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We consider the relaxation of non-equilibrium electrons produced by light in a semiconductor when 
there is a quantized magnetic field present. The kinetic equation for the energy distribution function 
of the photoelectrons that interact with the optical phonons and the equilibrium electrons is reduced 
to a set of algebraic equations with shifted arguments. The quantity 11, which is the ratio of the Fermi 
energy (or temperature for non-degenerate electrons) of the equilibrium electrons to the Larmor fre
quency nn (ultra-quanta! case), is then the small parameter. We find an exact solution of the algebraic 
set of equations for the distribution function with small quantum numbers. We calculate the character
istic relaxation time in a magnetic field when there are electron-electron interactions. We show that 
electrons with energies less than hO do not at all suffer Coulomb relaxation. 

We use the solutions obtained to analyze Gurevich-Firsov type photomagnetic oscillations which 
were experimentally observed in a paper by Shalyt and coworkersl7J in the ultra-quantal case. We 
show that the oscillations are caused by the interaction between the photoelectrons and the optical 
phonons and, at the same time, the equilibrium electrons. (The oscillations do not occur in a pure 
semiconductor.) The depth of the oscillations may reach a magnitude of order unity. We show the 
coridition imposed upon the concentration of the equilibrium electrons in a magnetic field for which 
the depth of the oscillations reaches a maximum. 

F OR a number of problems it is necessary to know the 
distribution function of the non- equilibrium electrons 
originating under the influence of light in the conduction 
band of a semiconductor. Apparently the first solution 
of the kinetic equation for photoelectrons interacting 
with acoustic phonons was given by Landau and 
Lifshitz UJ (see also l2 J). Mter that the distribution 
functions of photoelectrons interacting with optical 
phonons l3 ' 4 J, equilibrium electrons lSJ, and with acoustic 
phonons in a quantized magnetic field laJ have been found. 

In the present paper we obtain a solution of the kinetic 
equation for the photoelectrons in a quantized magnetic 
field, which are interacting simultaneously with the 
equilibrium electrons and with optical phonons. In the 
limiting case of large magnetic fields, when the distance 
nO between Landau levels exceeds the Fermi energy EF 
= n0/2 and the temperature T of the equilibrium elec
trons, it is possible to reduce the kinetic integral equa
tion to a set of algebraic equations with shifted argu
ments and to find a solution for small quantum numbers. 

The solution obtained is of particular interest in con
nection with the well-known experiments by Shalyt and 
coworkers l7J on Gurevich- Firsov (G- F) type photo mag
netic oscillations. In those experiments G-F oscillations 
of the photomagnetic effect were observed at helium 
temperatures in impurity semiconductors InSb and InAs 
while the normal G-F resistivity oscillations occur only 
when T- 100°K and in rather pure semiconductors. 

Qualitative interpretations were considered inrs,oJ. 
The effect observed is connected with the periodic 
changes in the probability for the emission of optical 
phonons by the photoelectrons when the magnetic field 
increases. However, it was shown in[sJ that the photo
electron distribution function vanishes every time when 
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the probability for a resonance emission of optical 
phonons (and hence the departure of the photoelectrons) 
is a maximum (i.e., when w0 = Nn) and exactly compen
sates the oscillating probability. It was therefore as
sumed that the interaction with the equilibrium electrons 
smoothes out the photoelectron distribution function. To 
verify this idea it is necessary to know the distribution 
function of the photoelectrons which interact simultane
ously with the optical phonons and the electrons. The 
solution obtained in the present paper enabled us to show 
that the interaction with the equilibrium electrons leads 
to G- F oscillations and to evaluate explicitly the oscil
lating term. 

