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Electron-electron and electron-hole pairings are simultaneously taken into account in a model of an 
impure semimetal with an isotropic electron spectrum, neglecting the scattering of electrons by im
purities. For the case when the dielectric gap which is obtained because of electron-hole pairing is 
much larger than the superconducting gap, a condition is obtained for the ratio of the constants of the 
intraband and interband interactions at which such a pairing is possible. In the expression for the 
superconducting gap a large factor is obtained for the effective coupling constant because of the in
crease in the density of states at the edge of the allowed band in the model of an exciton insulator. 
In the limit of weak alloying, when the energy of degeneracy of the "excess" electrons is smaller 
than the superconducting gap, the latter is expressed in terms of an effective coupling constant by 
a power-law function instead of an exponential function, i.e., in the sense of electron-electron pair
ing such a system behaves like a one-dimensional system. 
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FOR an isotropic spectrum of electrons and holes in a 
semimetal an imaginary pole at T = 0, indicating insta
bility of the system, exists both in the particle-hole 
channel [tJ and in the particle-particle channel for scat
tering within the limits of a single band. In this sense 
the present model is analogous to a model of a one
dimensional metal, and in the problem about rearrange
ment of the energy spectrum it is necessary to take 
"parquet" diagrams into account. [2 J 

instead of the Fermi distribution. 

However one can easily verify that the linkage of 
electron-electron and electron-hole "ladder" diagrams 
in a "parquet" is accomplished in our model only in 
terms of a matrix element associated with a transition 
of a particle from one band to a particle in the other 
band. We shall assume this matrix element to be small 
because of the orthogonality of the states of different 
bands for identical momenta, and therefore we shall not 
take ''parquet'' diagrams into consideration. As will be 
evident from what follows, simultaneous electron-elec
tron and electron-hole pairings are impossible in this 
approximation for equal concentrations of electrons and 
holes. 

In the present article a situation with different con
centrations of electrons and holes is considered. In this 
connection, for the case of only electron-hole pairing 
without taking the electron-electron pairing into account, 
a shift AJl of the Fermi level occurs from the middle of 
the dielectric gap Act into the allowed band. In what fol
lows we shall assume that the superconducting gap Ac 
is much smaller than the dielectric gap. Therefore, for 
AJl one can use the expression associated with Ac = 0 
to within a correction of the order of Ac/ Act· 

Although the amplitude for the scattering of an elec
tron by an electron from different bands does not have 
any singularities in the semimetallic phase, in the 
same way as the amplitude for the scattering of an 
electron by a hole from a single band, after taking ac
count of electron-hole pairing for unequal concentrations 
of electrons and holes the distribution function of the 
''excess'' electrons for bands 1 and 2 at T = 0 has the 
form (see Eq. (9) below) 

544 

The amplitude for the scattering of an electron by an 
electron with such a distribution function does not have 
any singularities. As to taking simultaneous account of 
the scattering of an electron by an electron from both 
the same band as well as from different bands, the sys
tem possesses the usual logarithmic singularity, since 
the distribution function summed over both bands is the 
usual Fermi distribution with limiting energy 
IAJ1 2 - Aa· 

This singularity will be taken into consideration be
low by the introduction of anomalous Greens' functions 
of two types, corresponding to superconducting pairings 
of the electrons from one and the same band and from 
different bands. 

We write the Hamiltonian of the system in the form 

H = .E {S Ea(P).Pacr+(r)ljlacr(r) dr 
Ct=1,2 

+ Aaa J>j;aa+(r)1jl~-cr(r)1jla-cr(r)~lao(r)dr} 

+ ~ A21 J \lltcr+(r)1jJ,cr•(r)1jJ,cr•(r)1jltcr(r)dr, 
0, 0 

p'- PtF2 

Et(P)= Zm , (1) 

i.e., for simplicity we shall assume the electron and 
hole masses to be equal. Let us consider the case when 
the concentration of electrons is larger than the con
centration of holes (a donor impurity), i.e., P1F > P2 F, 
but the difference in concentration on is smaller than 
the critical value[3J above which electron-hole pairing 
does not exist. 

The last term in Eq. (1) corresponds to an interband 
screened Coulomb interaction, where[ 1J 
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and the cutoff energy of this interaction is w2 """ w , 
where wp is the plasma frequency, VF denotes thf veloc
ity of electrons and holes at the Fermi surface, which is 
approximately the same for electrons and holes when 
the difference in their concentrations is smaller than 
the critical value, Kn is the Debye screening radius, 
and E is the dielectric constant of the semimetal. 

