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We apply the second quantization method to give a theory of spin waves in antiferromagnetics with a

simple domain structure. We evaluate the elementary excitation spectrum for orthorhombic antiferro-
magnetics. We show that two kinds of spin motion are possible in antiferromagnetics, to each of which
there correspond three kinds of elementary excitations with different energy spectra. The results ob-

tained are used to study the (thermal and resonance)

INTRODUCTION

IT is well known that different defects (including mag-
netic ones) in crystals can affect strongly a number of
their physical properties. Magnetic defects and inhomo-
geneities connected with the breakdown of the magnetic
order in a crystal may be point defects, planar defects,
or extended defects. Recently a number of papers have
appeared which studied the properties of magnetic sub-
stances both with local’!'? and planar!®} defects, as
well as with extended defects,’*~®? amongst which be-
long domain boundaries in ferro- and antiferromagnet-
ics. Localized vibrations are excited near point de-
fects. Point defects change the density of states!'? and
appreciably affect a number of properties of solids.
Separate planar!?! and extended! * ®? defects cause the
appearance of specific elementary excitations, which
are damped fast when we get away from the defect.
However, if there are in the sample extended defects
that are connected with one another, specific elemen-
tary excitations may occur in the whole sample. Thus,
in ferromagnetics with a periodic domain structuret®!
there exist in the sample two additional kinds of elemen-
tary excitations. In this connection it is particularly
important to develop methods of studying different kinds
of elementary excitations in ferro- and antiferromag-
netics containing extended defects that are connected
with one another. The simplest case of such defects in
ferro- and antiferromagnetics is their domain struc-
ture. The cause of the formation of domain structure in
antiferromagnetics was considered in L%,

In [7? we studied elementary excitations in antifer-
romagnetics with a periodic domain structure using the
classical equations of motion. For a consideration of
several kinetic and relaxation phenomena in antiferro-
magnetics from a single point of view it is expedient to
apply the second quantization method. In the present
paper we give a general scheme of finding the elemen-
tary excitations in antiferromagnetics with a periodic
domain structure.

1, STATEMENT OF THE PROBLEM.
HAMILTONIAN

To simplify the calculations we restrict ourselves in
our considerations to CuClz2Hz0 type orthorhombic an-
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properties of antiferromagnetics.

tiferromagnetics for which we can write the phenomeno-
logical Hamiltonian in the form
2 1 2
0o ) +_§—Ba( 0o )

1
%(1‘)"—‘?(

+ 1/sail,2 4 1/sa5l,2 4 1/ 2b1m? 4= 1/3bam 2 — Momh,
where a, a'=1,2,3; {x,} = X, y, 2; everywhere we
have assumed summation to have taken place over twice
repeated indices, ! is the antiferromagnetism vector,
and m the magnetization in units 2M:

Olos omy’

B—A)m2+2iAa(
(1)

@)

m = !/,(m; + my),

m, = M, /M,; m, = M;j/M,; M;, M, are the sublattice
magnetization vectors, i =1, 2; M, is the saturation
magnitude of the sublattice magnetization; B — A is the
exchange interaction parameter, B — A > 0; a,, a,,

b,, b, are the anisotropy constants; h is the field con-
nected with the non-uniformity of the vector m:

= 1/2(1111 - m?),

roth =0, divh = —8nM,divm.

®)

The vectors I and m are connected through the rela-
tions

Ed4mi=1{, Im=0.

()

The terms in (1) containing the coefficients A, and B,
represent that part of the exchange energy which is
connected with the non-uniformity of the vectors ! and
m. The quantities

Aga = B + Aoc‘

(5)

represent the increase in the exchange energy connec-
ted with the non-uniformity mj (j = 1, 2) inside and be-
tween the sublattices. When a, > a,, a; > 0 the spins
are parallel to the x (y) axis and in the sample 180 de-
gree domains, parallel to the xy-plane are possible.
We restrict our considerations to the simplest domain
structure (Fig. 1) which consists of plane-parallel do-

Baoc = B(z _Aa

FIG. 1. Simplest Shirobokov = = —

. . = = -

type domain structure. The direction = = =
of the vector 1 in the domains is in- _,%‘_ H H
dicated by the arrows. &= H g
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mains which are separated by transitional layers (in
Shirobokov’s model). In that case the antiferromagnet-
ism vector changes in the whole sample according to
the relations® !°!

