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Instability of a plasma located in the electromagnetic field of a transverse wave is studied with respect 
to buildup of non-potential high frequency oscillations possessing a frequency close to the frequency of 
the external wave. The threshold value of the external field strength is found and the maximum of the 
increment after the buildup threshold is determined. 

IT is known[ 1 J that a sufficient intense external HF 
electromagnetic field can lead to instability of a plasma 
against the buildup of both potential and non- potential 
oscillations. At not too high intensities Eo of the ex­
ternal HF field, when the oscillation buildup increment 
is smaller than the frequency of the ion-acoustic os­
cillations, such instabilities can be subdivided into two 
types. One corresponds to the interaction of the ex­
ternal HF wave with the low-frequency ion-acoustic os­
cillations of the plasma, and is characterized by genera­
tion of ion- acoustic oscillations with frequency ws and 
of high-frequency oscillations with one or both com­
bination frequencies wo ± Ws at an external field fre­
quency equal to w0 [ 2-4J. The second type of instability, 
which is not connected with the interaction of the ex­
ternal wave with the ion-acoustic oscillations, was in­
vestigated in [2-4l for the case of the buildup of longi­
tudinal oscillations, when spatial oscillations are simul­
taneously excited with zero frequency, and also high­
frequency oscillations with frequency equal to the fre­
quency w0 of the external field. 

In this paper we investigate the instability of the 
second type, which leads, in contrast to[2-4J, to excita­
tion of high-frequency nonpotential oscillations. In addi­
tion, we take into account the dependence of the field of 
the external transverse wave on the coordinates, which 
makes possible a nonzero frequency of excited low­
frequency oscillations and a corresponding deviation of 
the frequency of the excited non-potential oscillations 
from wo. 

1. Let us consider non-potential oscillations in a 
plasma situated in the field of a transverse electromag­
netic wave 

E(r, t) =Eosin (wot-kor}, 

(1) 

Here wp is equal to the sum of the squares of the 
Langmuir frequencies wLa ± (41Te~na/ma) 112 of the 

electrons and of the ions (a = e, i). We shall henceforth 
assume that the thermal velocity of the electrons vTe 
= (Tel me) 112 and the velocity of their oscillations in the 
field (1) of the external wave vE = eEolmewo are much 
smaller than the velocity of light c. 

Being interested in the dispersion properties of the 
plasma in the field of the wave (1), we represent the 
small perturbations of the electric field c'i E(r, t) in the 
form of an expansion in the harmonics of the external 
field: 

= 
/JE(r,t)= .E /lEnexp[i(k+nk0)r-i(w+nw0)t]. (2) 

Linearizing in the usual manner (seeuJ) the kinetic 
equation [sJ in terms of the deviations life ,i of the elec­
tron and ion distribution functions from the ground 
state, and substituting the expansion (2) in the expres­
sions for life i in Maxwell's equations, we obtain a sys­
tem of coupl~d equations for the amplitudes liEn· We 
assume that the oscillations with frequencies w ± wo 
and with wave numbers k ± ko satisfy approximately the 
usual dispersion equation of the transverse oscillations, 
and the frequency w and the increment y do not exceed 
the frequency of the external wave wo. Under these con­
ditions only the amplitudes c'i En at n = 0 and ± 1 are not 
small in the expansion (2), and from the condition for 
the solvability of the system of equations for the ampli­
tudes we obtain the dispersion equation for the non­
potential high-frequency oscillations (see[3 J): 

1 1 

/le,(w + iy, k) + 1 + Oei(w + iy, k) 

1 {[rE,k-ko)2 
+-k' 

4 (k-ko) 2 

X (w + iy- wo) 2 

(w + iy- w0) 2 e1'(w + iy- ,w0, k- ko)- c2 (k- ko) 2 

+ [rE, k +,k0)2 (w + iy + Wo} 2 } = O. 
(k + k0) 2 (w + iy + wo) 2 e1'(w + iy + wo, k + ko)- c2 (k + ko)2 

