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We apply the second quantization method to give a theory of spin waves in antiferromagnetics with a 
simple domain structure. We evaluate the elementary excitation spectrum for orthorhombic antiferro
magnetics. We show that two kinds of spin motion are possible in antiferromagnetics, to each of which 
there correspond three kinds of elementary excitations with different energy spectra. The results ob
tained are used to study the (thermal and resonance) properties of antiferromagnetics. 

INTRODUCTION 

IT is well known that different defects (including mag
netic ones) in crystals can affect strongly a number of 
their physical properties. Magnetic defects and inhomo
geneities connected with the breakdown of the magnetic 
order in a crystal may be point defects, planar defects, 
or extended defects. Recently a number of papers have 
appeared which studied the properties of magnetic sub
stances both with local [ 11 and planar[ 2 1 defects, as 
well as with extended defects, [a-s 1 amongst which be
long domain boundaries in ferro- and antiferromagnet
ics. Localized vibrations are excited near point de
fects. Point defects change the density of states[ 11 and 
appreciably affect a number of properties of solids. 
Separate planar[ 21 and extended[ 4- 61 defects cause the 
appearance of specific elementary excitations, which 
are damped fast when we get away from the defect. 
However, if there are in the sample extended defects 
that are connected with one another, specific elemen
tary excitations may occur in the whole sample. Thus, 
in ferromagnetics with a periodic domain structure[ 91 

there exist in the sample two additional kinds of elemen
tary excitations. In this connection it is particularly 
important to develop methods of studying different kinds 
of elementary excitations in ferro- and antiferromag
netics containing extended defects that are connected 
with one another. The simplest case of such defects in 
ferro- and antiferromagnetics is their domain struc
ture. The cause of the formation of domain structure in 
antiferromagnetics was considered in [ 101• 

In [ 7 1 we studied elementary excitations in antifer
romagnetics with a periodic domain structure using the 
classical equations of motion. For a consideration of 
several kinetic and relaxation phenomena in antiferro
magnetics from a single point of view it is expedient to 
apply the second quantization method. In the present 
paper we give a general scheme of finding the elemen
tary excitations in antiferromagnetics with a periodic 
domain structure. 

1. STATEMENT OF THE PROBLEM. 
HAMILTONIAN 
To simplify the calculations we restrict ourselves in 

our considerations to CuCh2fu0 type orthorhombic an-

tiferromagnetics for which we can write the phenomeno
logical Hamiltonian in the form 

JIIG(r)=~(B-A)mZ+~A .. ( ola' )2 +~Ba(o,m"')2 
2 2 hu. 2 Ua 

+ 1/2a1l,2 + 1/2a2l,2 + 1/2b1m,2 + 1/2b2m 2- Momh, (1) 

where Ol, Ol' = 1, 2, 3; {xOl} = x, y, z; everywhere we 
have assumed summation to have taken place over twice 
repeated indices, l is the antiferromagnetism vector, 
and m the magnetization in units 2Mo: 

(2) 

m1 = M1 /Mo; ~ = Ma/Mo; M1, M2 are the sublattice 
magnetization vectors, i = 1, 2; Mo is the saturation 
magnitude of the sublattice magnetization; B- A is the 
exchange interaction parameter, B- A> 0; a 1, ~, 

b1, ~ are the anisotropy constants; h is the field con
nected with the non-uniformity of the vector m: 

roth=O, divh=-8nM0 divm. (3) 

The vectors l and m are connected through the rela
tions 

12 + m• = 1, lm = 0. (4) 

The terms in (1) containing the coefficients AOl and BOl 
represent that part of the exchange energy which is 
connected with the non-uniformity of the vectors l and 
m. The quantities 

(5) 

represent the increase in the exchange energy connec
ted with the non-uniformity mj (j = 1, 2) inside and be-

tween the sublattices. When a1 > ~~ a1 > 0 the spins 
are parallel to the x (y) axis and in the sample 180 de
gree domains, parallel to the xy-plane are possible. 
We restrict our considerations to the simplest domain 
structure (Fig. 1) which consists of plane-parallel do-

FIG. I. Simplest Shirobokov 
type domain structure. The direction 
of the vector I in the domains is in
dicated by the arrows. 
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mains which are separated by transitional layers (in 
Shirobokov's model). In that case the antiferromagnet
ism vector changes in the whole sample according to 
the relations[ 10 1 

where qJ = qJ(z) is the azimuthal angle of the vector 1; 
in the transitional layer m = 0 

p = (a2 / A3) '\ p = kp~. k = 1- e; e = 8e-PD; (7) 

o = 1/p is the effective thickness of the transitional 
layer, k the modulus of the elliptic functions. In anti
ferromagnetics D/o ~ 10 2 to 103; as D/o ~ oo, the 
quantity cos cp = -tanh pz. 