0S¢ = —snpz, sing=cnpz, YJ1—k2costg=dnpiz, (6)

where ¢ = ¢(z) is the azimuthal angle of the vector 1;
in the transitional layer m =0

p=(az/ A3)",

6 = 1/p is the effective thickness of the transitional
layer, k the modulus of the elliptic functions. In anti-
ferromagnetics D/6 ~ 102 to 10°% as D/6 — =, the
quantity cos 9 = —tanh pz.

According to the general scheme of {*!! we change
from the classical quantities m; (j =1, 2) to the corre-
sponding quantal operators mj, the components of which
satisfy the commutator relations:t!?!

[ma;j (r), Maryr (') ] = —i (1] Mo) eaoarmad (r — ). 8)

Here ey /" is the antisymmetric third rank tensor,
a, a’, a” take on the values 1, 2, 3 cyclically, u =vh,
Yy = guB is the spectroscopic splitting factor. By virtue
of (2) the quantities 1 and m in the Hamiltonian (1) are
also replaced by the corresponding operators 1 and m.

In the original xyz system of coordinates the quanti-
zation axis is not fixed for an inhomogeneous system.
It is in that case convenient to change to a local system
of coordinates XYZ such that the X-axis is along the
equilibrium vector 1, while the z-axis remains un-
changed (Fig. 2). The components of the operators 1
and m then transforms as follows:

p=rkp, k=1—¢g; &=8ePD (7)

my, = r;zxcoscp— my sing,

r;zu: mxsin @ 4+ my cos g, 9)
le = le cos ¢ —szincp,

[, = lxsing + Iy coso.

The commutation relations (8) remain invariant under
such transformations. Further calculations turn out to
be simplest if we assume 1 and m to be functions of the
old coordinates (x, y, z).

Since there are no demagnetization fields in antifer-
romagnetics, the domain boundaries are more mobile
than in ferromagnetics and can shift over several lat-
tice constants. The rigidity of the domain boundaries
caused by anisotropy and magneto-elastic forces will be
taken into account by adding to the Hamiltonian a term
of the form

R(ly? + my?), (10)
where R is the “‘rigidity’’ parameter of the domain
boundaries. The dipole energy plays in antiferromag-

A
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FIG. 2. System of coordinates.
The X-axis is along the vector ;.
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netics a secondary role and we shall take it into ac-
count in Winter’s approximation in the form 87Mjm3.
Taking the term (10) into account, the Hamiltonian (1)
can in the new set of coordinates be written in the form:
i 1 aia ~ aly P alx
2 54 ( [z(lx K
R N ame \* 1 - Omy ~ omg)
e AT S T N
+ (mx® + my?) ‘P"] +7 al? + —;'az (Ix*sin® ¢ +ly2 cos?

~ ’ 2
H(x)= 5 (B—A)m + i )+%As

+ my?cos?@ + 2mxmy sin ¢ cos )

(11)

+ 2ixly sin g cos ) + —;— by (mx?sin? @

+ -;— (by + 162M2) m2 + R (Iy® + my?).

The sublattice magnetization operators m, and m,
(by virtue of (2) also the operators i and ﬁ)) can be ex-
pressed in terms of the second quantization opera-
torst 1 bJr = bl(r), b*J =b*J(r) (j =1, 2) which satisfy

the commutator relatlons
(12)

We can then express the Hamiltonian of the system as
a power series in the operators bi. and b;.J:

[bi(r), b+ (r')] = 378 (r —T').

