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The effect of inhomogeneity on the character of the specific-heat singularity is investigated by 
considering an example of powdered synthetic magnetite. Experimental data are interpreted in 
terms of a model of the sample in which the latter is regarded as the sum of homogeneous and 
practically noninteracting volumes. Some formulas are put forward which can be used to deduce 
from experimental data some of the parameters characterizing the specific-heat singularity 
during a phase transition of the second kind in an inhomogeneous sample. These include the 
mean critical temperature Tm, the transition range, the degree of transition smearing, the 
specific heat jump, and the magnitude and direction of the shift of the peak relative to Tm. 
Analysis of the experimental data reported here and those taken from the literature [lJ has 
confirmed the validity of this interpretation. 

1. INTRODUCTION 

THE singularities in the physical properties of mate­
rials during phase transitions close to transitions of the 
second kind in crystals are usually investigated using 
imperfect and insufficiently homogeneous samples. The 
observed singularities are then found to be smeared out 
to a greater or lesser extent. Nevertheless, experi­
mental results including, in particular, data on the 
specific heat are analyzed by traditional methods, i.e., 
by plotting ln I (T - Tc)/Tc I or ln C against 
ln I (T - Tc)/Tc I. where Tc is chosen in accordance 
with the criteria governed by the ideology of the par­
ticular author. The subjective nature of the choice of 
Tc has been discussed in some detail by Voronel' et 
al.fll 

The value of Tc used in the analysis of experi­
mental data is usually different from the position of the 
peak, which may not be the same for different physical 
properties of a given specimen. This fact throws some 
doubt on whether the concept of the Curie point can be 
uniquely defined. 

It is possible, however, to assume that the inhomo­
geneity of the specimens is at least one of the main 
reasons for these difficulties. Specimen inhomogeneity 
was taken into account by Mikulinskiif 2l within the 
framework of the phenomenological Landau theory, but 
this does not allow quantitative comparison with experi­
ment. 

The effect of inhomogeneity on the smearing out of 
the specific heat singularity was discussed qualita­
tively inf 1l. Voronel'[ 3J has reported quantitative est:­
mates for the case where the inhomogeneity was due to 
the hydrostatic effect near the critical point. The ef­
fect of inhomogeneity was explained inC 4 l by the smooth­
ing out of the specific-heat jump during the transition 
to the superconducting state. 

2. EXPERIMENT 

To establish the influence of inhomogeneity on the 
specific-heat singularity in the region of the phase 
transition, we have used the data of our own experi­
ments on the specific heat of magnetite ( Fe 30 4 ) speci­
mens in the form of large-grain powder with maximum 
grains size of about 1 mm. 

This medium is convenient because it can be syn­
thesized from very pure initial material with total 
impurity concentration not exceeding 0.1%. The syn­
thesis is carried out by ceramic technology ensuring 
sufficient quality and homogeneity of the specimens. 
Heat treatment can be used to obtain the specimens 
with given density of structural cation vacancies, [sJ 
which are knownrsl to have a considerable effect on the 
ordering temperature of di- and trivalent iron atoms 
in the octahedral positions of the crystal lattice of 
magnetite ( Fd3m). It follows that even a slight inhomo­
geneity in the distribution of structural vacancies may 
lead to an appreciable smearing out of the transition. 
At the same time, the relatively small total number of 
defects means that each magnetite crystallite may be 
regarded as more or less perfect. 

The magnetite specimens which we have examined 
have ~ 1 and ~ 4 at.% structural vacancies in the 
octahedral positions according to x-ray and chemical 
analyses, respectively .1> 

The temperature dependence of the specific heat of 
the specimens in the temperature range 12-160°K is 
shown in Fig. 1. The specific heats were measured with 
the adiabatic vacuum calorimeter Pl The sufficiently 
high accuracy of the measurements (experimental un-

1lWe are indebted to I. I. Vishinevskii, B. G. Alapin, and L. A. 
Pavlov for placing these specimens at our disposal and for carrying out 
the x-ray and chemical analyses. 
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FIG. 1. Specific heat of magnetic 
specimens with different density of 
structural vacancies as a function of 
temperature. a) Density of vacancies 
-4 at. %; b) density of vacancies 
-1%. 

