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We consider second sound and thermal conductivity in uniaxial antiferromagnetics for which the Neel 
temperature is lower than the Debye temperature: eN<< e 0. We show that the second sound velocity 
decreases with increasing temperature, since in the temperature range T << Eo (Eo is the magnon 
activation energy) the second sound is carried by the phonons, but when T » Eo by the magnons. We 
also show that although under the conditions considered the heat transfer is mainly realized by mag
nons, the magnon-phonon gas viscosity may be determined by the phonons. 

TRANSFER processes in magnetically ordered sys- In the phonon subsystem the normal collisions are 
terns have a number of peculiar features when the connected with ternary collisions between phonons. A 
normal collisions between quasi-particles are more theoretical estimate leads to the following expression 
probable than processes in which the total quasi- for the probability (see, e.g.,P1): 
momentum of the system is not conserved, i.e., when 
a hydrodynamical situation is possible. Gurzhi[ll (see 
also£ 21) has considered these problems theoretically 
for ferrodielectrics. Recently Tsarev£31 has apparently 
observed experimentally the occurrence of the hydro
dynamic situation in the ferromagnetic compound 
CrBr3 • The level of development of experimental 
techniques nowadays apparently makes it possible to 
observe second sound and hydrodynamical thermal 
conductivity in magnetically ordered systems. 

In our consideration of second sound and hydrody
namic thermal conductivity we shall in which follows 
restrict ourselves to uni-axial antiferromagnetics with 
two sub lattices. In such antiferromagnetics there will 
exist at low temperatures two kinds of quasi-particles: 
the acoustic phonons and the magnons with dispersion 
lawsf41 

Q = qs, e,. = 1eo2 + (9Nap I 1i)2 ± flHo. 

Here Sl and q are the phonon energy and quasi
momentum, s = ena/n the sound velocity, a the 
lattice constant, eD the Debye temperature, EQ!, p the 
magnon energy and quasi-momentum, Q! = 1, 2 the 
index which numbers the magnon energy branches, 
Eo R! ../ (p.Mo®N) the magnon activation energy, eN the 
Neel temperature, JJ. the Bohr magneton, M0 the equili
brium sublattice magnetization, and Ho a constant 
magnetic field parallel to the easy axis. 

We shall in what follows assume that eN« a0. 
There is no special interest in the opposite case e.D 
« eN, since we shall show below that in that case 
second sound and hydrodynamical thermal conductivity 
are connected with phonons in the whole of the admis
sible temperature range. 

In the temperature range Eo« T « 8N and for 
fields JJ.Ho « Eo the normal collisions in the spin sub
system are determined by the quaternary exchange in
teractions between magnons, which occur with a prob
abilityrsJ 
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where M is the mass of an atom. However, a T4-be
havior appears to agree better with experimentf 6 l, i.e., 

W exp ~ ~ 9n (..!_)' 
PP 1i Ms2 en . 

The phonon-magnon interaction may take place both 
through the emission or absorption of a phonon by a 
magnon, or through the decay of a phonon into two 
magnons, or the reverse process, viz., the combina
tion of two magnons into one phonon. Both processes 
are connected with the exchange interaction and in the 
case eN ~ eD they have probabilities of the same 
order of magnitude. Thus, for magnons£7 1 
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and for phonons [?J 

One can easily show, using the energy and momentum 
conservation laws, that when eN< eD only the decay 
process of one phonon into two magnons and the re
verse process are allowed, while for eN > eD only the 
absorption (or emission) of a phonon by a magnon is 
allowed. In the temperature region T « Eo the proba
bilities Wss and Wps contain a small factor e-Eo/T, 
since in that case the number of magnons is exponen
tially small. 

1. SECOND SOUND 

Temperature waves or second sound, as they are 
called, are oscillations in the elementary excitation 
density, i.e., ordinary sound in a gas of quasiparticles. 
The conditions for the occurrence of second sound con
sist in the requirement that the normal collisions be
tween quasi-particles be more probable than processes 
in which quasi-momentum is not conserved (Umklapp 
processes, impurity scattering, and so on). The second 
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sound frequency must thus satisfy the inequalities 

(1.1) 

where TN and TU are the relaxation times for normal 
collisions and processes which do not conserve quasi
momentum. 