In the following we assume a quadratic dispersion 
law for the electrons with an effective mass m; we 
neglect the electron spin. The energy is measured in 
units nn, the momentum in units n/ A, length in units 
A= [nc/eH]112• 

1. COULOMB RELAXATION FOR NON-EQUILIBRIUM 
ELECTRONS IN A SEMICONDUCTOR IN A QUAN
TIZED MAGNETIC FIELD 

1. We shall assume that the change in the electron 
concentration ~ne in the conduction band caused by the 
action of a light source is small compared with the con
centration no of the equilibrium electrons. We write the 
electron distribution function in the form 

Pn(P) = /n°(P) + fn(p), (1) 

where f~(p) is the equilibrium distribution function, 
fn(p) the non-equilibrium correction due to the action of 
the source Jn(p), n the magnetic quantum number, and 
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p the electron momentum component in the direction of 
the magnetic field. 

The function fn(P) satisfies the equation 

(2) 

The first and second terms are the collision integrals of 
the non-equilibrium electrons with, respectively, equili
brium electrons and phonons. The third term takes 
recombination into account. 

In the present section we consider the relaxation of 
the photoelectrons due only to the Coulomb interaction, 
dropping the term (afn(P)/at)ph· 

The electron-electron collision integral for the func
tion fn(P) has in a magnetic field r101 the form 

('710;P)) = ~ ~ dp1dk,W~~~' (k., p) ~ (11~~~,-+ k, (p- P1l- k~2 ) 
ee n'n1n1 ' 

X{/ n' (p- k,) ~~((PI+ k,) +In,· (PI+ k,) f n·" (p - k,)

-In (p) In," (p,)- In, (PI) in" (p)}, 

W""' (k e4 C dk1_2 Fnn·(k1_2 ) Fn,n,(k1_ 2 ) 

n,n( "p) = n ~ (k1_2 + k,2) 2 1 S (n'- n- k, p + 1/2 k,2 , k)l2 ' 

Fnn•(~) = ~~~; e-x!• I L~-n'f ( T) r ( T r-n'f, 
n=min (n,n'), L,"(x)- Laguerre polynomial 

e(ffi,k)= 

=x[1-_::_ ~ Fnn•(k.L')fdp, ln•"(PI+k,)-fn"(P!) ] 
xk2n k.. n'- n + k,'/2 + k,p1 - (i)- il1 

nn' 

is the dielectric constant, it. - 0, 
(3) 

In the collision integral (3) we dropped factors such as 
[1- f~(p)] as one can show that when EF- Y2 < 0 they 
are unimportant. The usual method for solving the 
equation consists in reducing it to a Fokker- Planck type 
differential equation. In the quanta! case when small n 
are important, one can not use such an approximation 
for the collision integral (3) as scattering occurs with 
a large momentum transfer kz ~ 1, and energy transfer 
t.E -- 1. All the same, one can appreciably simplify Eq. 
(2) in the case of a very strong magnetic field and re
duce it to a set of algebraic equations with shifted argu
ments. This turns out to be possible because of the con
ditions imposed by the conservation laws in a magnetic 
field and the conditions T, ( EF - Yz) < 1 which mean that 
the equilibrium electrons are concentrated near p = 0. 
We note that the condition EF - % < 1 is not stringent. 
For example, in degenerate InSb with no = 1015 em -3, 

H > 104 Oe 

I;= EF - 1/2 = 2n'no2, I; < 0.06. 

2. We first of all turn our attention to the absence of 
relaxation due to Coulomb interaction if the electrons 
are in the lowest Landau level with n = 0 and energy 
E < 1. We can check this by putting in the collision in
tegral Pn(P) = On0p(p), where 

{ 1, n=n' 
llnn•= , 

0, n=tl=n' 

The collision integral then vanishes identically, inde
pendent of the form of p(p) since as a result of a "one-

dimensional collision'' the electrons are scattered over 
a zero angle or exchange momenta according to the con
servation law 

, { P , {PI 
p = p,, PI= p, 

where p, p1; p', p~ are the initial and final electron mo
mentum components. In this connection we must note 
that the sometimes used approximation of an effective 
electron temperaturer9 ' 111 which is based upon the 
smallness of the electron-electron relaxation time may 
turn out to be invalid in the case of a strong magnetic 
field. 

