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An analog of the Ginzburg- Landau equation is obtained for a superconductor where Cooper pairing oc­
curs in pair states with nonzero angular momentum l. The equation has the form of a radial 
SchrOdinger equation for the lth partial wave with a cubic nonlinearity. Its solution is a "spherical 
vortex" which is a completely isotropic but spatially inhomogeneous state in which Cooper pairs as 
a whole rotate about the center of the vortex, where the order parameter t:. vanishes. It is shown that 
the vortex state has a minimal free energy as compared with the solutions proposed earlier. 

THE problem of superconductivity in systems where 
Fermi particles attract each other in pairing states with 
nonzero angular momentum l has been considered in a 
number of papers (for example, u-3 1). Different schemes 
for an approximate decoupling of the equations of motion 
are used, and lead to different solutions. The 
"isotropic" solution (cf. [11 ) corresponds to the pres­
ence of 2l + 1 "condensates" of pairs with different 
angular momentum projection m. At present, the solu­
tion regarded as best is the "anisotropic" solution 
(cf.[21 ), where the wave function of the Cooper pairs de­
pends on the direction n of the relative momentum of the 
pair in the form of a certain linear combination of 
spherical harmonics, 1f!(l)(n) = 'E cm Yzm(n). For tem-

m 
perature T = 0 it has been shown[41 that the solution is 
stable[21 against a certain class of perturbations. 

In all papers mentioned above the equilibrium state 
of the system has been assumed homogeneous in space 
(one or several condensates of Cooper pairs which are 
at rest as a whole). If we extend the class of admissible 
states and also consider pairs with total momentum 
k ¢ 0 (which is equivalent to a dependence of the order 
parameter t:. on the coordinates), then the pair acquires 
a natural distinguished direction, the degeneracy in the 
angular momentum projections is lifted, 1> and the state 
as a whole may be made completely isotropic since all 
directions k are equally probable. It will be shown be­
low that in this case the gain in interaction energy owing 
to a fuller use of the angular dependence of the attrac­
tive potential is more important than the loss on account 
of the spatial inhomogeneity of the state thus obtained.2> 

The solution of the exact Gor'kov equations in the 
inhomogeneous case presents considerable difficulties. 
We restrict ourselves to a region of temperatures close 
to the critical value T c, where we obtain the analog of 
the Ginzburg- Landau (GL) equation for pairing with 

llThis is easily seen by investigating the singularities of the vertex 
part leading to a phase transition, for a normal (non-superconducting) 
state with k * 0 for the considered interaction in the l th harmonic. 

2) Another example of a physical situation where the inhomogeneous 
state is advantageous is given in (5]. 

angular momentum l. 3 > 
The general method for deriving the GL equations 

from the microscopic equations for superconductors 
with arbitrary interaction is given in the paper of 
Gor'kov and Melik- Barkhudarova. [61 As shown in [61 , 
the equation for the pairing parameter t:.k(n) [k = P1 + P2 
is the total momentum of the pair, p = (p1- p2)/2 = lpln 
is the relative momentum, p - Po, k <<Po) for T ~ Tc 
and in the absence of external fields, has the form 

Lh(n)=mp0 (A+-g-ln.!..:.._) J dn'U(n',n)~k(n') 
(2:rt) 3 T 

- 2 ~::;:m J dn'U(n',n) (kn') 2~k(n') 

(~!~:~2 .E J dn'U(n',n)~k,(n')~~<,(n')~:.+k..-k(n'). (1) 
k,k2 

As usual, we neglect the weak dependence of the pairing 
parameter t:. and the interaction potential U on the value 
of the momenta near the Fermi boundary. The notation 
in (1) agrees with that of[6J; the Fermi surface is con­
sidered spherical. 

