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The problem of relaxation of an anisotropic spectrum of ion-acoustic noise in a plasma is solved in the 
quasilinear approximation. It is shown that at a sufficient noise intensity, quasilinear relaxation causes 
a three-dimensional spectrum to change into a one-dimensional spectrum. A self-similar solution of the 
quasilinear relaxation equations that describe the process is obtained for the case of a strongly aniso
tropic spectrum. 

THE purpose of the present paper is to explain certain 
regularities in the process of quasilinear evolution of 
the anisotropic spectrum of ion-acoustic noise in a 
plasma, i.e., the evolution of the spectrum as the re
sults of induced Cerenkov emission and absorption of 
waves by the plasma particles. It is assumed that the 
noise level is sufficiently low to make the nonlinear in
teractions of the waves negligible. As shown by Sizo
nenko and Stepanov l 1J and by Bernstein and Engelman, [aJ 

the quasilinear relaxation of the spectrum of the poten
tial oscillations leads inevitably either to their complete 
attenuation, or to the establishment of a stationary one
dimensional spectrum. It is of interest to investigate the 
dynamics of such a "collapse" of the three-dimensional 
spectrum into a one-dimensional one. This process plays 
an important role, for example, in the development of 
current instability in a plasma. l 3 J 

TRANSFORMATION OF A THREE-DIMENSIONAL 
WAVE PACKET INTO A ONE-DIMENSIONAL ONE 

Assume that there is an intense anisotropic spectrum 
of ion-acoustic waves in the plasma. We introduce spher
ical coordinates in velocity space (v, J., q;) and in wave
vector space (k, J.', q;'). The problem simplifies greatly 
for a packet having an azimuthal symmetry in q;' and a 
small width in modulus of the wave vector. Apart from 
small corrections, the number of the waves N(k), can 
be represented in the form 

N(k)=~ k2 jq;j 112 =N(fY',t){)(k-ko) (1) 
awk 8n 

(the symbols are standard)-
Rudakov and Korablev l 3 have shown that a spectrum 

of precisely this type builds up when current instability 
develops in the plasma. 

When Te » TiJ the interaction of the ion-acoustic 
waves with the ions can be regarded as negligible for 
the evolution of the spectrum, since the density of the 
resonant ions is an exponentially small quantity, and 
the ions become rapidly heated by interacting with the 
oscillations. As a result, their contribution to the total 
increment tends to zero (see lSJ, and also l33 ). 

By virtue of the assumptions made above, the prob
lem of the quasilinear evolution of the spectrum be
comes mathematically very similar to the problem of 
instability of a current in a plasma, l 4 J the only differ
ence being that in the present paper -we consider a case 

in which there is no external electric field. The system 
of quasilinear equations is of the form l 4 J 

of 1 a . ( of at ) 1 a 1 ( of af) -=---sm-& A-+B- +---- D-+B- (2) 
Ot v3 sin{} a-& a-& av v2 av v au a'(} , 

aN(k) I at= 2y(k)N(k), (3) 

where 

n w3 M ( J 1 of . J k" af ) y=--- w --.S(w-kv)dv+ --6(w-kv)dv , (4) 
2 k2 mn v av v a'(} 

(5) 

where f(v) is the time-averaged ("background") electron 
distribution function. 

In view of the smallness of the parameter wjkvTe• 
where VTe is the thermal velocity of the electrons, the 
principal term in the right side of (2) will be the one 
containing the coefficient A; the next in magnitude 
(~AwjkvTe) will be the term containing B ofjov. The 
remaining terms in the right side of (2) are of still 
higher order of smallness in wjkvTe• and we shall dis
regard them. The diffusion coefficients A and Bin ve
locity space are proportional to the energy density of 
the waves, and for large oscillation amplitudes it is 
possible to satisfy the condition 

aj 1 d i)j 
-~----sin-&B
at v3 sin {} a-& o'v . 

(6) 

We assume the inequality (6) to be satisfied, and we shall 
subsequently establish the limits of applicability of this 
assumption. 

Thus, Eq. (2) can be solved by successive approxima
tions in A-1• The zeroth approximation yields of0 /0J. = 0, 
i.e., the interaction with the noise leads to symmetriza
tion of the particle distribution function. In the next ap
proximation in wJkvTe we obtain 

"B iJfo 
j,(v,-&)=- J-::1 ov d-&. 

0 

(7) 

It is clear even from this that sufficiently intense 
noise cannot attenuate completely as a result of quasi
linear relaxation. Indeed, it follows from (7) that the 
density of the maximum momentum that can be trans
ferred to the electrons does not exceed nmvTe(w/kVTe), 
and that if the momentum of the waves is larger, then 
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the quasilinear relaxation can lead to realization of 
only one of two possible stationary states obtained in 
[ 1• 21 , namely to a transformation of the three-dimen
sional wave packet into a one-dimensional one. 

It is necessary next to substitute in (3) and (4) the 
solution (7) and to perform calculations perfectly anal
ogous to those performed by Rudakov and Korablev. [41 

As a result we arrive at the following equation, which 
describes the evolution of the spectrum of the ion
acoustic waves: 

f) f y dy 
-In N ( z, t) = 2yo S -----'=--='----
ot ' y1- y'yy•- z' 

(8) 

x jz'(z-z')N(z',t) dz'/ 11Sz'2N(z',t)dz' 

o 1y2-z•2 o 1y2-z'2 

Here z =cos J.', y =sin J., and 

w4 M ( w} )'o=rrl---fo - · 
k 3 m k 

(9) 

It is seen from (8) that when J.' = 0 the increment y(k) 
is positive, i.e., the interaction of the electrons with the 
oscillations in such an anisotropic spectrum leads to an 
energy and momentum flux in the region of small angles. 
As a result, the anisotropy of the packet becomes more 
intense, i.e., the three-dimensional spectrum actually 
becomes one-dimensional. 