3. We transform Eq. (2) for small ~ and T. We then 
have for the distribution function of the equilibrium 
electrons 

[ p'/2-£ ]-1 
fn°(p)=bnofO(p), f"(p)= exp T +1 , (4) 

where ~ is determined by the normalization condition 

( s ) 4n2no ""s dx x" F_•;, - =--=, Fn(Z)= . 
T y2T 0 ex-z + 1 

(5) 

It is convenient for what follows to denote a charac-
teristic energy of the equilibrium electrons by 1) where 
1) ~ ~ for degenerate electrons and 1) ~ T for non-degen
erate electrons. 

We use the 0-function to integrate in (3) over kz. We 
can split all terms occurring in (3) into two groups. In 
the terms corresponding to transitions with large kz, 
which occur when t.nn' ;>" 0, we can set the initial mo-

n1n1 
mentum of the electron equal to zero. We get then in-
stead of integrals over fn(P) functions fn(P') with shifted 
values of the argument, p' = p + t./p. In the second 
group for which t.nn', = 0, kz can be small and the 

n1n1 
integral terms remain. 

Equation (2) becomes 

] 
4 2 ( nn') I ( ) [_1_ 4 __ 1_. _ = J ( ) + ~· n no wnn'( ) f 1 ~ 

n P -t',''' (p) · Tn R (p) n P ;;;, 1 p 1 n,o p, P n' P T p . 

+ ~/,.(p)~dp,IPI":!P11 I(i)~:~,.(p-p,, p)t- '2/"(p)~dp,I!P,~pPJ)I 
n'>n • 1 n'~n 1 

Xffi~?_,,. (p- P~o p)- ~,0/0 (p) ~ ~ dp,dk,f,, (p,) W~,':~. (k, p) 
n'n,n 1' 

)! ~ (11~::~ .. + k, (p - p,) - k,'), (6) 
nn' , - nn' ( ~~~~t,' ) nn 1' , ffin.n((p,p)=Wn,n( -----;;', p +Wn,n•(p,p), 

__ 1_ = 4n'no ~- w~~·: (p/2 ± v p'/4 + 11~::. p) 

Tn" (p) n'~• 2 V p 2/4 + 11~~: 
+.-. "' s d p, /" ( ) W""' ( ) W""' (0 ) T L! -

1 
--~ PI [ On-n' P- p,, P + on-n' , p ] 

n>n-':;;::,.1 P- Pt 

+ (1 _ ~ ) \.dp,/0 (PI) ffi""(p _ p p) (7) 
no J I p- PII On !, , 

The prime on the summation sign indicates that the 
summation must be taken over all indices for which 

' t.::Fn' ;>" 0. 
1 1 

4. It is clear from Eq. (6) that in front of the integral 
terms we have functions f0(p) which vanish except near 
p = 0. 

This is connected with the fact that for transitions 
' with t.~~n~ = 0 the final values of the photoelectron mo-

mentum p' are equal to the initial value of the equili-
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brium electron momentum. Such transitions therefore 
produce a function near p = 0 almost repeating f0(p). We 
can thus look for a solution of the set (6) in the form 

fn(P) =fn(P) + f'(p)An(p), (8) 

where An(p) is_ a function which is smooth near p = 0. 
The functions fn(P) and An(p) satisfy the set of equations 

[ 1 1 ] ' 4n2no nn' ( A.:',~' ) 
fn(P) Tnee(p) + 'tRn(P) = .E l'PIClln,o (p,p)fn• P +-p-

n'n• 

n s dpt nn' 
+J,.(p)+ 2..J /n•(P) IP- Pd /0 (Pt)Clln•-no(p- Pt,P), 

n'>n 

(9) 

[ 1 1 ] ~ s dpt 
An(P) Tnee(p) + TnR(p) = ""-..An•(P) IP- p.j f'(Pt) 

n'>n 

(11) 

The integral equation (6) is thus reduced to the set of 
algebraic equations (9), (10) with shifted arguments. 