If we are interested in the case of attraction in a 
state with angular momentum l, 

U(n,n') = U1Pz(nn'). (2) 

For simplicity we restrict ourselves to the weak coup­
ling approximation[71 and find then for the eigenvalue, 
in the zero-order approximation in g, 
A= (2l + 1)/41TpoiDUz; here the critical temperature 
agrees with that found inu•21 . The condition for the 
solvability of the first approximation yields the equa­
tion 

A ~ J (0) (0) (O) •(O) -g.""-.! dn~k (n)~k, (n)~k, (n)~k,+k,-k(n)=O. 
k,k2 

(3) 

It is seen from (1) that the choice of the interaction 
in the form (2) leads to a zero-order solution ~>(n) in 
the form of an arbitrary superposition of spher1cal 

3lWe consider only singlet spin states of the pair; then the angular 
momentum l must be even. 
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harmonics YLM(n) with fixed L = l (degeneracy). We 
shall seek a completely isotropic state of the system in 
which Lll:>(n) can only depend on the angle between the 
vectors k and n. Therefore, the "correct linear com­
bination'' is 

(4) 

We now substitute (4) in (3) and integrate. [To this end 
it is convenient to introduce in the last term of (3) an 
additional integration over k3 with o (k1 + k2 - k- k3 ), to 
use the integral representation of the o function, and to 
expand the exponential in spherical waves.] After sim­
ple but tedious algebra we find 

a2 1 oo 

--1!,."=--J dR-R2/!,.(R) 1/!,.(R) lah(kR). (5) 
2n2 k•- xz 

0 

Here Ll(R) is the radial Fourier transform of the pairing 
parameter taken in the "mixed" (R, p) representation, 

/!,.k(P)= s dRe-ikR /!,.(R, p), (6) 

R 1 oo 

/!,.(R,p)=i1A(R)P1 (.L), /!,.(R)=-2 .Jdk·k2h(kR)Ah; (7) 
pR n 0 

we have introduced the notation 

a•=..!:_Po2 13z 13 _ 1 + 2l(l+1) 
12 m2 (2l+1)fz' z- (2l-1)(2l+3) 

2 6ln(Tc/T) 
X = 'AflzPo2/m2 ' 

( l l L )' 
fz=E(2L+ 1) 000' 

L 

(8) 

where (~~~)is the Wigner 3j symbol. 

Multiplying both parts of (5) by k2j z{kR), integrating 
over k and using the definition of Ll(R) in (7), we obtain 

2a2 Kv (- ixR) JR 
--/!,.(R)= _ dp·p'hlv(-ixp) 1/!,.(p) 12/!,.(p) 

:rt yR o 

lv(- ixR) cos , 1 
+ _ dp·p"K.(- ixp) IA(p) 12/!,.(p), v =l+- (9) 

"VR R 2 

In the dimensionless variables 

[ ').. ]''• - ( z ) z=xR, '}l(z)= / (2l+1)fz l'zA - , 
~<~ n x 

(10) 

equation (9) takes the form 
2" % GO 

--;-'}l(z)= H~> (z) J lv(t)'}l (t) I¢ (t) l2dt + lv(z) J If;\t) '}l(t) I ¢(t) 12 dt. 
0 z 

(11) 
From (11) we easily obtain the equivalent differential 
equation 

where Zv(z) is the cylindrical function of order v. Com­
paring (12) with the equation for the cylinder functions, 

Zv'' +~Zv' + (t-~)Zv=O 
z z2 

and introducing .P = ~j!/lz, we find 

~~{z2d<l>)+{1- l(Z+i) )<I>-<1>1<1>1 2 =0. (13) 
z2 dz dz z2 

Equation (13) is the desired GL equation which deter­
mines the coordinate dependence of the "pair wave func-

tion." For l = 0, eq. (13) goes over into the usual GL 
equation lBJ for the case of spherical symmetry [the 
identity of the coefficients is easily verified with the 
help of (10) and (7)]. By its form, eq. (13) represents a 
radial Schrtidinger equation for the lth partial wave with 
an additional nonlinear term. We emphasize that the 
fact that such an equation exists is nontrivial, since 
owing to the nonlinearity the form of the GL equation is 
in this case determined by the angular dependence 
separated earlier [cf. (4)], so that it is not possible to 
write down a single three-dimensional GL equation. 