According to the general scheme of E 111 we change 
from the classical quantities. mj (j = 1, 2) to the corre
sponding quanta! operators ffij, the components of which 
satisfy the commutator relations: r 12 l 

[m,;(r), ma•l(r')] = -i(f!/Mo)eaa'a"ma"ll(r-r'). (8) 

Here eaa'a" is the antisymmetric third rank tensor, 
a, a', a" take on the values 1, 2, 3 cyclically, JJ. = yn, 
y = gJJ.B is the spectroscopic splitting factor. By virtue 
of (2) the quantities 1 and m in the Hamiltoniap. (1) ar.:e 
also replaced by the corresponding operators 1 and m. 

In the original xyz system of coordinates the quanti
zation axis is not fixed for an inhomogeneous system. 
It is in that case convenient to change to a local system 
of coordinates XYZ such that the X-axis is along the 
equilibrium vector 10 while the z-axis remains un
changed (Fig. 2). The components of the operators 1 
and m then transforms as follows: 

mx = mx cos<p- my sin<p, 

my= mxsin<p-j- ntyCOS(jJ, 

Zx = Zx cos <p- ~/y sin <p, 

l~ = lx sin <p + /y cos <p. 

(9) 

The commutation relations (8) remain invariant under 
such transformations. Further calculations turn out to 
be simplest if we assume 1 and m to be functions of the 
old coordinates (x, y, z). 

Since there are no demagnetization fields in antifer
romagnetics, the domain boundaries are more mobile 
than in ferromagnetics and can shift over several lat
tice constants. The rigidity of the domain boundaries 
caused by anisotropy and magneto-elastic forces will be 
taken into account by adding to the Hamiltonian a term 
of the form 

(10) 

where R is the "rigidity" parameter of the domain 
boundaries. The dipole energy plays in antiferromag-

FIG. 2. System of coordinates. 
The X-axis is along the vector 10 . 

netics a secondary role and we shall take it into ac
count in Winter's approximation in the form 8ITWomi;. 
Taking the term (10) into account, the Hamiltonian (1) 
can in the new set of coordinates be written in the form: 

1 -, 1 ( a f ... )' i [ (- az~ - al x \ 
3£ (r) = z-(B- A) m + yAa ox.. -!- T A3 2 lx ---az-lyaz )'~'' 

+ (l, 2 + 1- ') ·•] + __!_ B (om ... )'+ __!_ B [ 2 ( - only , a,;,x) , 
X Y (jJ 2 a OXa 2 3 mx-az- 11/y-az <p 

. - ]1- 1- ~ + (mx2 + my2)<p'2 +-za11.' + 2 a,(lx2 sin2 <p-j- ty2 cos2 <p 

- - 1 ~ - -+ 2lxly sin <p cos <p) + 2 b2 (mx' sin2 <p + my2 cos• <p + 2mxmy sin <p cos <p) 

1 - - -
-!- 2 (b, + 16nM02) mz' + R (ly2 + my2). (11) 

The sublattice magnetization operators m1 and m2 

(by virtue of (2) also the operators i and m) can be ex
pressed ii} terrps of th.e sec~nd quantization opera
tors[ 111 b~ = bl(r), b? = b+J(r) (j = 1, 2) which satisfy 

the commutator relations 

[bi(r), b+i'(r')] =1\;;'1\(r-r'). (12) 

We can then express the Hamiltontan of the. system as 
a power series in the operators b~ and b~l: 

.U(r) = .Uo(r) + de2(r) + de,(r) + d64(r) + ... , (13) 

where 

.U0 (r) = a2k-2 (1- k2 cos2 rp) + a2 sin2 <p, 

( ) fL { +i ;- i "' ; r +i +i' JC, r = 4Mo a;;-b, b, + zPil(b,b, + b, b, ) 

i)+b j iJbj 1 ( iJbj iJbj' i)b+j i)b+i' )} 
-J-Aaa-'---' -j--B~~ _r _r +-'---'- . 