certainty not exceeding 0.3%) is ensured by strictly 
adiabatic conditions which eliminate the "temperature 
drift" so that no additional errors are introduced by 
corrections for heat transfer. This is particularly im­
portant in the region of the phase transformation where 
the time for the establishment of thermal equilibrium 
after the specimen heater is switched on may reach a 
few hours, and the size of the temperature step is quite 
small (0.04-0.06 deg). Curve a in Fig. 1 refers to a 
specimen with a high density of vacancies and shows no 
specific-heat singularity. Since x-ray analysis reveals 
no differences in the properties of this specimen at 
room and liquid nitrogen temperatures, it would appear 
that ordering does not occur for vacancy densities of 
~ 4 at.%. A sharp specific heat anomaly corresponding 
to a phase transition into an ordered state is observed 
on curve b in Fig. 1 (density of vacancies ~1 at.%) at 
temperatures between 105 and l15°K. 

We note that, for a magnetite specimen with 1% of 
vacancies, x-ray analysis at liquid nitrogen tempera­
tures show that there are differences at large angles 
which can be explained by changes in symmetry during 
the phase transition. [a] 

Figure 2 shows in greater detail the shape of the 
specific-heat singularity. In a series of experiments 
the specimen was cooled down to 78°K and this was 
followed by continuous measurements throughout the 
temperature range of the singularity. In another series 
of experiments the specimen was cooled down to some 
given temperature in this interval (105-l15°K), and 
the presence of hysteresis would have led to a readily 
detectable shift of the experimental points because of 
the sharp temperature dependence of the specific heat 
in this region. 

The disposition of the points in Fig. 2 indicates the 
absence, to within experimental error ( ~ 0.01° ), of any 
appreciable hysteresis. This enables us to assume 
that the transformation which we are considering is 
close to a phase transformation of the second kind. 

The fact that we have experimental data for a mag­
netite specimen which has not undergone transition to 
the ordered state facilitates the isolation of the regular 
part of the specific heat CL. In the region of the high­
temperature phase of the specimen with the lower 
density of vacancies we can use the corresponding 
region of curve a (Fig. 1) for CL. In the low-tempera­
ture phase, CL may be taken into account by extra­
polating the regular part of curve b (Fig. 1) into the 
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FIG. 2. Specific heat of magnetite in the region of the singularity as 
a function of temperature: e -experimental values; 0-mirror reflection 
in Tm and values of the specific heat on the left-hand branch shifted by 
6C. 

region of the singularity. This extrapolation is best 
carried out by using the temperature dependence of the 
effective Debye temperature (see Fig. 3), which was 
determined by comparing the experimental curve C( T) 
with the tabulated values of the Debye specific-heat 
function. 

3. QUANTITATIVE ESTIMATES OF THE EFFECT OF 
INHOMOGENEITY 

To interpret our data we have used a model similar 
to that adopted in[ 4 J. It was assumed that the specimen 
consisted of a set of homogeneous volumes, each of 
which had its own Curie temperature T which depended 
on the density of impurities, vacancies, and other 
crystal-structure defects. In this way, each homogene­
ous volume in the inhomogeneous specimen was treated 
as nonideal. These volumes are small in comparison 
with the specimen, so that the distribution function 
(axjoT)dT which describes the relative amount of 
material with the Curie temperature between T and 
T + dT can be regarded as continuous. They should be 
sufficiently large to ensure that the interactions be­
tween them can be neglected. This model appears to be 
valid for a powdered specimen in which each crystallite 
forms a homogeneous volume. However, in the case of 
monolithic objects, there may be difficulties due to the 
fact that, at temperatures close to the value of T for a 
given homogeneous volume, the correlation radius may 
exceed its linear dimensions. 

All the calculations carried out below can be per­
formed for a specific heat having a symmetric logarith­
mic singularity near Tc = T in each homogeneous vol-
ume: 

C =-A Jnt+B-, T < -r, 

C = -A ln t + B+, T ><, 
(1) 

where t = I T - T I/ T. It will be assumed that the values 
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of A and B., B_ are the same for all the homogeneous 
volumes in the specimen. 

Assuming that the departure of the Curie points of 
the individual homogeneous volumes from the mean 
value is due to random factors (for example, inhomo­
geneity in the chemical composition), it is convenient 
to represent ax/ aT approximately at the Gauss func­
tion as in r9 l. However, since the distribution function 
is used only in expressions of the form s: C(T,-r)dT 

which represents the convolution operation, it follows 
that in view of the well-known properties of convolu­
tionfloJ the Gaussian distribution can be replaced with­
out loss of accuracy by another similar function. 