Let us denote the cutoff energy of the intraband inter
actions by w1. It will be shown below that Au and Azz 
must be negative in order for superconductivity to exist, 
i.e., an attraction must exist between the electrons 
inside each band, where this attraction may be related, 
for example, to the electron-phonon interaction or to an 
electronic mechanism. £41 

Then relations will be established between Au, Azh 
&:11, and w2 so that superconducting pairing can be real
ized together with dielectric pairing. 

First let us consider the case T = 0. Let us introduce 
the following Green's functions: 

Gu (r, r', t, t') = i(T1jl10+(r, t)1jl 10 (r', t') ), 
G,, (r, r', t, t') = i(T'.Pz-o(r, t)'¢Ia+(r', t')), 

Fu+(r, r', t, t') = i(Tt1J 1o+(r, t)'l'!-a+(r', t') ), 
F,,+(r, r', t, t') = i(T.Pza+(r, t)'i'Io+(r', t')). (2) 

If one takes, as in (2), the singlet spin state in FII> 
then a simultaneous solution for the electron-electron 
and electron- hole pairings is realized either when the 
arrangement of the spins in G21 and Fh is the opposite 
of that in (2) (singlet electron-hole pairs and singlet 
electron-electron pairs from different bands), or else, 
as in (2), for triplet electron- hole and triplet electron
electron pairings from different bands. The latter is 
possible because of the absence of the Pauli exclusion 
principle for electrons from different bands. 

For other directions of the spins in pairs (singlet in 
Gz 1 and triplet in F21 or triplet in Gz1 and singlet in F21) 
the anomalous Green's functions Gw Fi1, and F21 are 
not coupled with each other and therefore, as one can 
easily verify, no singularities at all appear in the am
plitude for simultaneous interband and intraband scatter
ings of an electron by an electron (upon taking account 
of just the fundamental electron- hole pairing). 

Writing down the equations of motion for the opera
tors <JI 1 and <JI 2 with the Hamiltonian (1) and changing in 
them to the Green's functions (2), after taking the 
Fourier transforms with respect to coordinates and 
time we obtain 

(w-e(p) +11~-t)Gu(,w,p) -i~dG,,(w,p) +i~,Fu+(w,p) (3) 
+ ii'! 2F21+(w, p) = 1, 

(w + e(p) + ~J.t)G,,(w, p) + il'!ct'Gu (w, p)- i~zFu+((J), p) (4) 
+ t~,F2,+(w, p) = 0, 

(w+e(p) -~J.t)Fu+(w,p) -~,'Gu((J),p) +il'lz'Gz,(w,p) (5) 
+ i~d·F,,+(w, p) = 0, 

(w- e(p) - L'!J.t)F•,+(w, p) - i~z'Gu (w, p)- i~,·c., ((J), p) (6) 
+ i~dFu+(w, p) = 0, 

where 

~d· = Az,Gz,(O), ~~· = f.uFu+(O), ~.· = f.z,Fz,+(O) (7) 

and, for example, 

G2,(0)= ( 2~)• J G21(w,p)dwdp. 

An expression for AJl in Eqs. (3)- (6) is obtained 

from the condition for electrical neutrality of the sys
tem: 

{)n=-2- J [G11 (w,p)- G22 (w, p)] dw dp. (8) 
(2n)' 

Considering 

l~d. l~zi~Y~~-t'-•V~ ~ct. 

after substituting G11 from the system of equations 
(3)-(4) for A1 = A2 = 0 into Eq. (8), 

1/2(1- e(p)fl'e2 (P)+ ~d2) 

(9) 

Gu0 (w, p)= . 
w + ~J.t- Ve2 (p) + ~ct' + i6 sign( -~J.t + Ve2 (p) + ~ct") 

+ 1/.(1 + e(p)fl'e'(p)+ ~ct2l (10) 
(J) + ~J.t +l'e2 (p) + ~i- i6 

(and a similar expression for G~2 with only a change of 
the sign in front of AJl), from Eq. (8) we obtain the fol
lowing expression for AJl: 

(11) 

From formula (10) and from the analogous expression 
for Gg2 one obtains the distribution function indicated 
above for the "excess" electrons. The second inequal
ity in (9) means On« oncr· £31 

Solving Eqs. (3)- (6) with regard to the functions G11 , 

Gzh F~1, and F;1 we obtain 

Gu(w,p) = {(w + e(p) +11~-t) [(,w- ~J.t) 2 -e2 (p)- ~ct"] (12) 
- ~,2 (w + e(p)- ~1-t)- ~ 22 (w- e(p)- ~1-t)}D-1 , 