OXa ax.. 2 ax.. ax.. OXa ax .. 
Here 

a = 1, 2, 3; {xa} = (x, y, z), j, / = 1, 2; 

a,,= a22 = B- A+ 4a2 cos2qJ + 1/z(a, + 15!) -
- 1/z(4 -- k-2)a2 + 1/2b2k-2 -!- 2R, 

a12 = a21 = 1/2[ (a2- b2) k-2 + 151 -a I], 
~~~ = ~22 = 1/2[(a2-!- b2)k-2 - (a1 + 151)] + 2R, 

~12 = ~21 = - (B- A) -!- 1/z (a, - oi) -!- 1/z(a2 - b2) lc-2 , 

B~~ = B~t =Baa. B~a = 0, b;_ = b1 -!- 8nMo2 • 

(14) 

(15) 

(16) 

As in the homogeneous case, in the expansion (13) .U2 

= J d6 2 (r)dV determines after having been brought to di
agonal form the sum of the energy of the elementary 
excitations. The higher-order terms d'G 3(r) and 'd'G4(r) 
which we shall not consider here describe collision 
processes between different types of elementary exci
tations. They can be used to describe kinetic and relax
ation effects in the inhomogeneous case. 

2. DIAGONALIZING THE QUADRATIC FORM d'C 2 

The coefficients in the quadratic form d'G2 (r) depend 
for an inhomogeneous antiferromagnetic on z and the 
diagonalization scheme is not the same as the scheme 
for a homogeneous antiferromagnetic. 

Because of the syrp.metry of the crystal we can ex
pand the operators bl (r) and b + l (r) in a two-dimen
sional Fourier series: 

j 1 ~ j ix j_P 
b (r) c~ ,;-- LJ b, (z) e ' 

v s • • 
(17) 

where S0 is the area of a cross-section of the sample, 
K 1 = K 1e 1 + K 2 e2 , p = xe 1 + ye2 , eu e2 are appropriate 
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unit vectors. In (17) the operators ~(z) satisfy by vir
tue of (12) the commutator relation 

b) (z) b,# (z')- b,.+i' (z') b,i (z) = lixx' li;;- (z - z'). ( 18) 

The quadratic form :Je 2 is then transformed into 

J'62 =-J-l-I: J {ajj'(x)b,+ibJ + ~ ~;;·(x) (b,ib_,i' + b,+ib_,+i') 
4Mo x 2 (19) 

iibx +i iib,i 1 ., ( iib) iib_J iibx +i iib-x +j' ) } 
+A33-~---+~B"'" -.---+----~- dz, 

az iiz 2 az iiz iiz az 

where 
a;;•(x) =a;;-+ Arrxr 2 + A,,x,2, 

~jj·(x) = '~W + Brrxr 2 + B,,x,2• 

(20) 

The operators b~ = b~(z), b~j = b~j(z) are determined 

by the equations of motion 

(21) 

Using (18) and (19) we get from (21) 
. J-1 { d2b,i d2b_,i' ) 

ilio,i=-·- a;;·(x)b,l +~;r(x)b_,+i' -A3a--- B33if __ (22) 
4M0 dz2 dz' 

(j, j' = 1, 2). 
Using the canonical transformation 

(23) 

we can diagonalize the quadratic form (19); here ujj' 
.. , , K 

= ~l (z), .... are u~nown functions, c~ new boson op-

erators, meL = EKcL, and the quantity EK is the energy 
of the elementary excitations, and 

(24) 

Substituting (23) into (22) we get a set of equations to 
• jj I jj' • determine uK , v_K, EK. 

Ji' d2u~r d2 v~: i'l" i'i" 
833 1JZ2- .4aa--c/T+~;j'(X}Ux + (a;;•(X) + f.,/ijj')V~x = 0, 

.. , d2vrr d'uii" ·· ... ·· ... 
B!(a dz~" -A •• dz; + ~ii' (x) v'~ + (a;;o(x)- f., li;;-) u~' = 0. (2 5) 

Here >..K = (4Mo/!-L)EK; j, j', j" independently take on the 
values 1, 2. These equations must be solved with well
defined normalization conditions which we can obtain 
using Eqs. (18), (23), (24) and also the equations of mo
tion (2 5): 

u1' (z) u;fl (z')- vi!~ (z') vii~ (z) = li;;-li (z- z'), 

vi!~ (z) u1' (z)- vii~ (z) u1' (z') ~o o'. (26) 

After diagonalization the quadratic form J'62 has the 
form 

J'6, =I: Cx +i c,i fx; + D.d'6o, 

X, j 

where 

(27) 

(28) 

Here j denotes the number of the kinds of motion. The 
number of spectral branches depends on the number of 
independent solutions of the set (2 5). 

3. SOLUTION OF THE SET (25). FINDING THE 
ELEMENTARY EXCITATIONS AND THEIR 
ENERGY SPECTRUM 

By virtue of the symmetry of the coefficients of (19) 