To simplify the calculations we have replaced the 
function axjaT by an equilateral triangle of height 
1/ € at T = Tm and a base length of 2T. This model ap­
pears to correspond to our samples, since we are 
justified in assuming that each crystallite is homo­
geneous and there is no appreciable interaction between 
the crystallites. Moreover, the inhomogeneity of the 
specimen is largely due to differences in the non­
stoichiometry of the individual grains-crystallites. 
The departure of nonstoichiometry (density of struc­
tural vacancies) from the mean value is most likely to 
be symmetric, since the inhomogeneity of the magnetite 
specimen with 1% structural vacancies is relatively 
low (this is indicated by the relatively sharp and high 
specific-heat peak), and we may expect that the as­
sumed symmetric shape of the function axjaT will be 
valid and that the values of A and B. , B- in Eq. (1) 
will be nearly the same for all the homogeneous vol­
umes of the specimen. For T ::s Tm - € and T :::: Tm + € 

we have ax/aT =0. The specific heat of the specimen 
is given by 

T a "" a 
C(T)=A{S ;ln(T--r)d-r+f a: ln(-r-T)d-r 

0 T 

""a 
- s~ln-rd-r} +B++x(T) (B--B+), (2) 

oa-r 

where x( T) is the relative amount of the low-tempera­
ture phase at temperature T. The expression obtained 
by evaluating the integrals in Eq. (2) leads to the follow­
ing results: 

(a) dC j > 0; ~~ < 0; 
dT T=•m-• dT T=>m+• 

Thus, depending on the sign of B. - B-, the extremum 
of C(T) lies to the right or left of Tm; 

d2C I 
-. <0. 
dT T-• m 

(b) (4) 

The condition d2C/dT2 = 0 defines the points of inflec­
tion on the C ( T) curve: 

I 8fQ 
Tn =Tm--=-

ia+1 
Tn"=Tm+ 8 , 

ia+1 
{5) 

where 

a= exp{(B--B+) I A}; (6) 

(c) at the points of inflection we have 

dC I dC I - >0; - <0. 
dT T=T~ dT T=T';. (7) 

Moreover, 

dC I = ~ 2a + 1 In 2a + 1 > O, 
dT T=Tm-aej(a+I) 8 a+ 1 a 

dCl A a+2 - =----ln(a+2)<0, 
dT T=•m+•f(a+l) 8 a+ 1 

(8) 

so that when B. - B- > 0 the extremum lies in the 
range (rm, Tm + €/(0! + 1), whereas for B.- B- < 0 
it lies in the range (Tm- Q€/(0! +1), Tm. Since both 
intervals lie between the points of inflection, where 
d2C/ dT 2 < 0, the specific-heat extremum is, in fact, a 
maximum. The approximate position Tm of the maxi­
mum of C( T) can be found by linear interpolation be­
tween extreme points of these two intervals: 

a Ina 
T ~T -8 ~) 

m m (1+2a)ln(1+2a)-alna 

For B=- B- < 0 (In a> 0), and 

Ina (9') Tm::::: 't'm-8----------
(a + 2)ln(a + 2)-(a + 1)ln a 

for B. - B- > 0 (In a < 0 ). These two equations were 
obtained for a special form of the analytic dependence 
of the singularity as given by Eq. {1) and, therefore, 
the shift of the maximum relative to Tm is determined 
by this relation. Of course, for other physical proper­
ties showing a singularity and measured on the same 
specimen the shift relative to Tm will, in general, be 
different because of the difference in the analytic 
expression for the singularity. Moreover, the differ­
ence between the positions of the extrema in these 
physical properties will increase with increasing 
smearing of the transition due to the sample inhomo­
geneity. 