(3) 
Here rE = eE0 /mew~ is the amplitude of the oscillations 
of the electrons in the external field ( 1), 

Wp 2 ( Veff ) e''(w,k)= 1--- 1-i-
w' w 

is the usual linear transverse dielectric constant, and 
lleff is the effective frequency of collisions between the 
electrons and the ions in the external HF field [sJ : 

(4) 

For the partial contributions o Ea(w, k) to the linear 
longitudinal dielectric constant E(w, k) = 1 + o Ee + 6 Ei 
it is possible to use, in the cases of interest to us, the 
following expressions: _ 

1 ( ,; :rr w ) llea(w,k)=-- 1+iV --- , 
k' rna.2 2 kvra 

lwl < kvra.; (5) 

. ffiLa2 (6) llea.(w+ty,k)=- , lw+ivl>kvra., lwl<y. 
(w + iy)2 

Here rna = (T a/41Te~na) 112 is the Debye radius of the 
particles of type a. 
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Let us consider first the solutions of Eq. (3) at 
lw + iy I< kvTi' when there are no natural low-fre­
quency oscillations in the absence of an external field. 
Such a situation corresponds to screening of the field of 
the low-frequency wave o Eo exp (ik · r - iwt + yt) by the 
electrons and ions. It is easy to see from the dispersion 
equation (3) that the maximum value of the increment is 
reached at k ·Eo= 0. Neglecting the contribution of the 
Cerenkov effect to the dielectric constants 0 EO!(w, k) 
(5), we obtain from (3) the following expressions for the 
frequency and for the increment 

w = c2kko I wo, 

V = - )' + - 6,Z + - Woi1 I 
_ [ 1 rE2 ~·;, 

4 rne2 + rv.' 

Jw + iyJ < kvri· 
Here the decrement is 

(7) 

(8) 

and A. = c2k2/2 w 0 • We note that formulas (7) and (8) are 
actually applicable at lw + iy I< ws, where Ws = wLirDek 
is the usual frequency of the ion-acoustic oscillations. 
From (8) we obtain the following expression for the 
maximum increment and for the corresponding wave 
number, at which this value is reached: 

1 Wp' Eo2 - E~. thr 
'Vmax=~-- , 

8 wo3 4n (neTe + niTi) 

2 1 •Wp4 Eo2 
c2 kmax = - -- -:---:-----=-----:------:::--

4 ofdo2 4n (n.T, + n;I';) 

(9) 

The threshold intensity of the external field E0 thr is 
determined by the relation ' 

E2o. thr W V 4~. 
4n(neTe+n;T;) wp' 

(10) 

When w0 "" wp, expression (10) coincides with the corre­
sponding formula for E0 thr r2 J , at which high-frequency 
longitudinal oscillations'with frequency equal to w0 are 
excited. 

Unlike the case of the buildup of longitudinal oscilla­
tions, the excitation of non-potential high-frequency 
oscillations is possible also when wo :::?> wp in a rela­
tively weak external field, when E~/47T « neTe + niTi. 
In addition, the excited potential oscillations can have 
frequencies w0 ± w that differ from w0 , since the fre­
quency (7) may be different from zero as a result of 
allowance for the finite wavelength of the external field. 
This difference, however, is limited by the condition 
lw I < kvTi> which leads to the following inequality: 

I kko I < Vri ~. 
kk0 c cko 

It is seen from (9) that the requirement y < Ws leads 
to a limitation of the intensity of the external field 

Eo2 Wo~Li2 ( Vre )' -:--:-=---=- < 16--- --
4n(n.T.+ n1Ti) wp6 c (11) 

We note, finally, that at not too strong a non-isothermy, 
when eime T e < e2mi T i, the imaginary parts of the par­
tial dielectric constants o EO! (5) can be neglected in the 
case of low collision frequencies ~'eff 1 >: 

llif the inequality ( 12) is not satisfied, then it is necessary to take in­
to account the contribution of the Cerenkov effect to I>E~(w, k). This 
allowance, however, is essential only in a narrow region of values E0 , 

near the threshold, in which we are not interested at present. 