At low frequencies wTsp « 1, which means 
w ~ 105 to 106 sec- 1 at T ~ 10°K, eN~ eD ~ 102<lK, 
and because of their strong mutual drag the phonons 
and magnons must be considered to be a single system. 
The hydrodynamical equations describing the propaga
tion of second sound in antiferromagnetics can in this 
case be obtained by solving, by successive approxima
tions, a set of kinetic equations for the phonons and 
magnons. The zeroth approximation leads to the drift 
solutions for the phonon and magnon distribution func
tions: 

N•= [ exp ( T~1-+~)) -1 r, /a"=[ exp (T71~~ )-1 r. 
(1.2) 

where u(r, t) is the drift velocity and .J(r, t) the 
relative change in the temperature. The conditions 
that the set of kinetic equations have a solution in first 
approximation (which appear as a consequence of the 
total energy and momentum conservation in normal 
collisions) lead to a set of hydrodynamic equations: 

tt((Q2) + (e•)) + 1/ 3 div u((qsQ) + (pvs)) = 0, 

(1.3) 

We have used here the notation 

N0 and f0 are the equilibrium Bose distribution func
tions for the phonons and magnons. 

Putting .J, u ~ exp (- iwt + ik · r) we get for the 
second sound velocity V = w/k 

V2= (<i-1)xx((qsQ)+(pve)) 2 (1.4) 
9((Q2)+(e2)) 

where (a-1)KK = (a- 1 hkKiKk• K = k/k is a unit vector 
along the direction of sound propagation. If eN « eb 
we easily get from (1.4) an asymptotic expression for 
the magnon-phonon second sound velocity for the high 
( T » E 0) and low ( T « E 0) temperature cases: 

v.(i+ (::r- ( ~n. 
V= 

T~e0 

vp (1- (::)" ( ~ f'e-•,JT), 
T<eo 

We have used here the notation Vp = s/..f3, Vs 
= eNa/n..f3. 

It follows from (1.5) that when T « Eo second 

(1.5) 

sound is mainly carried by phonons, since the magnetic 
energy branches are "frozen in" and the number of 
magnons is exponentially small. If T >> E 0 , however, 
second sound will be predominantly magnon second 
sound, since the magnon specific heat for eN-<< eb 

Second sound velocity V as 
function of the temperature T. 
The solid curve refers to magnon
phonon sound, the upper dotted 
curve to purely phonon sound, 
and the lower dotted curve to 
purely magnon sound (s-is the 
first sound velocity, eo and eN 
the Debye and Nee! temperatures, 
and Eo the magnon activation 
energy). 

v 
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will dominate the phonon specific heat. The coefficient 
..f3 occurring in the expression for Vs may be impor
tant to distinguish second sound from a magnon beam. 
The transition from phonon to magnon second sound in 
antiferromagnetics leads to a decrease in the propa
gation velocity of temperature waves with increasing 
temperature. It is interesting that the V( T) curve has 
a minimum at some intermediate temperature (see 
solid curve in the figure). 

We must note that the function V( T) in antiferro
magnetics differs appreciably from the analogous 
function in ferromagnetics, where the situation turns 
out to be different: in the temperature range 
T « e~/ec (ec is the Curie temperature) 
V 1'-:j a(ecT)/n and second sound is connected with the 
magnons, while for T » eh I ec it is connected with 
the phonons and V = s/..f3.[ 8l One can show that the 
variable magnetic field h caused by the oscillations in 
the magnon density is small: 

~ ~ !J.Mo (..!...)3....:: 1 
fi>T T eN • 

and taking it into account does not lead to a significant 
change in the second sound dispersion law (1.4). The 
second sound wave in antiferromagnetics, as in ferro
magnetics[!\ will thus be predominantly a temperature 
wave. One can easily obtain the estimate for h given 
here by using the magnetostatics equations 

div ( h + 4n Em,.) = 0, roth= 0 .. 
and the expression for the density of the non-equili
brium magnetic moment 

m,. ~ ~3 J dp(fa.O- /oa). 