Outside the region ( Tm - €, Tm + €) the specific 
heat is described by an expression of the form 

C,.(t)=-Alnt+ {!: +/(t,6), (10) 

where 

t = I T- Tm I ' 6 = _s_' t > 6, 
"t'm 'tm 

f(t. 6)=- ~2 {(t- 6) 2ln(t- 11)+(t + 6)2In(t + 11) 

-2(t• + 6•)In t- (1- 6)2ln(1- 11)- (1 + 6) 2ln(1 + 6) }. (11) 

The temperature dependence of the specific heat in the 
interval ( Tm - €, Tm + €) is shown by Eq. (2) to be of 
the form 

C,.(t)=-Alnt+ {!: +cp(t,6), (12) 

where t < 0, and 

q:(t,6)=- 2: 2 {(O-t)2ln(6-t)+(t+6)2In(t+6) 

- 2(t2 + 62)lnt-(1- 6) 2ln(1- 11)-(1 + 0) 2ln(1 + 6) 
=F(6-t)2In(1/a)}. (13) 

The function f(t, 0) does not depend very much on the 
temperature, and when t > 20 it varies between 0.52A 
and 0.50 A. When t < 20 the function f( t, 0) at first 
appreciably increases and then decreases. For exam­
ple, 

/(6, b)= cp(6, 6) = 0.6A, 

cp(0.56, b} = (0.76 + 0.13ln a) A, 

cp(0.256, 6) = (0.43 + 0.28Jn a) A. (14) 
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The negative sign refers to the region T < Tm, and the 
positive sign to the region T > Tm. 

The formula given by Eq. (10) differs from Eq. (1) 
·by a term which is constant right up to t ~ o with Tc 

replaced by T m (the mean temperature for the transi­
tion interval). Its value is shifted relative to the 
specific-heat peak in the direction determined by the 
sign of B-- B+ = t.C. The magnitude of the shift can 
be estimated from Eq. (9 ). The parameter E which is 
a measure of the smearing of the transition can be 
found from Eq. (5), using experimental data on the 
points of inflection of the s pee ific heat curve. For 
transitions that are not too smeared out ( 2E/ oT « 1 
where oT is the temperature range in which there is' a 
logarithmic singularity and outside which the systematic 
departure of the experimental points from the C log T 
straight line exceeds the spread), the height of the 
specific-heat peak is not very different from its value 
at Tm, and can be represented approximately by the 
following relation which is a consequence of Eq. (12): 

C(Tm)::::: C(<m)::::: -A In li + 2A(1 + 1/4lna), (15) 

This shows that the height of the maximum decreases 
with increasing transition width. 

Estimates based on Eqs. (5), (9), and (15) cannot 
pretend to high accuracy because in addition to the 
possible correlation between the individual homogene­
ous volumes for t < o, which were noted at the begin­
ning of this paper, there is an effect associated with the 
nonideal nature of each of these volumes and, conse­
quently, one should, strictly speaking, use a function 
which is smoother than Eq. (1) in Eq. (2). Hence it 
follows that Eq. (12) leads to a specific heat which is 
probably somewhat too high. 

The results for t > o seem more accurate and this 
enables us to analyze the experimental data fo~ a not 
too highly smeared out singularity in terms of the co­
ordinates C and ln t in accordance with Eq. (10) and 
the above estimates of f(t, o). It follows from Eq. (10) 
that 

(16) 

This means that a mirror image in the Tm line of one 
of the branches of the C(T) curve obtained by sub­
tracting the regular part from the experimental curve 
should coincide with the second branch after a shift of 
t.C along the C axis. The position of the axis of sym­
metry gives Tm, and the shift along this axis gives 
t.C. For the interval ( Tm- E, Tm + E) we have from 
Eq. (12) 

C+(t)-~~(t)+~C (i-{)', (17) 

and this yields the following formula which is conven­
ient for the analysis of the experimental data: 

(18) 

4. DISCUSSION OF RESULTS 

An analysis of the temperature dependence of the 
specific heat of magnetite in the region of the singular­
ity, which is based on Eq. (16) (comparison of the two 
branches by mirror reflection and shift along the axis 
of symmetry), is shown in Fig. 2. The results are 

<m=10D.72°K, ~C='B--B+=-15 J-mor 1 deg-1 

The direction of the shift relative to the maximum 
Tm = 109.76oK gives the sign of t.C. We note that Eq. 
{16) was obtained on the assumption that 

A(T <•)=A(T > r) (19) 

in Eq. (1). The validity of Eq. (16) is illustrated by the 
right-hand side of Fig. 2, which appears to confirm 
this assumption. 