5. Of most interest is the solution for small quantum 
numbers as for n » 1 the quasi-classical approach is 
valid. In what follows we restrict ourselves to consider
ing the case when the photoelectrons are produced with 
energies En(p) < 7/2, i.e., occupy three Landau levels. 
In that case 

where Eo < 7/2 is the maximum energy of the photoelec
trons produced. The indices nand n' in Eqs. (9), (10) 
take on the values from zero to two. The arguments of 
!_he functions fnl(p') on the right- hand side of (9) for 
f 2(p) take such values that En1(p') > E0 • All sums in (9) 
therefore vanish as 

/2(p) = 't2ee(p)/2(P). 

Similarly we get from (10) 

A2(p)=T2ee(p) J-1 dpt 1w0220(p-pt,p)'t2 .. (Pt)l2(Pt). p-p. 

(12) 

(13) 

(We neglect here recombinations.) Apart from known 
terms fo(p + 1/p) occurs in the equation for f1(p). As the 
minimum of the expression IP + 1/p I equals 2, to find 
f1(p) it is necessary to know fc,(p) for IP I > 2. For such 
p we find 

/o(p)='toee(p) [lo(p)+ 4~;~0 Clloo01 (p,p)ft(P-:) 

+ 4~;~0 w0002 (p,p)/2 (p- ; ) ] . (14) 

Substituting (14) into (9) we get for f1(p) an equation in 
which the function 

, 1 ( p2+1 __ P_) 
p p2+1 . 

occurs. 

The solution of this equation can be constructed by 
splitting the range of IP I values from zero to .J[2( Eo- 'l: )) 
into regions in each of which the term with the shifted 2 

argument is determined in terms of the value of the 
function in the preceding region, which lies at a higher 
energy. If we restrict ourselves to Eo < % + % we do 
not need this division as the two last terms in (14) occur 
with values E1(p- 1/p) > Eo and E2(p- 2/p) > Eo and 
thus vanish. We find thus from (14) 

Finally we get 

( 1 ) ~ 1 ~ 4n2no on' ( n1- n') 
Xlo P+p + ""-.i""-.1-----r:Pfwn(o(p,p)fn• P+-p-

n1 n'=t 

2 dpt On' ] 
+ £fn•(P) s IP-Ptlfo(Pt)(i)n•o(p-p.,p) • 

n'=t 

By substituting (12) to (15) into (10) we find the function 
Ao(p). 

6. The times ~e(p) and ~e(p) determine the relaxa-

tion of photoelectrons with quantum number n and mo
menta, respectively, p ~ v"(21]), p ~ .J(211)· We get the 
expression for 1/T~e(p) by subtracting from 1/T;e(p) 

the probabilities for photoelectron scattering without 
changing the quantum number n and also subtracting the 
"arrival" of an equilibrium electron with level n = 0 
without change of momentum which compensates the 
corresponding "departure": 

1 w~:.'(p/2± vp2/4+t1o:~p ) 
---= 4n2no ~-------;:-::;::;~=;=;::::::;---
Tnee(p) ~ 2fp"/4 + {1nn' 

n n 1 On 1 

+.-

~ s dpJO(pt) nn' nn' {16) + ""'-.! lp-p.j [lton-n•(p-p.,p)+Won-n•(O,p)]. 
t:s;;:;n'<n 

The relaxation times 7- ee and Tee can be evaluated if we 
assume that the Debye screening radius is larger than 
A. In that case we can neglect the dispersion of the di
electric constant in (7) and (16) for transitions with 1 

kz ,_ 1, and put E(w, k) = K. The matrix elements wgnn' 
can then be evaluated by writing the Laguerre poly- 1 1 
nomials in series and can be expressed in terms of the 
exponential integral function. We shall not give here the 
corresponding formulae. The analysis shows that the 
main transitions are those in which the quantum numbers 
n either do not change at all or change for only one elec
tron. Physically this is connected with the fact that the 
matrix element for the Coulomb interaction is small for 
large changes in momentum. In 7-~e(p) we must thus 
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leave terms with t:. = ± 1, n' = n ± 1; A= 0, n' = n. For 
small values of the momentum, transitions without 
changes in n dominate so that 