% (r) = Ho(r) + Ha(r) + 3bs(r) + Ha(r) +..., (13)
where
Ho(r) = ask—2(1 — k2 cos?¢) + as sin2 g, (14)
477 3 1 P .
Ha(r) = ﬁ{“ﬁ'b#bi + 5By (brbe + b:7”)
b anl | J-J-'< vl ovl | avy aby )}
+ Age 0xy 0z + TBua 0z, 0za + oze 0zq . (15)
Here
a=1,2,3; {2a} = (2, 9,2), j,j/=1,2;
an = ap =B — A+ 4a;cos? ¢ + /(a1 +b1) —
— Y2 (4 - k2) ag + '2b2k~2 - 2R, (16)

Q2 = Q21 = i/2[(112 — b2)k_2 + b — 111],
Bu = B2 = '2[(az + b2) k2 — (a1 +51)] + 2R,
Bz = B = —(B—A) + 2 (a1 — B1) + Y2(az — o) k2,

Bla=Bii=Bu, Bih=0, b=0b+8uM.

As in the homogeneous case, in the expansion (13) 54,
= f%z(r)dV determines after having been brought to di-
agonal form the sum of the energy of the elementary
excitations. The higher-order terms 56 3(r) and 564(r)
which we shall not consider here describe collision
processes between different types of elementary exci-
tations. They can be used to describe kinetic and relax-
ation effects in the inhomogeneous case.

2. DIAGONALIZING THE QUADRATIC FORM %,

The coefficients in the quadratic form #%,(r) depend
for an inhomogeneous antiferromagnetic on z and the
diagonalization scheme is not the same as the scheme
for a homogeneous antiferromagnetic.

Because of the symmetry of the crystal we can ex-
pand the operators bJ(r) and b*J(r) in a two-dimen-
sional Fourier series:

IX_LP

Dbl (17)

an

where S, is the area of a cross-section of the sample,
K| =K@, +Ky€, p=2X€ +Yye, €, e are appropriate

v (x) =
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unit vectors. In (17) the operators b](z) satisfy by vir-
tue of (12) the commutator relation

by (2) by (37) — byt (2') by (3) = 8w 855 (2 — 27).. (18)

The quadratic form %, is then transformed into

__H +ip, i _1_ iy i +ip_ +i
o= Zf{ (1070 -+ i) b0 )
b, ti db,J 1 0b,d 9b_,7 0b, i b+
B o )
+4as 0z 0z + 2 % 0z 0z + 0z Jz z
where

aji (%) = ajj+ Aia® + Agong?,

Bij*(%) = Bijs -+ Bus® + Bogus?.
The operators b’j( = b,j< (z), b;j = b;j(z) are determined
by the equations of motion

(20)

i = (buIBy — Habyd).
Using (18) and (19) we get from (21)

.. u y , d?b, a2y
ihb,d = il {a:‘j'(%)bu’ +Bij (%) bost — Agy B — \[(22)

(.7 =1,2).
Using the canonical transformation

21)

s +jj’ +J
by =uuiled - vy e,

(23)
we can diagonalize the quadratic form (19); here u]J

(z) . .. are unknown functions, c] new boson op-
= eKc,]o and the quantity ¢, is the energy
of the elementary excitations, and

erators s 1ﬁc

+j’ +i’
CKJC% — Cy’ Cx = Oun 5]]

(24)
Subst1tut1ng (23) into (22) we get a set of equations to
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determine u” s vp

K2 €k
d2uj, a2,
BE T 1 PO B+ (e ) -+ hu) T =,
. 42 -7:;7:' 42 iJ' . s
B — Aw i By (0 VI -+ (037 () — )l = 0. (25)

Here Az, = (4M,/)€y; i, ', i” independently take on the
values 1, 2. These equations must be solved with well-
defined normalization conditions which we can obtain
using Egs. (18), (23), (24) and also the equations of mo-
tion (25):

u¥ (z) u"jj’ (z’)

v, (2)w

U_”‘ (z’) ux (2) = 8,76 (z — 2'),

— 07 (2) ull (z') = 0.
After diagonalizatlon the quadratic form 56, has the
form

(26)

%222 exticd Suj+A%0’ (27)

%, j

where

A%o:“'z [U IZSx (28)
Here j denotes the number of the kinds of motion. The
number of spectral branches depends on the number of
independent solutions of the set (25).