(12) 

In the case of sufficiently large values of the incre­
ment, when kvTe > y > w, ws, we obtain from the dis­
persion equation (3) the following expressions for the 
frequency and for the increment: 

(13) 

(14) 

which are suitable at sufficiently small angles between 
the vectors k and ko, when lk · kol < k2 • If at the same 
time the inequality 

which is stronger than (12), is satisfied, then the decre­
ment y in (14) can be neglected; as a result we obtain 
from (13) and (14) for the frequency, the maximum in­
crement, and the corresponding wave number ,2 l 

W (kmax) = 
C2kmax ko ~nx·4~)2 

Wo c'k~ax t 

ffiLi VE 
'\"max=~-, 

l'2 c 

Jkmaxko/ < i 
k':nax ' 

2 ( VE2 )'/, kmaxC2 =2 11a WLiWpUlo-- • 
CUTe 

(15) 

When y > kvTe' the expression for the increment 
differs from (14) in the absence of the frequency Ws· 
Therefore, if the quantities datermined by formulas (15) 
do not satisfy the inequality Ymax < kmaxVTe' then the 
maximum of the increment is determined by formula 
(15), and the corresponding wave number is kmax 
"" Ymax/vTe· It should be noted that the assumption 
that the spectrum of the excited high-frequency oscilla­
tions is close to the spectrum of the transverse plasma 
waves, whic3 is satisfied in this case when A<< wo, 
leads to a limitation on the external-field intensity: 

VE Wo 
-~--. 
VTe 'ffiLi 

CONCLUSIONS 

We have investigated above the instability of a plasma 
in the field of a transverse wave and have demonstrated 
the possibility of buildup of potential oscillations with 
frequencies wo ± w close to the frequency wo of the ex­
ternal field. At the same time (and with the same incre­
ment), there is a buildup of low-frequency oscillations 
with frequency w, the deviation of which from zero is 
connected with allowance for the finite wavelength of 
the external field (ko"' 0). Such low-frequency oscilla­
tions, unlike in the case considered in raJ , do not corre­
spond to natural low-frequency (ion-acoustic) oscilla­
tions of the plasma. 

Let us compare the value of E0 , determined in (10), 

2lExpression ( 15) for the increment coincides with the corresponding 
result of [ 7], obtained in the limit of external-field frequencies that are 
much larger than those limited by the inequality inverse to (II), and for 
which vE/vTe ~ w 0 /wLi. 
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with the threshold value of Eo for stimulated Mandel'­
shtam- Brillouin scattering (SMBS) l3 J , which corre­
sponds to the instability of the plasma relative to the 
decay of a transverse external wave into a transverse 
wave and an ion-acoustic wave. The quantity E~ thr for 
SMBS is smaller by approximately Yslws (where Ys is 
the linear damping decrement of the ion-acoustic os­
cillations) than the value given in (10). In an isothermal 
plasma, when Te ~ Ti, the decrement is Ys ~ ws, and 
the process described inl3 J is impossible (at any rate, 
in the weak-coupling approximation). The nonlinear in­
teraction of the external wave with the plasma can then 
be determined by the development of the instability con­
sidered above. 

We note finally that the foregoing neglect of the in­
homogeneity of the plasma is permissible for excited­
oscillation wavelengths smaller than the characteristic 
dimension l of the plasma inhomogeneity. Therefore, if 
it turns out that the characteristic wave number is kmax 
< 1/Z, then the maximum value of the increment and 
the threshold intensity of the external field) are deter­
mined in order of magnitude by the values of k ~ 1/Z. 

In conclusion I am grateful to V. P. Silin for valuable 

advice and for directing the work, and also to Yu. M. 
Aliev, N. E. Andreev, L. M. Gorbunov, R. R. Ramazash­
vili, and A. A. Rukhadze for stimulating discussions. 
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