1 W~0n(p) nn e' 1 {17) 
-_-(-) ~ 4n2no-1-1-, Woo (p) ~ - 2 - 1-1-2 , IPI < 1. 
'tnee p p nx p 

We find T~e(p) which we clearly need only for p ~ -v'(21J). 
In that case the first sum in (16) turns out to be smaller 
by a factor ...fii than the second term which describes 
transitions with small changes in kz so that we get in
stead of (16) 

--1-~ s~~ f(pi)Wo~n-t(P-Pt.P), p:;;;;}'2'1']. (18) 
Tnee(p) lp-p, 

When evaluating the integral in (18) it is necessary to 
take into account the dispersion of E:{w, k) as otherwise 
we get a logarithmically divergent expression. The 
divergence is caused by scattering without changes in 
p, P1 of two electrons with the same momentum p = p1. 
Such electrons do not fly away from one another after 
the collision and interact for an infinitely long time. 
There occurs therefore a divergence in the Born ap
proximation similar to the case of scattering by a static 
potential. [12 J 

Calculating E:{w, k) from (3) and substituting it into 
(18) we find for a degenerate electron gas 

1 e' oo du { [ (l'2s'- p) 264d' ] ---=-J~Fnn-t(u)F01 (u)ln eu+1 
Tn .. (P) 2nx2 0 u2 2sn2 

X [ (i2s' + p) 264d' eu 1]} d-Z = 4nn0e2 • 

2sn2 + ' x£ 
(19) 

By writing the Laguerre polynomials as series we can 
perform the integration. For instance, for n = 2, restor
ing dimensions (we neglect unity under the logarithm 
sign) 

1 2nn0e4 5 ( 64d4 ) 

T 2 .. (0) x21iQy2ms. Win n2A/0
'
6 

• ( 20) 

When n >> 1 we can estimate the integral over n using 
the asymptotic formula[1oJ Fnn- 1{u) ~ J~(v'2nu), where 
J1 is a Bessel function; 

2nn0e'L e'm ( 1 1 ) 64d' 
---= =--L, L= -+- ln--.(21) 

Tee (0) x•liQy2m£ nx21i3 8 n n2A' 

Comparing (20) and (21) it is clear that Tee(p) depends 
little on n. Moreover, it is clear from (2n that the re
laxation time T~e depends only logarithmically on the 
concentration of the equilibrium electrons. This effect 
is caused by the fact that the probability for a transition 
with kz RJ 0 is inversely proportional to the momentum 
of the cold electrons v'11 - no. 

For a non-degenerate electron gas we find 

2l'~noe•LT 
'fTee (0) x"fmThQ 

4nnoe2 
dT-2=--, C1 =e0•371• (21') 

xT 

7. The expressions obtained for, 7~e and T~e and 
also the relations between the W~n' enable us to sim-

1 1 
plify the original set of equations appreciably so that we 
have instead of (9) and (10), respectively, 

_ [ 1 1 ] -/ ( ) W nn ( 1 ) 4n2no ( 1 ) 
/n(P) 'tn••(p) + TnR(p) - n P + to p ~fn P+p 

~ s dp, n•n' ] +llntt..J -
1 

_ lfn•(Pi)Woo (p-pi) . 
n';;.2 p Pt 

(23) 

The second term in (23) and the last two in (22) take 
into account transitions of equilibrium electrons to the 
level n = 0 and n = 1 during collisions with non-equili
brium electrons. We note that (23) is an exact expres
sion for AJl(p) in terms of the functions fn(p). The quan
tities wnn ,(p) are defined by Eq. (3) in which we must 

n1n1 
put E:{w, k) = K. 