The field h is, however, large enough to be experi
mentally observable and for T ~ l0°K, 9N ~ 102<lK, 
.J. ~ 0.1 we have h ~ 0.1 Oe. 

We note that the result given in the figure for the 
temperature dependence of the second sound velocity 
is qualitatively independent of the expression for the 
relaxation times given above, and is connected only 
with two facts: the satisfaction of the inequality eN
<< eb and the presence of a finite magnon activation 
energy E 0 • If the stronger inequality eN<< eD is 
satisfied, the propagation of low-frequency second 
sound propagation becomes impossible, since the 
probability Wsp = Wps(®N/eD)3 is small. 

In the high frequency case the magnons and phonons 
must be considered to be two different subsystems, in 
each of which second sound can propagate if the 
inequality Tp~ « w « TP~ is satisfied with a sufficient 

' 
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margin (from the above made estimates for the relaxa
tion times it is clear that this situation is in principle 
possible). The second sound velocities in a system of 
magnons and phonons have the usual form of velocities 
in systems with conserved and non-conserved numbers 
of particles :[ll 

v.• = (a.-')xx 2(pve)(pv)(e)-(pve)2(1)-(pv)•(e2) 

9 (e)"-(e2)(1) ' 

V 2 _ (~p-1)xx (qsQ)2 

p- 9 (Q2)' (1.6} 

where ( ashk = (PiPk), (ap)ik = ( qiqk). It follows from 
(1.6} that Vp = s/ ..f3 in the entire permissible tempera
ture range {the upper dotted curve in the figure). At 
the same time the velocity of purely magnon sound de
pends on the temperature: when T <<Eo we have, in 
order of magnitude, Vs Rj ®~~/ti, if, however, 
T »Eo, we have Vs = ®Na/ti/3 (lower dotted curve in 
figure). In both limiting cases the second sound velocity 
is of the same order of magnitude as the average 
thermal magnon velocity. 

To observe the change in the temperature depend
ence of the second sound velocity in antiferromagnetics 
experimentally one could, apparently use some 
fluorides of transition metals (e.g., MnF2 :€ 0 ~ 12"K, 
®N ~ 72"K, ®D ~ 240°K). 

2. HYDRODYNAMIC THERMAL CONDUCTIVITY 

In antiferromagnetic dielectrics with a sufficiently 
low Neel temperature, the heat transfer is predom
inantly through magnons when ®N «eo. The hydrody
namic magnon thermal conductivity mechanism leads 
to a well-known temperature dependence of the thermal 
conductivity coefficient: K ~ T 6) 9 l However, when the 
much weaker inequality ®N « e0 is satisfied, allow
ance for the phonons and their interaction with the 
magnons may essentially affect the thermal conductiv
ity, because the viscosity of the magnon-phonon gas 
in that case may be determined by the phonons, while 
the specific heat as before is determined by the mag
nons. (A similar situation is observed in metals.[10l) 

The hydrodynamic equations describing the propa
gation of a heat flux in antiferromagnetics must be 
{ound again, since Eqs. (1.3) of the preceding section 
do not take into account the viscosity of the magnon
phonon gas. To do this it is necessary to substitute the 
solution of a set of kinetic equations which is obtained 
up to and including first order terms, N = N<o1,+N(l), 
f = f1 O) + f1 1) into the equation 

where 

div{{p;vf} + {q1sN)} = <{p),v(f)) + {q.Jpv(N)}, 

div{{evf) + {QsN)} = 0, 

(<I>(p))=! J dp<l>(p), ('l'(q))= !.J dq'l'(q), 

(2.1} 

J~ and J~ are the magnon and phonon collision inte
grals for collisions which are accompanied by the loss 
of quasi-momentum. Equations (2.1) express the 
quasi-momentum conservation law for normal colli
sions and the energy conservation law for all collisions 
in the stationary case. 