SELF -SIMILAR SOLUTION OF THE SPECTRUM 
EVOLUTION EQUATION 

Let the anisotropy of the spectrum be so strong that 
it can be regarded as concentrated in a narrow cone 
with aperture J. 0 « 1. Then Eq. (8) can be rewritten in 
simpler form 

d t d¢ 
-lnN(~,'t)= S-=====-
d't 0 l~J;(~-¢) 

xi-Tit" (x-b)N(x,,;)dx /-"jit" N(x,,;)dx, 

>~> 1x-ll: ., 1x-ll: 

~=1-costt', '11=1-y, x=1-z', 't=2yot. (10) 

Equation (10) admits of a self-similar separation of the 
variables. We choose the basic scales to be the angle 
J.0 and a certain characteristic time T0, which must be 
determined from the solution itself. We seek the solu
tion of Eq. (10) in the form 

1 -cos tio = (To h)m, 

N(-1}',,;) = (,;f,;o)nn(s), 

1- COSt}' ( 't )m 
jS---=~-

- 1 - cos tio 'to . 

The energy density of the oscillations is written in 
terms of the new variables as follows: 

f 

(11) 

W=w S N(k)dk=2nk.Zw(,;j,;0 )n-ms n([;)d[;, (12) 
0 

and since the oscillation energy in the final state should 
be finite, we get m = n. 

Let us rewrite Eq. (10) in terms of new variables, in
troducing TJ = lf!(T/T0)m and f = X:(T/T0)m: 

m [ dn/ds] ('to }m j d11 (10') 
-; 1 + 6~ = -; o 111(s-11) 

X sf (s'- ~)n(s')ds' I sf n(s')ds' 

1~' - "I] ~ 16' - 11 

The condition for separation of the variables is m = 1. 
Thus, 

\to= (2To/r) '", N (tt', t)= ~ n(;), 
To 

(13) 

and the function n(~) is a solution of the equation 
• f f 

1 + ~ dn/ds =Toj" di] s (;'- s)n(s')ds /J n(s')ds' (14) 
nm G 111(s-11) ~ l's'-11 ~ 1£'-11 

Using expression (12), we normalize the solution of 
Eq. (14) in the following manner: 

w 
n(s)=-2 k2 F(£), 

n ow 

f 

S F(~)ds=1. 
0 

(15) 

In this case F(1) « 1, since the entire packet of the 
waves is concentrated in a cone with limiting angle J.0 • 

Let us refine this inequality. Assume that in the 
plasma there is a certain background of oscillations 
with an energy density Wf « W. We introduce the nu
merical parameter A= ln (W/Wf), which we assume 
to be a large quantity. The boundary condition can be 
written in the form 

(16) 

Bearing in mind that F(~) decreases rapidly as ~- 1, 
we seek the solution of (14) in the form of the product 

(15') 

As the first approximation we take F1(~) = const. Substi
tuting (15) in (14), we obtain 

(17) 

The ratio of the second term to the first in the nume
rator of the integrand is a small quantity of order a-\ 
provided a(1- ~) » 1. If on the other hand ~ ~ 1, so 
that at the upper limit of integration with respect to TJ 
the condition of smallness of the second term is not 
satisfied, then, breaking up the integral with respect 
to TJ into two, we can verify that the integral for which 
the foregoing inequality is satisfied is a large quantity 
of order a relative to the second integral. As a result 
(1 7) reduces, accurate to terms ~a -1, to the following 
equation: 

( n'to } ( o:t'to } 1-~ +s - 2--a =0, 

which is identically satisfied when a = 7TT 0 /2. 
At the same accuracy, we determine the constant 

F 1 ~ 1TT 0 /2 from the normalization condition (15 ). 
Finally, from the boundary condition (16) we obtain 
1TT0 /2 =A. Finally, accurate to terms of order A-\ 
the self-similar solution (13) takes the form 

\to= 2 (A/ nyot) '!,, 

W ( nyot } N(tt',t)= 4k0200 yotexp --4-tt'2 . 

(18) 

The solution (18) was obtained under the assumption 
that in the problem there is only one characteristic time 
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T 0 , which is valid only if the derivative afj at iS small 
(condition (6)). In the first approximation in wjkvTe 
there follows from (6) the form of the distribution func
tion (7), and vice-versa. However, in order for such a 
distribution to be established, the momentum and the 
energy of the waves in the initial state must exceed the 
momentum and energy that must be transferred to the 
particles in order to produce a distribution of the form 
(7): 

I J :k k dk I > nmVre ( k~Te ) · 

For a strongly anisotropic spectrum this yields the 
following limitation on the energy density of the noise: 

W/nT>miM. (19) 

A more accurate condition for the applicability of 
our formulas can be obtained formally from the inequal
ity (6). We substitute the solution (7) in the left side of 
(6 ): 

oft iJfo a B Ofo 1 iJ • 
- ~ ----~----(Bsm-1}) (6') 

iJt ov iJt A iiv, v2sin 1'} iJ{} • 

We use the concrete form of the coefficient B from the 
formula (5 ), in which we can substitute the noise density 
from (1) and (18). The ratio B/ A for a narrow spectrum 

is simply wjk. As the characteristic scale of the deriv
ative ajat we choose the linear increment Yo from (8), 
which can only intensify the limitations on the noise en
ergy density. This enables us to replace the inequality 
(6) by 

W I nT > ttom I M, (20) 

which determines the limits of applicability of the self
similar solution (18). 

In conclusion, I am grateful to L. I. Rudakov for sug
gesting the problem and for guiding the work. 
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