2. KINETIC EQUATION TAKING THE INTERACTION 
WITH OPTICAL PHONONS INTO ACCOUNT. 
PHOTOMAGNETIC GUREVICH- FIRSOV OSCILLA
TIONS 

1. We now take into account in Eq. (2) the integral of 
the collisions of the photoelectrons with optical phonons 
and we shall then assume that the phonon frequency w 0 

and the matrix element of the electron-phonon interac
tion M are independent of the momentum. We must then 
replace 7~e(p) in Eqs. (9), (10) by 7 n(p): 

'tn••(p)r:J'~p) 1 1 E 1 
'tn(P) ----

Tn••(p)+T.!'h(p)' TJ'h(p)- r;Ph fp2 +2(n-n'-roo) 
n' {24) 

and add the term 

_!__~ fn'(l'P2 + 2(n- n' +roo))' 

1:P n' fp2 +2(n n'+roo) 
(25) 

corresponding to the "arrival" of electrons from a state 
with energy En(P) + wo into a state with energy En(p). 
Here 1/ TPh = IM I2V /1TA 3 ti2 n (in the form with dimen
sions). We can simplify the solution of Eqs. (9) and (10) 
with the changes (24) and (25) for small n by dividing the 
integral over the energy from zero to Eo into bands of 
width c.t'o (wo > 1). The extra term in (25) in each band 
will be determined by the value of fn{P) in the preceding 
band which lies higher in energy. We shall not write 
down the complete expression for the solution as it is 
too cumbersome. We only give the solution for the func
tion An(p): 

"' [ T:n:e (p) ]-l dp, n'n• 
An(P)=Tnee(p) Ell 1+,~() J -1 _ 1Jn•(Pt)Woo (P-Pt) 

n';;.n n"=n n" p p Pt (26) 

and the expression for fn(p) which is valid for the upper 
occupied Landau level: 

fn(p) = Tn(p)ln(p). (27) 

2. Expressions (26) and (27) which describe the dis
tribution function of the non-equilibrium electrons which 
interact with electrons and phonons enable us to study 
the problem of photomagnetic G- F oscillations which 
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were observed in ref. [?l. Two unusual facts need ex
planations: the presence of oscillations at helium tem
peratures and the absence of oscillations in pure sam
ples. We have suggested(sJ to connect this effect with 
the oscillations in the transverse diffusion coefficient 
D 1 for photoelectrons which emit optical phonons and 
interact with equilibrium electrons. In[91 , the photo
magnetic-effect oscillations were interpreted as the 
heating up of equilibrium electrons to some effective 
temperature due to the transfer of energy from the 
photoelectrons. As the energy transferred by the optical 
phonons Pph oscillates with the magnetic field, the effec
tive temperature must then also show G- F oscillations. 

The expressions for D 1 and Pph are of the form 

IMJ•V 1: s ---'--3-'--- (n + n' + 1) dpf,.(p) [p2 + 2(n- n'- roo) ]-'1•, 
(2l1) ~ne nn' {28) 

pph= 2rooJMJ•VEJ dpf,.(p)[p•+2(n-n'-roo)]-'1•. 
(2n)a nn' 

(29) 

The oscillations in D 1 and Pph are caused by the 
periodic change in the probability to emit an optical 
phonon which is proportional to (p2 + 2(n- n' - w0)]-112 
and which reaches a maximum when w 0 = N {N an in
teger). It is clear from (28) and (29) that the integrands 
in D 1 and Pph are the same so that the character of the 
oscillations must be similar for small n. For the sake 
of simplicity we consider in what follows only Pph· 

3. After substituting the distribution function into 
(28) we have for the energy emitted by electrons in 
level n 

(30) 

(31) 

If we exclude the interaction with the equilibrium elec
trons we find for P~h 

P-,. roo J d I ( ) Rpn 0 0 = (2:n:)• p ,. p , u = , no-+ . 

Hence, the oscillations are absent as n0 - 0. This re
sult, first found in[sJ, is connected with the periodic 
vanishing of the photoelectron distribution function fn(p) 
when p ~ 0 due to the resonance emission of an optical 
phonon by the photoelectrons 

j,.(p) - TJ'~p), no-+0. 