the set (25) can be reduced to an equivalent set of four 

second order differential equations with four unknown 
functions. All these equations have a similar form and 
the functions u~\ u~\ v:~, and ~-~ can differ only by a 

constant factor: 
u,11 = Crrt!J(z}, Ux21 = Cr2t!J(z), V-x11 = C2rll'{z}, v_,21 = c,.~l(Z), 

(29) 
where the Cik (i, k = 1, 2) are arbitrary constants, 

1/J (z) is an unknown function. The sets of equations ob
tained have solutions which satisfy the normalization 
conditions (26), respectively, for the following cases: 

(30) 

(31) 

In an antiferromagnetic without domains (in the uniform 
case) d21/J/dz2 = K~z/J, and we get two different spectral 
branches.£ 111 The first branch (30) corresponds to the 
motion of the vector 1 within the ab-plane and to oscil
lations of the vector m at right angles to that plane. On 
the other hand, the second branch (31) corresponds to 
the motion of the vector 1 outside the ab-plane and a 
motion of the vector m in that plane. [ 71 

In antiferromagnetics the exchange interaction be
tween sublattices is stronger than inside the sublattices. 
We may thus assume that 

I erl =lAss I Bssl~ 1. (32) 

The set of four equations can then be appreciably sim
plified and reduces to two independent equations: 

d'IJ: 
d6,- (2k2 sn' 6 + AUI)t!J = k2e11 (sn2 6) t!J, (33) 

d'IJ: -d~2 - (2k2 sn2 s + AUI)t!J = k2e12 (sn2 £) t!J, (34) 

where the. 1/J (~) are the eigenfunctions of the problem 
and the Al are the new eigenvalues which are connected 
with the old ones >..K by the following equations: 

(A,i- t.x)C11 + B,JC,, = 0, 

B,iC 11 + (A,i + t.,)C,, = 0; 

j = 1, 2 correspond to cases (30) and (31); p1z = ~; 

A;.11 =B- A+ a1 + b2k-2 - 2a2 (1 + k-2 ) 

+ 2R + Aux12 + A,,x,2 - A(~A,,p,2 , 

(35) 

B~1 = - [B- A - a1 + b,k-2 + 2R + B11x12 + B 22"-22 - A (11B 33p12 ], 

A~1 = B- A +b1 - (2 +k-2)a,+2R + A11x12 + A.,x,•- A(21 A33p12, 

B~~-=- [B- A+ iJ';- a,k-2 - 2R + B11x 1 2 + B22x 22 - A('1RssP12 l, 

8!1 =e) + "'' er2 = er- 82, c =ell; c,, = 1- ez, 
e2; = J..ci I A,;~ 1. (36) 

If the eigenvalues of Eqs. (33) or (34) are known, the 
energy spectrum of the elementary excitations is deter
mined from (3 5): 

(37) 

We cannot solve Eqs. (33) and (34) exactly. We can 
use the fact that the E 1j are small to solve them by the 
method of successive approximations. 

a) Zeroth Approximation 

In zeroth approximation in E1j the two Eqs. (35) and 

(34) are the same: 
d2¢ 
--(2k2 sn2 s + Ao)¢ = 0. 
d£2 

This equation has three linearly independent solu-

(38) 



THEORY OF SPIN WAVES IN ANTIFERROMAGNETICS 497 

cnt 
a 

FIG. 3. The shape of the wave function: a) for the first b) for the 
second kind of excitation. 

snl: 

JJ 

FIG. 4. The shape of the wave function for the third kind of excita
tion for the special case 1< 3 = 0. In the general case it is represented by 
the superposition of two waves: (sn ~ + i K3 p;1 ) exp (+ iK 3 p;1 ~). 

tions: [ 7 ' 9 J 

Aot! = -1, 'i't (s) =en 1;, 
Aozl = -k2, 'i'z(s) = dn 1;, (39) 

AoaS=-(1+T>Z+ ;:2 ), ¢a(s)=(sns=F 1;)exp{± 1;s}. 

There are thus three kinds of elementary excitations 
(39) (see Figs. 3, 4) for each kind of motion. The solu
tion of the set (2 5) corresponding to the two kinds of 
motion can be written in the form: 

I. u~t> = - u<:t> = em"ljli, v~'il = - v<.'~l = em;¢;, (40) 

II. u~~t> = u~~1> = em1jl,, v~~~ = v~!l = em 1l'h ( 41) 

where the constants cikl (j = 1, 2; i = 1, 2, 3) are de

termined from (35) and a normalization condition such 
