow. 

The modulation frequency for the electric field E is 
W 0 = 6 x 106 Hz; since the frequency of the oscillations 
associated with the instability w ~ 1 x 105 Hz, the in­
equality Wo/w ~ 10 » 1 is always satisfied. 

The magnetic field in the experiments can be varied 
from 0 to 12 kG. In order to avoid overheating of the 
current carriers the instability is excited by varying 
the magnetic field with a relatively weak fixed value of 
the field Ec = 100 V/cm. 

In Fig. 1 we show the stability boundary for high­
frequency stabilization computed in the two-mode ap­
proximation together with the results of the correspond­
ing measurements. The boundaries of the region corre­
sponding to the minimum values of crmin(L/a) coincide 
with the threshold values ere ~ Be for excitation of the 
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FIG. 1. Boundaries of the zone 
of high-frequency stabilization. The 
region in which high-frequency fields 
can be used for suppression of the 
instability is shown in cross hatching. 
The vertical lines show the results of 
the measurements of various values 
of L/a. 
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FIG. 2. Results of the measurements of the function 1lc(a) for vari­
ous L/a: a) L/a = 20, b) L/a = 12, c) L/a = 9, d) L/a = 6. The quantities 
O!min and O!max are the smallest and largest values of 0! for which high­
frequency stabilization is realized for finite 71c; Ec = const. 

helical instability in samples with various values of L/a. 
In Fig. 2 we show the experimentally measured func­

tional relation 71c(a) for various values of L/a. The 
calculated positions of the stability boundaries in Fig. 2 
are denoted by dashed lines for the corresponding 
values of amin and amax· It is evident that as a in­
creases the quantity 71c first remains constant and then 
rises sharply. The values of a for which there is a 
sharp rise in 71 c can be identified with the upper boun­
dary of the largest values of a; beyond this boundary 
the stabilization effect does not operate. 

For purposes of comparison the experimentally de­
termined stability zones for various sample lengths are 
shown in Fig. 1 as solid vertical lines. As is evident 
from Figs. 1 and 2, the calculated position of the boun­
daries of the zone expected for high-frequency stabil­
ization are in satisfactory agreement with the experi­
mental data. An unexpected effect is the sharp increase 
in the stabilizing value of the modulation coefficient 71 c 
close to the upper limit of the zone beyond which the 
high-frequency stabilization effect no longer appears. 
This effect is evidently a natural consequence of the 
transition from the region of stable behavior of the sys­
tem into the unstable region. 

In Fig. 3 we show experimental values of 71c and 
calculated values for {3 = 10 and {3 = 20 for a = amin as 
a function of sample length L. It is evident that the 
stabilizing value increases with increasing L and that 
this relation is essentially linear; however, the calcula­
ted values of 71 c are two or three times greater than the 
measured values. At the present time we can indicate 
two possible reasons for this discrepancy between the 
calculations and the experimental data shown in Fig. 3. 
The first is the approximate nature of the calculations; 
this arises from the fact that in our method of deter­
mining 71c we only consider the two longest wavelength 
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FIG. 3. The function 71(L/a)O! = O!min· : ~~ 
1) The calculated curve for 13 = 20, 2) the 5 ~-----____--; _ 

calculated curve for 13 = 10, 3) the experi- J =.:-----~ 
mental curve. 
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modes of the instability. Actually, when a > amin the 
experiments always exhibit a wide spectrum of modes, 
with space harmonics extending up to the fifth and 
higher. [al At the same time as is indicated by experi­
ment[4-aJ, the appearance of a large number of higher 
order space harmonics is always accompanied by a re­
duction in 71c· 

Another possible cause for the difference that has 
been observed may be the use of the classical diffusion 
coefficient De in the calculation in place of an effective 
coefficient Deff due to plasma turbulence when 
a > amin· Thus the discrepancy between the calculated 
and observed values can be reduced significantly if use 
is made of the empirical value Deff R< (3-6)De, which 
is obtained by measurements of the profile of the 
plasma density in the semiconductor. 

Unfortunately, any attempt to carry out a rigorous 
calculation of 71c(a) taking account of the large number 
of space harmonics and the effective diffusion coeffi­
cient Deff involves a number of serious technical diffi­
culties; as the number of modes included in the calcula­
tions increases the order of the basic differential equa­
tion increases and, in turn, this leads to the need for 
machine calculations. 

In concluding the discussion of the results that have 
been obtained we note that in spite of certain discrepan­
cies between the experimental data and the calculations 
there is satisfactory qualitative agreement. Even with 
the two- mode approximation the model developed here 
for the investiga;.ion of high-frequency stabilization of 
the helical instability due to current flow in a semi­
conductor plasma is completely adequate for the des­
cription of the basic features of the experimental results 
when WeT « 1. 

It would be of great interest to investigate high-fre­
quency stabilization of the helical instability in a strong 
magnetic field in which WeT » 1. 

The authors are highly indebted to B. B. Kadomtsev 
for useful discussions of the work. 
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