The interaction with the electrons leads to a smoothing 
out of fn(p). We calculate P~h assuming Jn(P) = J to be 
independent of n and p. The integration over p in (30) is 
split into two intervals : jp I < 1 and IP I > 1. The integ
ral over the second interval does not contain a singular
ity and is a smooth function of H. The integration over 
the first interval can be reduced by using (17) and (27). 
When 01 ;:;; 1 we can neglect 'Tee in ~(p) as compared to 
Tph and we then get, including the dimensions, 

[n-<Do/0) 

J dp fn(P) ~Ia Y" {~[1+2(N+Il)]''·+.:_[2(N+Il)]''• 
[p[<i ,;':,h(p) ~ 3 3 

-2(N+Il)[1+2(N+O)]''•}, {32) 

where 

-y;;"x2 (1lQ)''' 1 roo [ roo] 
a= , 1\=n--- n-- , 0~6<1, 

2:n:noe• ,;<1> Q Q 

[x] is the integer part of the number. The smallness of 
the oscillations in pn is connected with the fact that the 
function rn (p) is small in the region p ~ o (In (p) - p3). 

4. The integration in (31) is over the range of small 
p because of the function f0(p) so that we put p = 0 in 
w~P. Substituting An(p) for the upper level (with n' = n) 
in (31) we get nn 

pn-~IJa 4:n:2noWoo (p,) _() 
II - (2:n:)2 n PI IPd /n Pt ' (33) 

I - 1 J d / 0( ) T: (p) 
n- 4:n:•no p p ,;ee(p)+TPh(p) ' 

n n 

(34) 

and for small p and o we get from (24) 

T;,P~p) = lVp• + 211. 

As in (30), the integral in (33) oscillates little with the 
magnetic field and when 01 ~ 1 is approximately equal to 
J. On the other hand, In is a function which oscillates 
with a large amplitude and period A(1/H) = e/mcwo. One 
can check this most simply by considering the limiting 
case 'f/ = 0. Taking as the distribution function 

f"(p) = 4:n:2noll(p), 

. ee ee ee 2 nn- 1 
we f1nd that Tn (p) = IPITn, Tn = 47T noWo1 (0), 

(35) 

oPn is thus an oscillating function of H which is non
vanishing only for strict resonance wo = N. 

In the case of finite TJ we put in (34) T~e(p) = Tee(O), 
as Tee(p) changes slowly in the interval p ;:;; v'(2TJ). 

vfe find In for degenerate electrons: 

ln=~[ln i+l'1+.1lt+ {2, ~2 >11'], 
l' lit d, ~· < l'lt 

It'/= 1 In llt + ~)'1 ~- l"i -61/~•) 
)'1-llt!~· -yo, (it+ 6, + M 

.s4 1 ( . llt + ~i~ :n; ) 

= 6,/(:lz-1 arcsm )'6d~+l'1+1lt) -2 ' 
6 T""(O) ( x2 JMJ 2V ) Jl2 

ll,=~, ~=7\'26 = 2:n:21i2c2e2L -;;.-· (36) 

The quantity In reaches its maximum value when o = 0: 

( 1 + ~) l,.=~ln -~- , (37) 

and its minimum value In~ {3..fi/ when o - 1. 
We study how o pn depends on the concentration of 

the equilibrium electrons when o = 0. As n0 - 0, the 
quantity f3 - co and In - 1, and as a whole the function 
oPn tends to zero in accordance with the results ob
tained above. In the opposite limiting case when no- co, 

f3- 0, the transferred power tends to zero as oPn- In 
""'f3 ln (1/{3)- 0 although the logarithm becomes infinite. 
This means that the departure of the photoelectrons is 
extremely fast due to the electron- electron interaction 
and the distribution function vanishes. [sJ 

The largest value is thus reached for values of {3 of 
the order unity: 

1 1 1 1/~ 2nnoe•L 
~ ~ , Tph~ T""(O) f hQ = x2Ym(liQ)3J'2' (38) 
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i.e., when the time for Coulomb relaxation in the mag
netic field is equal to the time for emission of an opti
cal phonon. In the case of a non-degenerate electron 
gas the condition {j ~ 1 takes the form 

1 1 1/Zr 2l'2Moe4Lr 
,;Ph"'=' 'tree(O) V flQ = x.~ym(flQ):V2. (39) 

We must emphasize that as {j is a function of H2 /no the 
optimum concentration no is a function of the magnetic 
field. 