3. SOLUTION OF THE SET (25). FINDING THE
ELEMENTARY EXCITATIONS AND THEIR
ENERGY SPECTRUM

By virtue of the symmetry of the coefficients of (19)
the set (25) can be reduced to an equivalent set of four
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second order differential equations with four unknown
functions. All these equations have a similar form and

the functions u', ui! and v2} can differ only by a

K -K »
constant factor:
M=Cng(z), wd = Cip(z), vt = Cop(z), v = Car(3),
(29)
where the Cjy (i, k = 1, 2) are arbitrary constants,
¥ (z) is an unknown function. The sets of equations ob-
tained have solutions which satisfy the normalization

conditions (26), respectively, for the following cases:
Ciy=—Cp, (30)

Ci1=1Ci, Cu=0Coy. (31)

In an antiferromagnetic without domains (in the uniform
case) dzz/)/dz2 = ng, and we get two different spectral
branches.! ! The first branch (30) corresponds to the
motion of the vector 1 within the ab-plane and to oscil-
lations of the vector m at right angles to that plane. On
the other hand, the second branch (31) corresponds to
the motion of the vector 1 outside the ab-plane and a
motion of the vector m in that plane.!™

In antiferromagnetics the exchange interaction be-
tween sublattices is stronger than inside the sublattices.
We may thus assume that

Cy = —Cy,

(32)

The set of four equations can then be appreciably sim-
plified and reduces to two independent equations:

|8|I=|A33/3331< 1.

%_(2“ sn? § + AD)p = k2e; (sn? E)p, (33)
‘?—(w sn?E 4 AD)p = k?ejo (sn’ £) ¢, 34

where the i (£) are the eigenfunctions of the problem
and the Al are the new eigenvalues which are connected
with the old ones Ay by the following equations:

(A — M) C11 + BxyiC20 =0,

ByiCy1 + (Asd + M) Caa = 0; (35)
j =1, 2 correspond to cases (30) and (31); p,z = ¢;
AP =B — A+ ay+ bok2 — 205 (1 + k72)
+ 2R + Ayns® + Ao — AWA3p2,
Bm —[B—A—a + bk +2R + Byy#y® + Bago® — -4(1)3331712].
AP =B — A4+b—2+EYDa,+2R + Ay + Apin? — AP Agyp2,
B(zl —[B—A+ b~1 - azkﬂz — 2R + By ® + Bygny,® — A(z)Baapfz]-
en=e + e, o= —¢€, C=C;/Cp=1—¢,
ey = M [ Ay << 1. (36)

If the eigenvalues of Egs. (33) or (34) are known, the
energy spectrum of the elementary excitations is deter-
mined from (35):

M =V (4)? (37)

We cannot solve Egs. (33) and (34) exactly. We can
use the fact that the € ,j are small to solve them by the
method of successive approximations.

a) Zeroth Approximation

In zeroth approximation in €43 the two Egs. (35) and
(34) are the same:

T (okzsnet + Auyy =0,

i (38)

This equation has three linearly independent solu-
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FIG. 3. The shape of the wave function: a) for the first b) for the
second kind of excitation.
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FIG. 4. The shape of the wave function for the third kind of excita-
tion for the special case k3 = 0. In the general case it is represented by
the superposition of two waves:(sn ¢ ¥ i k3py') exp (F ik3 p;'§).
tions: 7’ °?

Aol = —1,
Ao = —k2,

Y1(E) =cn§,
P2(E) =dn, (39)

A== (14 +25), )= (meF22) exp{ 22}
There are thus three kinds of elementary excitations
(39) (see Figs. 3, 4) for each kind of motion. The solu-
tion of the set (25) corresponding to the two kinds of
motion can be written in the form:

I. u(“) u&m) — (11){,4)1’ v(_l:) U(z:) — C(m 0 (40)
CS: b (41)

I = ol = (g, o= o=

where the constants Cgkl (G=1,2;i=1,2,3) are de-

termined from (35) and a normalization condition such
as (26):

1 VAui + Ax 1 By VAuid — i’
Climt YAt g L B VAWl (4
2 ¥21.D; 2 |Bxi|  V2A43D;
M= V(&) — B I (43)
4N 4N
Dy=——E, Dy=—, Da——[—z(K—— ) =2
pik? Pt K Pt (44)
L
K=-—pD(1+e), K_-(1+—e) Emt, N=1-,
L is the size of the sample; the A]l BJ1 are deter-

mined from (36), using (43); the indices j = 1, 2 indi-
cate the kinds of motion; i = 1, 2, 3 the kind of excita-
tions (39). .