The method enables us to determine not only the 
value Tc = Tm, but also it seems to us to lead to a no 
less satisfactory verification of Eq. (19) than is indi­
cated by the parallelism of the linear parts of the 
graphs of C(t) against log t (Fig. 4) for which three 
close values of Tc were employed, namely: 109.66, 
109.72, and 109.78°K. From Fig. 4b, for which 
Tc = Tm = 109.72°K we have A= 48 ± 0.5 J mol-1 deg-1 

and .t.c ~ - (15 ± 4) J mol- 1 deg-\ which are in agree­
ment with the values given above. We note the unusual 
sign of the discontinuity in the specific heat. 

The use of the smooth function CL( T) for the iso­
lation of the regular part as, for example, in[ 1J does 
not lead to any basic changes but simply increases the 
specific-heat jump by 5 J mol- 1 deg-1 • The inflection 
points determined from Fig. 2, i.e., T~ = 109.55 
± 0 .03°K and T ~ = 109.95 ± 0 .03°K, enabled us to cal­
culated from Eqs. (5) and (9) the following values: 
E = 0.3 ± 0.05°K and Tm = 109.73 ± 0.03°K. This value 
of Tm is practically the same as that given above. It 
follows from the above estimates for Eq. (11) that 
graphs of the kind shown in Fig. 4 can be reliably 
plotted up to t ~ o. Accordingly, in our case, the 
linearity in Fig. 4b should extend up to log t ~- 2.6 
and this is, in fact, observed. This considerable width 
of the linear region along the log t axis is ensured by 
the sufficiently low degree of smearing (2E/oT ~ 0.15). 

Analysis of the specific-heat data for magnetite 
given in[ll has enabled us to obtain the following 
parameters from the temperatures corresponding to 
the points of inflection, using Eqs. (5) and (9 ), and the 
value A =48 J mor 1 deg- 1 • 

Mon~crystalline ~pecimen: T~ = 102.6°K, T~ 
= 107.4 K, Tm = 105 K, E = 3.4°K, Tm = 104.7°K {the 
value Tc = 104.6°K was adopted in[lJ ); 2E/oT ~ 2. 

The region in which a linear ( C, log t) graph could 
be constructed was restricted by the value log o 
= -1.5, whereas the logarithmic singularity itself, 

FIG. 3. Temperature dependence of the De bye temperature e0 on 
T for magnet1te speCimens: 0-density of vacancies -4 at.%; 0-density 
of vacancies -J at. %. 
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FIG. 4. Specific heat (C-CL) as a function of log t for magnetite: 
a-Tm = 109.66°K; b-Tm = 109.72°K; c-Tm = 109.78°K; e-T < Tm, 
0-T>Tm. 

judging by data obtained for our specimen (Fig. 4b), 
begins with log t R~ -1.7 (T > Tm) and log t R~ -1.8 
(T < Tm). It follows that in the case of the mono­
crystalline magnetite in[ll and even more so for the 
polycrystalline specimen in the same paper, the region 
of linear dependence is absent from the semilogarith­
mic graph. 

Polycrystalline specimen: T~ = 101.7°K, Tn 
= 112.96K, Tm R~10'tK, Tm - 106.2°K, ~ = 8°K, 
2~/oT Rl 5, logo = -1.1. 

Let us now compare the values C( Tm) for all three 
magnetite specimens: for our specimen C 1(Tm) 
= 227 J mol-1 deg-\ for the monocrystalline specimen 
in[l) C2(Tm) =100 J mor1 deg-\ and for the polycrystal­
line specimen in[l) C3( Tm) = 80 J mor1 deg- 1 • 

From Eq. (15) we ll..ave 

C2 = C1- A ln(ed e1) = 109 J mol-1 deg-1 
Ca=C~-Aln(e3 /ei)=71 JmoJ-1 deg-1 

so that there is a definite quantitative correspondence 
between the height of the maximum and the smearing of 
the transition. The discrepancy between <the values of 
Tm for different magnetite specimens is not surprising 
because Tm depends on the mean density of impurities 
and vacancies. 