It is well known that under conditions when there is 

a hydrodynamic flow in a gas of quasi-particles the 
results are not very sensitive to the shape of the per
pendicular cross-section of the specimenP1 We shall 
therefore restrict ourselves in what follows to the 
simplest case of a plate with thickness d which is 
small compared to its length and width. We choose the 
x-axis in the direction of the constant temperature 
gradient and the z-axis are right-angles to the surface 
of the plate. To solve the set of kinetic equations ap
proximately we use the Chapman-Enskog method)11 l 
Bearing in mind that J =J(x), 8J/8x =constant, 
u = (u(z), 0, 0) we get in first approximation 

- :~• p.,v. :: = J;: U<1>) + Jf; (/(1>; N<1>), 

- ~~· q,.s,:: = J~ (N<•>) + ~~ (l'{<ll; f(ll). 
(2.2) 

AN AN AN AN . . . 
Here Jss• Jsp• Jpp• and Jps denote the linear1zed mte-
grals for normal collisions between the quasi-particles. 
We have dropped in (2.2) Jy, J~ and terms such as 

which do not depend on the coordinates and which are 
therefore unimportant for the subsequent discussion. 

The set (2.2} is a set of linear, inhomogeneous inte
gral equations. The general solution of the correspond
ing homogeneous set is well known: N<o> and f<o>; we 
need thus only find the particular solution N1 11 and f1 11 • 

In what follows we restrict ourselves to the uniform 
case when we can split off the angular dependence and 
it is convenient to look for the solution in the form 

1 ofo ou ( e ) 1 oN0 ou ( Q ) f<>=--r .. -p.,v.-cp - , N<>=-'t'p8 --q.,s.-1jl - . oe oz T {}Q oz T 
(2.3) 

Apart from numerical coefficients of order unity we 
get for the unknown functions cp(€/T) and l/J(O/T) the 
following set of equations: 

- en -
- Kps1 {11J}+ Ms" Kp."{cp}= eYfo2 (y)y, (2 .4) 

- K,.{q:}+ ( :: f K,pn{'i'}= e"'fo2 (x)x, 

where x = t::/T, y = 0/T, f0 (x) =(eX- 1}-1 while the 
operators K have the form 

00 

Kp,I{1jl}= J dxx2(y- x) 2[/0 (y)+ 1]/o(x)/o(Y- x)y1jl(Y), 
0 

00 

= J dxx"(y- x) 2 [/o(Y) + 1]/o(x)/o(Y- x) [xcp(x)+ (y- x)cp(y- x)], 
0 

A JOO x" 
K,.{cp}= dx' dx"- (x2 + x'2 + x"• + (x + x'- x")") 2 

x• 
0 

X [/o(x) + 1] [lo(x') + 1]/0 (x")/o(x + x'- x") 
X [xq: (x) + x'cp(x')- x"cp(x'') -(x + x'- x'')cp(x + x'- x'')], 

00 

K,pii{,P}= J dy y2(y- x) 2[/o(x)+ 1] [/o(Y- x)+ 1]/o(Y)Y'i'(Y). 
0 

The operators Kpp{ l/J} and K~p { <P} are dropped as 
they occur in Eqs. (2.4) with small factors (®N/®o)4 
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and (®N/®D)3 ®D/Ms 2 , respectively. To obtain (2.4) 
we used the explicit form of the matrix elements de
scribing the interaction between quasi-particles:r 5 • 7 • 8 l 

M,, = ~-t9N e2(PI) + e2 (P2) + e2 (Pa) + e2 (p,) , 

MoV l"e(pl)e(p,)e(pa)e(P•) 

Here p is the density of the substance, V its volume, 
and we have omitted factors which are functions of the 
directions of the momenta and the quasi-particle 
polarizations, which were of order unity. As the K are 
integral operators which do not have the parity property, 
with norm unity and as the factors in front of the oper
ators K:~Ip and K:Ws are small, the functions (/) ( x) and 
1/J(y) also have the norm unity and hence 