Gzi(w, p) = {-i~d '[(w- ~!-t) 2 - e2 (P) - ~d2 - ~12 - ~z2] (13) 
+ 2e~, ~z'}D-', 

Fu+(w, p) = {i~,'[(J)2 - (e(p) + ~J.t) 2 - ~ct'] + (14) 
+ 2(e(p) + ~l-t)~"~2'}D-1 , 

Fz1+(w, p) = {i~z'[(w + e(p))' -~M2 - ~d2] + 2~~ct~I'}U-1, ( 15) 

where 

D = {L((J) + ~J.t)'- e'(p) - ~ct'H (w- ~J.t)2- e'(p) - ~ct'l
- 2~ 12 (w'- e2 (p) - ~J.t'- ~ct') - 2~22(w2 + e2(p) _ ~1-tz -llct•)}. 

The spectrum of the system is determined by the 
poles of Gu: 

(J)I, • ;::;< ± (~I-t+ l'e'(p) + ~d2), 

[ ~· (16) 
Wz,a;:::< ± ~J.t-l'e'(P)+~i+--T(e2(P)+~J.t2 +~ct2 ) 

~.· ~d ] '" +- (~J.t'+~ct2- e'(p)) . (17) 
~d2 

In what follows we shall neglect the contributions to 
Ad coming from A1 and A2 , and therefore we may choose 
the phase of Act to be arbitrary. We shall assume that 
Ad is real. A system of equations for the quantities 
At and M is obtained from Eq. (7). We also choose A1 
to be real. Then, as will be evident from the following, 
A2 will be pure imaginary, and the term 
i · 4AJ1ActA1 (A: + A2) vanishes identically in the denom
inators of the functions G11, G,1, FI1, and F;1. This has 
been taken into account in expressions (3)- (6). 

Substituting the expressions for the functions FI1 and 
F;1 obtained from Eqs. (14) and (15) into Eq. (7), we 
obtain the following system of equations: 

~~· =~J i~t [w2 -(e(p)+ ~J.tl"-~i] + 2~2 ~d(e(p)+~J.t) 
(2 )' dwdp, 

rr D (18) 
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11 , /v.,1 S il1z* [(ro+e(P)) 2 -I1JA2-11i]-2111'11cti1J! d d 
2 = (2n) 4 D ro (~g) 

After integration in Eqs. (18) and (19) with respect to w 
and p under the assumption that jA1!, !A2! « ..; All 2 - A a 
« Ad « w 1, w2 we obtain 

111' = -l.u'l11' (In il\1 + 11ct In 411ctl'I1JA'- 11i) 
I1J! + l'11JA2- 11ct2 2 l'I1JA2- 11d2 1112 + 11,2 

- il1d~In Mctl'I1JA'-11ct' (20) 
2l'I1JA2-11ct" 1112+11,2 

•• - ' • ( w, 11ct I _4_11ct;:_l':_I1_:_J!_2 -_fl,_ct_2 ) oz - - A21 112 In + n 
I1J! + l'I1JA2 - 11ct2 2l'I1JA2 - 11ct2 1112 + 11,2 

(21) 

where X.~1 = X.umpF/27T2. 
An account of the corrections to Act and All due to A1 

and A2 leads to a renormalization of the factor 
Actlhll 2 - Ati in Eqs. (20) and (21), which is small 
under the hypothesis (9). In these equations the terms 
containing logarithms, which are cut off at the lower 
limit by the super conducting gap Ac = (A~ + A~) 112 , are 
cut off at the upper limit not at w1 or w2 but at 
(Ad· ../Ail 2 - Ati) 112, which is physically related to the 
fact that outside of this energy range there are no 
"excess" electrons which are able to form Cooper 
pairs, and cutoff is automatically realized. 

Nontrivial solutions associated with the vanishing of 
the determinant of the system of Eqs. (20)- (21) exist 
for the functions A! and Ai. Substituting the expression 
for G21 obtained from Eqs. (3) and (4) under the assump
tion A1 = A2 = 0 into Eq. (7) for Act, we obtain 

(22) 

With (22) taken into account, the condition for the solva
bility of the system (20)-(21) takes the form 

11ct In 411ct l' I1JA2- tlct' = 
2l' I1J!2- 11d2 1112 + 11z2 

1+A11'In(iilt/iil2 )+AH'/N.,1' _ 1 
=-2 =-. 