Detailed experimental data on the temperature de­
pendence of the specific heat of vanadium deuteride are 
given in[ 1J. It follows from Fig. 8 in that paper that the 
specific-heat of this specimen is described by Eq. (1) 
in a sufficiently broad temperature range with Tc 
= 232.8°K, A= 27.4 J-mor 1 deg-\ and AC 
= 25 J-mor1 deg-1 • Since the transition in vanadium 
deuteride is not too smeared out, it is possible to use 
the above method of the singularity branch reflection 
(Fig. 5). The values Tc = Tm = 232.8°K and t:.C 
= 25 J-mol-1 deg-1 obtained in this way are in agree­
ment with these reported in[ 1 J. From Eqs. (5) and (9), 
and the temperatures corresponding to the points of 
inflection and the position of the maximum, i.e., T~ 
= 229.7 ± 0.1°K, T~ = 234.5 ± 0.1°K, Tm = 231.8 ± 0.1°K, 
we find that ~ = 3.5 ± 0.2°K, Tm = 232.7 ± 0.2°K. The 
fact that for the vanadium deuteride specimen the 
degree of smearing 2~/oT R~ 0.25 is sufficiently small 
but, at the same time, larger than for our own specimen 
of magnetite, enabled us to analyze the specific-heat 
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FIG. 5. Specific heat of vanadium deuteride [ 1 ) as a function of 

temperature in the region of the singularity. •-experimental; 0-mir­
ror reflection in T m and values of the specific heat on the left-hand 
branch shifted by AC. 

data for the interval ( Tm, Tm + ~) in accordance with 
Eq. (18). This analysis is simplified after the reflec­
tion operation: the numerator in Eq. (17) is equal to 
the difference between the ordinates in this interval. 
The construction shown in Fig. 6 indicates the validity 
of Eqs. (17) and (18), and provides us with the possibil­
ity of using a further method (slope and intercept on 
the ordinate axis) to show that ~ = 3.5°K and Tm 
= 232.9°K, 

Quantitative discrepancies in the region ( Tm - ~. 
Tm + ~), due to the probable interaction between the 
homogeneous volumes and the particular shape of the 
dx/dT function, were noted above. Our results show 
that this did not occur in the case of vanadium deuter­
ide. 

We note that in the powdered specimen of vanadium 
deuteride used in[ 1 J there was, in addition, an inhomo­
geneity which was probably due to different deviation 
from stoichiometry in different grains. Therefore, the 
model proposed here may be assumed to be valid for 
vanadium deuteride just as it is valid for our magnetite 
specimen. The interval along the log t axis in which C 
should be a linear function of log t extends up to log t 
= log o = - 1.85, which is in agreement with the data in 
Fig. 8 of[11 • 

5. CONCLUSION 

We have proposed an explanation of the smearing of 
specific-heat singularities corresponding to phase 

, 
I,Q 

FIG. 6. The quantity R = 
([C_(t) -C+(t)]/AC)Yz in Fig. 5 0,6 
as a function of temperature for 
vanadium deuteride [ 1 ) in the 
region (Tm, Tm +e). 

2J7 
T, • K 
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transitions of the second kind. This is based on the 
assumed inhomogeneity of imperfect specimens. For­
mulas have been derived which can be used to find the 
interrelation between the main parameters describing 
the specific heat in the transition region, namely, 
points of inflection, shift of the maximum relative to 
the mean Curie temperature Tm, the specific heat 
jump, and the smearing interval. 

An analogous calculation can readily be carried out 
for other physical properties, so that the inhomogeneity 
can be used to explain not only the magnitude and 
direction of the shift of extrema relative to Tc = Tm, 
but also the differences in the positions of the singular­
ities in different physical properties of the same speci­
men. 

We note that our calculations were based on two 
types of assumption. Assumptions of the first kind in­
volved (1) model representation of the specimen as the 
sum of homogeneous, practically noninteracting vol­
umes, (2) a specific form of the distribution function 
for these volumes over the Curie temperatures, and 
(3) the fact that the numerical coefficients in the ana­
lytic expression for the singularity are independent of 
the deviations in the composition and structure of the 
homogeneous volumes from the mean. Assumptions of 
the second kind require that the specific-heat singular­
ity in the ideal case be symmetric and nearly logarith­
mic, and that the Curie point in the homogeneous non­
ideal specimen (or in a homogeneous volume) has the 
usual physical significance. 

One would hope that the validity of the relations and 
estimates given above, confirmed by the analysis of 
our data and data taken from [lJ and, in particular, the 
agreement between numerical values of the main 

parameters describing the specific-heat singularity 
obtained in different ways, is an indication that the 
above assumptions are correct. 
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