_s:omparing Eqs. (32), (33), and (37) we find that o pn 
~ pn. If 11 ~ 1, the depth of the oscillations is small and, 
as an estimate, does not exceed 10%. When we decrease 
11 - 0 the depth of the oscillations may reach a magni
tude of the order of unity due to o pn. 

We can thus take it for proven that the interaction of 
photoelectrons with the equilibrium carriers leads to 
oscillations in Pph and D 1 with period 1/ wo. 

It is interesting to note that an "oscillation amplifica
tion" effect occurs as 11 - 0. The physical reason for 
this lies in the fact that the interaction with the electrons 
not only smoothes out the distribution function, but also 
leads to a localization of the photoelectrons near p = 0 
and they also make a considerable contribution to the 
oscillation term. 

5. One can generalize the results of the last section 
if we bear in mind the way IM 12 depends on the phonon 
momentum, i.e., if we put 

A= 2nnw0e2 (~ _ ~} • 

V e~ x 

In that case we must replace in Eqs. (36) to (39) IM 12 by 
the quantity Ati/2mw 0 • We calculate also o P using the 
general Eq. (26) for An(p): 

Wo ~ s dp, n'n' -
bP= (Zn) 2 ~ Inn' I _ ,j 4rt2noWoo (pi)/n'(Pi), 

n,n';3n P P 

( _ 1) n'-n ~n'-n [Jn'-n s dpj"(p) ~yZrj 

Inn•= 4n2no (n'-n)! i)~n'-n (yp2+21l+WI'2'1). (40) 
I 

CONCLUSION 

We have shown in this paper that the transverse 
diffusion coefficient D 1 and the power P h transferred 
from the photoelectrons to the optical pConons oscillate 
with a period e/mcwo and that the oscillations are con
nected not only with a ''smoothing out'' of the distribu
tion function, as was suggested in[8 ' 9 J but also with the 
localization of the photoelectrons near p = 0 due to the 
electron transitions inside one Landau zone. 

To evaluate the relative contribution caused by D 1 
and Pph it is necessary to evaluate the strength of the 
photo magnetic effect and the Nernst effect. However, 
since the effective temperature approximation may turn 
out to be invalid because of the absence of Coulomb re
laxation to the zeroth Landau level the calculation of 
the kinetic coefficients must be done with exact distri
bution functions which were found above. However, this 
problem goes outside the framework of the present 
paper. 

Nonetheless, in view of the fact that the expressions 
forD 1 and Pph are the same, the character of the os-

cillations will be the same in the two cases and, hence, 
the results obtained are valid and open to experimental 
verification. 

Of most importance is the condition (38) for the os
cillations to be maximal; it formally is the same as the 
one used in[8 • 9 J but with an explicitly defined relaxation 
time in a magnetic field. It follows from (38) that the 
optimum concentration is a function of the magnetic 
field. For a constant concentration the depth of the os
cillations will depend on the magnetic field, and if the 
parameter {j passes through unity, the dependence is not 
monotonic. This fact makes it possible to verify condi
tion (38) experimentally by varying n0 and H. 

We note also that we can directly estimate from (38) 
the matrix element of the electron-phonon interaction, 
deter mining n0 and H experimentally. 

In general we must emphasize that a study of Gure
vich- Firsov type photo magnetic oscillations offers great 
perspectives to determine the parameters of the elec
tron-electron and electron- (optical)-phonon interactions 
as these interactions compete in this effect, and also of 
the large experimental depth of the oscillations and of 
the existence of the exact solution. 
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