as (26): 

1 )'A.;J + Axf 

2 )"2Ax!D; 

E~ 1, 

(43) 

(44) 
L 

N=v· 
L is the size of the sample; the A~i• B~i are deter
mined from (36), using (43); the indices j = 1, 2 indi
cate the kinds of motion; i = 1, 2, 3 the kind of excita-
tions (39). . 

The general expression for the bk (z) has the form 

(45) 

After diagonalizing the quadratic form we can finally 
write it as follows: 

where 
a 

~~.=-~( :M.) .E.E (A.;i-y(A.;i) 2 -IB.;iJ2), (47) 
i=i x, j 

n~i indicates the average number of elementary excita

tions of kind i with a quasi-momentum K for the j-th 
kind of motion. 

b) First Approximation 

In the first approximation. in Eij ~e character of the 

solutions for the functions uki and v:Ki is not changed 

but the energy levels are shifted by a small amount. 
This shift is connected with the change in the eigenval
ues of Eqs. (37), (38) 

where 

A .J--2 .. kz(ilsn2sli) (49) 
h - e,, (iii) ' 

( i I sn2E I i) are the diagonal matrix elements of sn2~ 
with respect to the functions 1/Ji (i = 1, 2, 3), (iii) the 
integral of the absolute square of 1/Ji over ~. Using (49) 
we can finally express the spin wave spectrum through 
the equations 

e~!>= (-11-) {[B-A+bz-a2+2R+B.Lx.l_2] 
2Mo 

>: [ a1- az + A.Lx.L2 + a2e11st]} '", 

e~~> = (-11-) {[B- A+ bz- a2 + 2R + B.Lx.L2] 
2M0 

X [ a1- az- 2a2e + A.Lx.L2 + a2e11s2]} ''•, (50) 

e~~> = (-11-) { [B- A+ bz- az + 2R + B.Lx.L2 + B,x32J 
2Mo 

X [ a1 + A.Lx.L 2 + Aax:f' + azeusa]} 'I•, 

e~~ = (~) {[B- A+ o1- a2 + B.Lx.L2] 
2Mo 

x[2R + 2a2e + A.Lx.L2 + a2e12s1]}'", 

Ex2 = -- {[B-A+o1-a2+B.Lx.L2] (2) ( " ) 

2Mo 

X[2R + A.Lx.L2 + a2e12s2] }'I•, 

eS) = (-11-) {[B- A+ 01 + B.Lx.L2 + B3x32] 
2Mo 

X[a2 + 2R + A.Lx.L2 + Aax32 + aaEi2sa]}'l•; 

1 
s1=sz= 3 . 

(1 +xa2fp2) (K -E) 
sa= K-E+KxaZfp2 

(51) 

Equations (25) allow solutions in yet another case, 
when E2 = IB33 I/I.t\ 33l << 1. The corresponding solu
tions for 1/Ji and EI can be expressed by Eqs. (39), 

(50), and (51) with the only difference that the value of 
the parameter Eij is replaced by E2• For arbitrary 

values of the parameters A3 and B3 we can look for a 
solution of the set (25) in the form of a linear combina
tion of the functions 1/Ji in (39), i.e., 1jJ = ai 1/Ji· To each 
type of motion there correspond then three kinds of ele
mentary excitations; the form of the spectrum is essen
tially unchanged. Because of the complexity of the cal
culations this case shall not be considered separately. 
From this it follows that independent of the values of 
the parameters A3 and B3 the scheme assumed here 
describes correctly the basic characteristic properties 
of the elementary excitations in antiferromagnetics with 
a domain structure. 

Of the three spectral branches for each type of mo-
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tion the smallest gap occurs for two kinds of excitations 

(EL, EiJ which differ little from one another. However, 
in some cases the quantities 2a2E and a2EijSj may be 

of the same order as 2R or a1 - a2. For thermal motion 
the first and second branches are first of all excited 
when a1- a2 < 2R for the first type of motion and when 
a1- a2 > 2R for the second type of motion. We shall 
consider separately the conditions for a parametric ex
citation of these types of spinwaves. 

4, SOME APPLICATIONS OF THE ELEMENTARY 
EXCITATION SPECTRA 

We can use the obtained elementary excitation spec
trum to study different physical properties of antiferro