The general expression for the bJ (z) has the form

b (2) = u¥icl; + viF ¢t (45)

After diagonalizing the quadratic form we can finally
write it as follows:

%2: A%o +2 nxij Em'j, (46)

where

Aoty = —;—(%MO) iz (Ani — V(Ani)2—|Bud|?),  (47)

=1 %, j

il = 4;{ A, (48)
0

n,J(i indicates the average number of elementary excita-
tions of kind i with a quasi-momentum k& for the j-th

kind of motion.

b) First Approximation

In the first approximation in €ij the character of the
solutions for the functions “;]ci and v]_ xi 1S not changed
but the energy levels are shifted by a small amount.
This shift is connected with the change in the eigenval-

ues of Egs. (37), (38)
A = Ao + A,

where
(ilsn2E|i) 49
Gly 7 )
(i|sn®¢|i) are the diagonal matrix elements of sn’t
with respect to the functions ¥ (i =1, 2, 3), (ili) the
integral of the absolute square of ¥j over £. Using (49)
we can finally express the spin wave spectrum through
the equations
@

Exy =

Ay = — 2g45k2

(2M ) {[B— A+ br—a+ 2R + Byx,?]

X [ai —az + A_L‘}(J_z + a28“81] } l/’,

eu‘é’—( 2‘1‘”0) {[B—A+b2—as+ 2R+ Byn.7]
X [a1 — a2 — 2ape 4 A1 %12 + aseuss:] } (50)
e,fé’—(z ){[B A+ by— s+ 2R+ Bux,? + B

X[as 4+ A1, 2 + Asn + asenss] } ',

@__ (% _ By— 2
N (2M0){[B A+4bi—ar+ Byxn,?]

X[2R + 2ase 4+ A 1%, % + azeppsi]} ',
e — (2—MO) {[B—A+51—ar+ Bix,?]
X[2R + A %12 + azensa] )
6d = ( o ) {[B— A +5;+ Byx,2+ Bus?]
X[az+ 2R + A 1%, 2 + Asus® + azernss]} '

1 - (1 +%:%/p?) (K —E)
3’ T T K—E+Kn?p?

A2 4 A2, B%2 + Box?. (52)

(51)

Si=Sr=

AJ_’KJ_Z = B_L'K_LZ =
Equations (25) allow solutions in yet another case,

when €, = |Bg;|/|A 5l << 1. The corresponding solu-

tions for i and e{ can be expressed by Egs. (39),

(50), and (51) with the only difference that the value of
the parameter €4j is replaced by €,. For arbitrary

values of the parameters A; and B; we can look for a
solution of the set (25) in the form of a linear combina-
tion of the functions ¢j in (39), i.e., ¥ = aj9;j. To each
type of motion there correspond then three kinds of ele-
mentary excitations; the form of the spectrum is essen-
tially unchanged. Because of the complexity of the cal-
culations this case shall not be considered separately.
From this it follows that independent of the values of
the parameters As and Bz the scheme assumed here
describes correctly the basic characteristic properties
of the elementary excitations in antiferromagnetics with
a domain structure.

Of the three spectral branches for each type of mo-
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tion the smallest gap occurs for two kinds of excitations

(e,]< 1 e,J(?) which differ little from one another. However,
in some cases the quantities 2a,¢ and a,€jjsj may be

of the same order as 2R or a; —az. For thermal motion
the first and second branches are first of all excited
when a; —az2 < 2R for the first type of motion and when
a, —a, > 2R for the second type of motion. We shall
consider separately the conditions for a parametric ex-
citation of these types of spinwaves.