1 _ _ afo au 1 _ aNo au 
f>- 't",,-pxv,-, N<>--'tps-qxs,-. as az aQ az (2.5) 

Substituting N = N< 0> + N°>, f = f<o> + f(l>, where N< 1> 
and f< 1> are determined by Eqs. (2.5), into the first 
of Eqs. (2.1), which expresses the quasi-momentum 
conservation law, we get the hydrodynamical equation 

att a•u u 
a-=veff ----, ax az• ,;,u 

where 

a 

veff = 'l"ss(p'v')+ Tps(q2s2) 

(p') 

(2.6) 

The second of Eqs. (2.1), which expresses the energy 
conservation law, vanishes identically because 
div u = 0, aJ/ax =constant. 

The magnons can interact with one another both 
directly and via the phonons. Both mechanisms con
tribute to the kinematic viscosity (see (2.6)). 

We put (®N/®D)3 ~ 0.1; ®N ~ ®D ~ 102 °K; 
M ~ 10-22 g; s ~ 105 em/sec. Direct estimates then 
show that the viscosity is determined by the second 
interaction mechanism, since a lar~r mean free path 
corresponds to it and thus veff = slps ( ®N I ®D)5 • If the 
stronger inequality ®N « ®D holds, not only the speci
fic heat, but - as follows from (2.6) - also the viscosity 
is determined by only the magnons, and veff = vl~s·[ 9l 

The thermal conductivity coefficient is defined by 
the relation 

( att )-1 
'l!.=-Q Tax ' 

where Q = « vEf< o> » + « saN< o> » RS TCsu is the 
heat flux density, and Cs is the magnon specific heat. 
As a result of solving (2.6) we have 

'l!. = C,vzerr, 

where l eff is the effective mean free path: 

d 
Zeff = ZU(1- z-ithz), zu = v-r,U, z =- (veff ,;8U)-'i•. 

2 

We consider limiting cases. If z << 1, we have 

(2.7) 

vd2 v2d2 
zerf=--· 'l!.=C,-ff ~d2T8 forT1~T~T2, (2.8) 

veff ' ve 

where T1 and T 2 are determined from the conditions 
zeff(Tl) = d, zeff(T2 ) = l~(T2). The result obtained, 
(2.8), can be elucidated starting from intuitive physical 
considerations. Under the influence of normal colli
sions a quasi-particle experiences random walks which 
increase the effective mean free path between two col
lisions involving the loss of quasi-momentum. Accord
ing to well-known formulae for Brownian motion, the 
path traversed by a particle between two collisions 
with the boundaries is d 2/lN, where zN is the largest 
of the free paths connected with normal collisions, in 
the given case l~s. The factor ( ®N I ®D)5 takes into 
account the contribution of phonons as compared to 
magnons. When z » 1, we have zeff ~ l~ and the loss 
of momentum occurs because of Umklapp processes 
and scattering by impurities and lattice defects. 

At low temperatures, when l~ >> d, the Knudsen 
situation occurs: zeff = d and K = Csvd ~ T 3d. (The 
inequality T » Eo must then, of course, be satisfied.) 
This case is not contained in the equations obtained 
earlier and is given to complete the picture. Finally, 
if T «Eo the thermal conductivity is determined by 
the phonons as there are exponentially few magnons. 

We must note that if we use the experimental values 
for the probability for phonon-phonon collisions[ 6 J in 
the temperature range T « (®N/®D)3 ®N we have 

veff = vl88N + slppN (9N I 8D)5, x ~ f7. 

In the opposite case when ®_b < ®~ analysis shows that 
the thermal conductivity and the viscosity are deter
mined by the phonons. 

Of most interest apparently is the case of a ferro
magnetic for which the probabilities describing the 
interactions between the quasi-particles have different 
temperature dependences. Different mechanisms for 
the interactions between the quasi-particles can there
fore contribute to the viscosity in different tempera
ture ranges. 

In conclusion the author thanks R.N. Gurzhi, V. M. 
Kontorovich, and V. M. Tsukernik for useful advice and 
for discussing this paper. 
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