magnetics with a domain structure (magnetic, thermal, 
resonance, kinetic, and relaxation properties). We shall 
restrict ourselves here to considering the two simplest 
applications. 

1. In antiferromagnetics with a periodic domain 
structure there are up to three resonance frequencies 

w1 = (E~i / li) I K = 0• for each kind of motion; two of 

those, w~ and w~ are connected with the presence of a 
domain structure in the sample: 

rof0 =..:!._ {[B -A+ bz- az] [at-~+ ~eus,]}'t., 
2Mo 

ro~0 = 2~0 {[B- A+ bz- ~] [a1 - ~- 2~e + a2eus2]}''•. 

roJ21 = ..:!._ { [B- A+ o1 - az] [2R + azetsz]} '", 
2Mo 

(53) 

(54) 

where y = tJ.Iti is the spectroscopic splitting factor. 

The difference between the frequencies ~wj = w~- w~ 
depends on the quantity 2Ea2. By measuring this differ
ence we can estimate the domain size. Measuring w ~11 
and <4_21 we can estimate the parameters a1 - a2 and 
2R. 

2. Using the elementary excitation spectrum we 
evaluate the spin part of the entropy and the specific 
heat in an antiferromagnetic sample with a periodic do
main structure: S = -aF/aT, Cs = -Ta2F/oT2, where 
F is the free energy. We consider two special cases: 

a) t ~i = E~i /kT << 1. Then we have 

F;i =- G;i(kT)"(1- 3~0;i)e-bod, 

Fa1=-G3i(kT) 3 ( :; - :
2 ~31); 

S;l = 3G;ik(kT)•e-t .. 1 ( 1- 9~0;1), 

. [ 4nZ n2 . 21 ] 
Sai=Ga>k(kT) 3 15-2(~oa3 ) 2 -2(~oal)l ; 

C,;l = 6G;ik(kT)2e--t.•1'>(1- 3~0;<">), 

{ 4nZ nZ ( n ~031) C,a1=3Galk(kT) 3 ---(~31) 2 + --t031Jn--
15 6 I 2 - kT 

x(~031) 3 +('/zC- 35fz) (~;I)• }• C ~ 0.58; 

G;I=~(Mo )2_n_ Gai=.!__~(2M0 )3 _1_~ 
C;l :tJl l'A 1Az 3 (2:rt) 3 11 (Cal)''• l'AtAzAa 

Ci'> = C~'1 = B- A+ b,- a,+ 2R, c~•> = c~•> = B- A+ b1 + 16:rtM02 

C~'>= B- A+ b,+2R, c~•> = B- A +b,+ l.6:rtM02 ; 

b) di = E~i/kT >> 1. In that case 

F11 =- G;i(kT)•e-t .. l, F31 =- 3l':rt/2 G31(kT)"(~31)-'I•e-t.,l; 

8 11 = G11(kT)2ke-to•'(3 + 2~11), 

sa'= G/3 ( ~ k (~~.r'1•e-t..1 (4 + ~~) (kT)3; 

C,11 = 2G11(kT)2ke-to•'(2(t;o11)3 + 3t;o11 + 3), 

c~ = 3 { n/2 G/k (kT)3 (t:~r''• e-r...l ( (~ls)'- 'Ia (~s)8 + 5b~ + 12), 

i=1,2, i=1,2. 

At low temperatures <di >> 1) the specific heat for 
the first and second kinds of excitations is appreciably 
larger than for the third kind. 

We shall consider the interaction between different 
kinds of excitations in another paper. 

CONCLUSIONS 

Two kinds of spin motion are possible in an antifer
romagnetic sample with a periodic domain structure; 
and there are for each of them three kinds of elemen
tary excitations with a different energy spectrum. For 
each type of motion the first two types of excitations 
are specific and are connected with the presence of the 
domain structure in the sample. These two kinds of ex
citations (Fig. 3) are plane waves propagating parallel 
to the domain boundary with a variable amplitude which 
attains a maximum in the middle of the transitional lay
er while vanishing in the middle of the domains. The 
third kind of excitations (Fig. 4) is a complicated spin 
wave which is similar to the homogeneous case but 
strongly deformed under the influence of the domain 
structure. For each kind of motion the energy gap in 
the first two kinds of excitations is appreciably smaller 
than for the third kind. In this connection the entropy, 
specific heat, resonance and relaxation properties of 
the sample change appreciably. 

The authors are grateful to E. A. Turov for his in
terest in this paper and for useful discussions. 
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