The equilibrium solution of the usual GL equation 
(l = 0) corresponds to a spatially homogeneous state 
(.P = 1). For l .,_ 0 the pair wave function must vanish at 
the origin owing to the centrifugal barrier, .P(z) ~ zl. 
Thus the full isotropy of the state is obtained at the 
price of giving up spatial homogeneity. The choice of 
the point R = 0 is arbitrary in the same sense as the 
choice of the direction of the anisotropy in the solution 
of Anderson and Morel. l 2 J Far from the origin, the solu­
tion of (13) tends to a constant 

<D (z) ~ 1 -l(l + 1) / 2z2, (14) 

so that the state represents a localized ''spherical 
vortex.'' The characteristic dimension of the vortex is 
Ro ~ l/K- oo for T- Tc. As is seen from the deriva­
tion, total pair momenta k ~ K are important, i.e., angu­
lar momenta of the pairs relative to the common center 
of the order L ~ kR0 ~ l. In other words, the dimen­
sions of the vortex are determined by the condition that 
at the boundary the "magnetic field" from the rotation 
of the pair as a whole breaks the intrinsic internal bind­
ing. Owing to the spherical symmetry the vortex state 
carries no current. 

The thermodynamics of the system can be construc­
ted in analogy with the usual case. The standard calcu­
lations lBJ give for the difference of the free energies of 
the superconducting and normal states 

BT,-Brn=-Q m;;; 1/!,.(R)I', (15) 

where the bar denotes the average over the volume of 
the system n. It is easy to see that the correction terms 
to the asymptotic form (14) give a contribution .\1-2 /3 
after averaging. Therefore all macroscopic properties 
are determined by the asymptotic value: 

( ln(T /T) )'" 1!,.(1)=:=/!,.(oo)=fz ; , fz=[(2l+1)Jz]-'l•. (16) 

The results of the Gor'kov- Galitski1 (GG) and 
Anderson- Morel (AM) approaches can also be expressed 
in the form of (15) and (16), where in the isotropic solu-

tion r~GG) = 1, and for the anisotropic solutions r l 

= [ 47T Jdnl q; (l)(n) l4r 112 , where q;Ul(n) is the normalized 
angular part of the pair wave function. l 7J In particular, 
for quadrupole pairing (l = 2) we havel2 J 

(2) f 1 
'¢AM(n)=-=- Y2o(n) +- (Y22(n)- Yz,-z(n)), 

y2 2 

In the vortex solution considered ro = 1, rz>O > 1 (e.g., 
n = .fi73). Thus, we here obtain a lower free energy 
than with the solutions known so far. This is natural, 
since the advantageous angular dependence is effective 
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in all space, while the smallness of tJ. is concentrated 
in the finite region of the centrifugal barrier. 

It is easy to see that for temperatures above the 
critical temperature, the GL equation has the form 

_1_~(zz dctl )- {t+ t(l+1) )ct~-Clllctii==O. (17) 
z2 dz dz z2 

The difference between (13) and (17) corresponds to the 
transition from the continuous to the discrete spectrum 
in the Schrodinger equation. Indeed, instead of the 
asymptotic form (14), the solution of (17) tends to zero 
at large distances. Therefore the nuclei of the super­
conducting phase for T > T c are spherical drops whose 
density decreases smoothly (~ zl) towards the center of 
the sphere, and sharply outwards. 

The problems of the stability of the vortex state, of 
the behavior of such a system in an external field, and 
of its collective excitations require a separate investi­
gation. 

The authors are grateful to S. T. Belyaev for his 
constant interest in this work and to L. P. Gor'kov for 
a discussion of the results. 
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