Jv.,{ + 3Au' + Au' Azt' In ( wtf il\z) A* (23) 

Let us clarify what sign the interaction X. 11 should have 
in order to satisfy condition (23); here we assume that 
X. 21 > 0 since otherwise Eq. (22) would not have any 
solutions for the dielectric gap Act• which everywhere 
above was assumed to be much larger than the super
conducting gaps jA1j and !A2l· Starting from the assump
tions (9) used by us, the left hand side of Eq. (23) is 
always positive; hence the right hand side is also posi
tive, i.e., the effective interaction X.* must be positive. 

For X. 11 > 0 the positiveness of X.* is guaranteed 
only under the condition 

11ct 1 
In-::->-,, 

ro, Au 
(24) 

which contradicts the initial assumptions under which 
the system of equations (20)- (21) is obtained. For 
X. 11 < 0 the condition (23) is satisfied for 

( il\1 1 ) -1 ' ( iilt 3 ) -1 
In:::-+-, >jA11 J> In:::-+-, , 

Wz Azt Wz Azt 
(25) 

(26) 

Formally X.* varies from zero to infinity in the interval 
(25), but in fact there is a restriction on the side of 
large values of X.* because of the use of condition (9): 

( ~+In iilt )-1 < JA.H'J < {~v,t' + 2l'11JA'- 11i In 11ct } 
Azt' iilz 11ct l'11JA'-11ct' 

X { 3 + Az/ In il\1 + (In iilt + _1_) 21' I1JA'- 11ct" In 11ct )-1 . 
il\2 il\2 A2t' 11ct l' I1JA2 - 11d2 

The appearance of the factor ActN All 2 - AtJ in ex
pression (26) for X.* is associated with the increase in 
the model of an exciton insulatoru1 of the density of 
states as the edge of the allowed band is approached, 
and with its becoming infinite at the band edge for an 
isotropic energy spectrum of the electrons and holes in 
a semimetal. An analogous effect is well known for 
many-valley semiconductors, where for the supercon
ducting gap the effective density of states in the expon
ential contains the number of valleys as a factor. lsJ 

With a decrease in the concentration of "excess" 
electrons, still a large fraction of them turn out to be 
in the region of an increased density of states, and Ac 
= (A~ + A~) 112 increases. 

For A~ + A~ > All2 - t:.tJ (weak alloying) formula (26) 
becomes invalid. In this connection one obtains a sys
tem of equations analogous to (20)- (21) for A! and Ai 
with the following replacement of terms: 

11ct In 411ctl'I1JA2-11ct2 --+[ 11ct ]'/. 
2VI1JA2-11ct2 l112+l1z2 (1112+1122)'1• ' 

i.e., terms appear just like in the problem of the eigen
values of a shallow one-dimensional well. csJ In this 
case 

(27) 

In fact, for such a small concentration of "excess" 
electrons apparently a coupling of these electrons with 
impurity ions l71 will be more advantageous, which is 
also a source of "excess" electrons. According to Eq. 
(21) the relation between At and A! has the form 

(28) 

i.e., if A1 is chosen to be real then A2 must be imagin
ary which we have used in Eqs. (12)- (17). From the 
simultaneous solution of Eqs. (26) and (28) we have 

11 2 _ 11ct(2A.' + Jv., 1')'1'11~2 exp( -21'11!!'- 11ct'/ 11ctA') (29) 
1 - 2(2A'2 + A2t''+ 2A'A2t') ' 

/l,d]v.,t'2l'11JA2- 11i exp(- 2l'11JA2 - 11.(/ 11dA,') 
11'= . 
-• 2(2A.'2+A.,{2 +2A,'A.u') 

(30) 

As is clear from Eqs. (29) and (30), formally as X.* 
- oo, i.e., as 

A2- 0 but A1 remains a finite quantity. As X.*- 0, i.e., 

_1_--+In iilt +~ 
Aii' w2 :~,,,'' 

both jA1j and jA2j approach zero. We note that a non
trivial solution for A2 exists associated with a repulsive 
interaction (X. 21 > 0). 

If All is set equal to zero in Eqs. (18) and (19), i.e., 



SUPERCONDUCTIVITY OF ALLOYED SEMIMETALS 547 

if one takes identical concentrations of electrons and 
holes, then no terms appear which diverge for A1 = A2 
= 0, and therefore in the case of weak interactions con
sidered by us the system of equations (18)- (19) does 
not have a solution under these conditions. 