4, SOME APPLICATIONS OF THE ELEMENTARY
EXCITATION SPECTRA

We can use the obtained elementary excitation spec-
trum to study different physical properties of antiferro-
magnetics with a domain structure (magnetic, thermal,
resonance, kinetic, and relaxation properties). We shall
restrict ourselves here to considering the two simplest
applications.

1. In antiferromagnetics with a periodic domain
structure there are up to three resonance frequencies

wg = (Ellci/h)lx - ¢, for each kind of motion; two of

those, w{ and wg are connected with the presence of a

domain structure in the sample:

o =T {[B— A+ b2 — az] [a1 — az + aae01s4] } ',
2M,

(53)
(Dz(i):__'y_ {[B —4 -+ by — az] [(11 — ap— 2a5¢ + 4251132]}1/"
0ff = (1B~ A4 +5i—0a] [2R + 2008 + 2messi]}, - (54)
s = {[B —A+5— @] [2R + aess2] } 4,

where y = u/h is the spectroscopic sphttmg factor.

The difference between the frequencies Aw] = wjl ~ w]2

depends on the quantity 2€a,. By measuring this dlffer-
ence we can estimate the domain size. Measuring wz
and of” we can estimate the parameters a; —az and
2R.

2. Using the elementary excitation spectrum we
evaluate the spin part of the entropy and the specific
heat in an antiferromagnetic sample with a periodic do-
main structure: S = —3F/3T, Cg = —Ta°F/aT?, where
F is the free energy. We consider two special cases:

a) £3i = )i /KT << 1. Then we have
Fii=— Gii(kT)3(1 — 3os) e~%0id,
e 2
P =G - )
Sid = 3Gk (KT)?e—%0i' (1 — 9Coi9),

, ) 4 2 21
Sy = Gyik (KT)? T“S-——g—(coaf)z——z—(cosf)*]
Csid = 6G 3k (kT)2e~%0: (1 — 356:®),
O =360 k(RT) [ T~ 2ty (5 — i 22
X(Ls?)? 4 (/2 C — /o) (Lo p, € = 0.58;
2 3
Gf=ﬂ(M°) 3 st=1_ 14 (ZMO) 1 4n
Ci V4.4, 3 (2n)2\ p | (Cy)" YA1drAs
CP—CP=B—A+by—a,+2R, C?=CP =B — A+ b+ 16aM?
c‘” B—A + b, + 2R, CP = B— A4 b, + 160M,2;
b) §oi = eoi/kT >> 1. In that case

M. M. FARZTDINOV and A. A. KHALFINA

Fi=— Gi(kT)% %, Fy =— 3Yn/2 Gsi(kT)?(Los?)~"he ter's
S = G (kT)2ke~% (3 4 280:d),

§9=6/3Y/ G Ry G+t
Coif = 2G4 (kT)2ke b0’ (2(Lo?)® + 3Loi? + 3),

Ci=3 1/n/2 Gk (KT)® () e ((cg's)‘ — s (8s)° + 58 + 12),
i=1,2, j=1,2.

At low temperatures (gf,i >> 1) the specific heat for
the first and second kinds of excitations is appreciably
larger than for the third kind.

We shall consider the interaction between different
kinds of excitations in another paper.

CONCLUSIONS

Two kinds of spin motion are possible in an antifer-
romagnetic sample with a periodic domain structure;
and there are for each of them three kinds of elemen-
tary excitations with a different energy spectrum. For
each type of motion the first two types of excitations
are specific and are connected with the presence of the
domain structure in the sample. These two kinds of ex-
citations (Fig. 3) are plane waves propagating parallel
to the domain boundary with a variable amplitude which
attains a maximum in the middle of the transitional lay-
er while vanishing in the middle of the domains. The
third kind of excitations (Fig. 4) is a complicated spin
wave which is similar to the homogeneous case but
strongly deformed under the influence of the domain
structure. For each kind of motion the energy gap in
the first two kinds of excitations is appreciably smaller
than for the third kind. In this connection the entropy,
specific heat, resonance and relaxation properties of
the sample change appreciably.

The authors are grateful to E. A. Turov for his in-
terest in this paper and for useful discussions.
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