Let us determine the temperature of the supercon
ducting transition. For this purpose it is convenient to 
use the temperature technique for the Green's func
tions. lBJ In this connection, as is well known, in the 
expressions obtained at T = 0 it is necessary to replace 
an integration over w by a summation over wn 
= (2n + 1)1TT, where n = 0, ±1, ±2, .... The system of 
equations for Ai(T) and A:(T) will differ from Eqs. (18) 
and (19) only by the indicated replacement of an inte
gration by a summation. 

In order to determine the superconducting transition 
temperature, in this system of equations it is neces
sary to regard A1 and A2 as infinitesimal, and terms 
which are quadratic in these quantities are neglected. 
In this connection it is clear that Ai and A: can only 
vanish simultaneously. 

Under the condition (9) the superconducting transi
tion temperature T c will be much smaller than the tem
perature Td at which the dielectric gap Ad vanishes. 
Therefore, for T = T c we shall use expressions (11) and 
(22) with T = 0 for Act and AJJ.. In this limit we obtain 

~t"(Tc-0)=-A.u'~t'(Tc-0) (1n iii, 
~11+l'~l12 -~d2 

+ ~d ln4y2~ctl'~l1f-~ct")-
2l'~l1.2_ ~d2 :rr,2Tc2 

-i ~2(Tc-O)~ct'-u' ln 4y2L'lctl'L'll11
2- ~ct" (31) 

2l' ~ l1f- ~d· n2T c2 

~z'(Tc- 0)=- '-•<'~2(Tc- 0) (1n iii, 
~J.I + 2f~J.12- ~i 

~d l 4y2L'lctl'L'll12_~d2) + n + 
2l'~l12 - ~ct" n~Tc2 

+ i~ 1' (Tc- 0) L'lct)·21' ln 4y2 L'lctl' ~11 2 - ~d2 ( 32) 
2l' ~ [1 2 - ~d· n2T c~ 

where ln y = C = 0.577. 
The temperature T c of the superconducting transition 

is determined from the condition that the determinant 
of the system of equations (31), (32) vanishes. As are
sult 

T - 2¥ ( A 2 A 2) '/ A '/, ( l' ~ f12 - ~i ) c--;:;- '-'l1 - '-'d ''-'ct exp - ~ct'-' , (33) 

i.e., the relation between Tc and (Ai + A~) 112 at T = 0 is 
the same as in the BCS model. lBJ 

~~-~ 

If the condition /Ad, /A2 / « hJJ- 2 - A2 forT= 0 is 
not satisfied, then in order to determine <\:he supercon
ducting transition temperature it is necessary to solve 
the equations for Ai(T) and A:(T) simultaneously with 
the equation for AJJ.(T). 

If the critical temperature expressed by formula (33) 
is determined by a broadening of the Fermi level, then 
the dependence of AJJ. on T takes into account the addi
tional shift of the Fermi level as a whole. 

It is easy to verify that for /Ai(T = 0) /, /A2 (T = 0) I 
» ../AJJ- 2 - Ad the system of equations for AJJ.(Tc) and 
Ai(Tc- 0), A:(Tc- 0) obtained from (31) and (32) by 
the replacement 

-:-::=;;::~=d :=::;; 4y2~d l' ~ l12- ~d2 ( ~ d ) .,, _ ln -+ -

2l'L'll12_ ~/ n2Tc2 Tc 

is not compatible, i.e., a phase transition of second or
der is impossible. We note that it is precisely in this 
limiting case that the superconducting gap (A~+ A~ 1 f2 
enters into the system of equations for A*1 and A; not 
under a logarithmic sign but inside a square-root sign. 
This case has not been investigated in detail in the pres
ent article since apparently in this case the "excess" 
electrons are more favorably localized on impurities. 

Since the argument of the exponential function in ex
pression (33) may be very small because of the fact that 
Act/.../AJJ- 2 - Aa » 1, then one can hope for a critical tem
perature of the superconducting transition in such a 
metal which is higher than that of an ordinary metal in 
the phonon model of BCS. lBJ 

All of the above considerations were carried out for 
the case when the concentration of electrons in the 
semimetallic phase is larger than the number of holes 
(a donor impurity). Analogous results are obtained for 
the opposite case (an acceptor impurity) by only replac
ing AJJ. by- AJJ. everywhere. 

The author expresses his gratitude to L. v. Keldysh, 
whose initiative led to this work being done, and to L. P. 
Gor'kov for discussions of a number of the questions 
which arose. 
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