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An analysis of the spectral intensities of fluctuations in an isotropic medium in the presence of internal 
relaxation processes is presented. It is shown that in this case only fluctuations of the generalized co­
ordinates can be determined, whereas fluctuations of the generalized forces cannot be found. One con­
sequence of this is that the Rytov results[3-sJ for a dispersive medium are erroneous. Density and en­
tropy fluctuations which affect light scattering are calculated for such media. 

1. INTRODUCTION 

A large number of problems, and primarily the calcu­
lation of the intensity and of the spectral composition of 
molecular scattering of light, call for the calculations of 
different thermodynamic variables in the medium. 
Although the correlation theory of fluctuations was de­
veloped only for extensive variables [1 • 2 J , it was in fact 
used widely and successfully in the calculation of the 
fluctuations of arbitrary quantities, and discrepancies 
between the results of different authors [8l have been 
revealed as a result of the application of this theory to 
the case of media in which the relaxation times of the 
internal variables are comparable with the characteris­
tic times of the hydrodynamic processes [3 - 7J. This 
raises the need for analyzing in greater detail the con­
ditions for the applicability of the theory and the need 
for reviewing certain previously obtained erroneous re­
sults. 

It will be shown below that fluctuations of all varia­
bles (both extensive and intensive) can be calculated if a 
complete thermodynamic description of the system is 
available, i.e., if the set of independent variables (gen­
eralized coordinates xj) used in the theory makes it 
possible to specify uniquely any instantaneous state of 
the system. This presupposes, of course, that there ex­
ist two distinctly separated time scales, namely the 
relatively large characteristic times of the processes 
of interest to us and the very short relaxation times of 
the rapid processes which we shall neglect. We are 
thus dealing with thermodynamic fluctuations, i.e., with 
that part of the fluctuation spectrum which is limited to 
sufficiently low frequencies of the macroscopic proces­
ses. 

The situation is different if one uses the incomplete 
and abbreviated description, i.e., if certain variables 
such as the internal parameters ~ of Mandel'shtam and 
Leontovich[9J are not considered in explicit form, and 
their existence is taken into account implicitly via the 
frequency dispersion of the thermodynamic coefficients. 
It will be shown that for this case it is possible to find 
only the fluctuations of the generalized coordinates, but 
not the fluctuations of the generalized forces. It follows 
therefore, in particular, that the results obtained by 
Rytov[3-sl, who calculated the fluctuations of the gener­
alized coordinates (the density p, the entropy S, etc.) in 
terms of the fluctuations of the generalized forces, such 

as the pressure p and the temperature T, are fully ap­
plicable to the case of media without dispersion, but are 
in error for media with dispersion and call for revision. 
In this paper we calculate the fluctuations of the hydro­
dynamic variables p and S, which influence the scatter­
ing of light, and which can be determined in general 
form for any dispersion law. As to the fluctuations of 
p, T, ... , their calculation calls for the construction of a 
complete theory for concrete models with one, two, etc., 
parameters ~ . 

2. COMPLETE AND INCOMPLETE THERMODYNAMIC 
DESCRIPTION 

We postulate that a complete thermodynamic descrip­
tion of the system is possible in principle, i.e., we as­
sume that any instantaneous state can be regarded as a 
state of incomplete thermodynamic equilibrium, defined 
by specifying a limited number of generalized coordin­
ates xj. In the thermodynamics of irreversible proces­
ses, such a state is set in correspondence[10J with the 
state of total equilibrium, in which the same values xj 
are fixed with the aid of suitable external forces Fj. 
For the equilibrium change of xj, we can write the sys­
tem energy increment in the form dU = Fjd~ .11 The 
internal forces fj are introduced, starting from the as­
sumption that equilibrium is insured by compensation of 
Fj and fj: 

/; = -F; = -au I ax;. (1) 

The completeness of the description means, in particu­
lar, that the fj are uniquely defined by specifying xj, 
i.e., equations of state hold (they a.re called instantane­
ous or non-equilibrium). For small deviations from 
complete equilibrium we have21 

(2) 

The process of the change of the state is connected 
with the presence of uncompensated forces, and can be 
described by the "equations of motion" 

nwe use the conventional summation over latin indices; there will 
be no summation over greek indices. 

2)Jn order to simplify the formulas, we shall henceforth omit the 
symbolli where possible. 

476 
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or 
I 

x;= J J.IJA(t-t')[FA(t')+fk(t'))dt'""'m;k(Fk+/R}, (3) 

where the operators Mjk are polynomials of d/dt without 
free terms. In this form, we can write both the Onsager 
equation and the hydrodynamic equations. Bearing this 
in mind, we shall not limit the order of the operators 
Mjk· In the most general case it is possible to define 
M -1 

jk as mjk' 
Actually, the equations describing the system are not 

always specified in the form (2) and (3); usually one 
knows the complete system of hydrodynamic equations 
without the external forces (Fj = 0), and the internal for­
ces are not always defined in explicit form. However, 
if we introduce the forces fj with the aid of the expres­
sion for the energy and the definition (1), then the sys­
tem can be broken up by purely algebraic transforma­
tions into two groups, namely the equations of state (2), 
which do not contain the time, and equations of motion 
of the type (3). The possibility of such a transformation 
is a criterion of the completeness of the description. 
The external forces are introduced then by simply re­
placing fj with fj + Fj in the equations of motion. 

In the formulation of the equations we have assumed 
that the separation of the parameters into "coordinates" 
~ and "forces" fj can be carried out uniquely on the 
basis of their physical meaning, and also by starting 
from the non-linearized energy equation ~U = -fj~j· 

It is important, however, that in the case of the com­
plete description, such a separation is not essential: the 
system (2)- (3) can be formally rewritten with the aid 
of a linear transformation in such a way that fj are co­
ordinates and~ are forces[3 J 

b;mMmtbtk/k = Xj- b;nF n !!!!! Xj +X;; 

X;= -b;k/k. 
(4) 

The formal rule for introducing the "forces" ~ re­
mains in force, although their physical meaning becomes 
unclear. 

To change over to an incomplete description, we 
break up all the variables x. into two groups, xa, xb, 
... , xh are the known variables, and Xp• xq, ... , are the 
unknown internal parameters; the indices i, j, ... , n will 
be used, as before, to denote all the variables. Elimin­
ating from (2) and (3) all the variables ~· ... , fp, ... , we 
obtain 

Bab = Bab + Bap (B' + M') pq -• (B + M) qb, (5) 

(the prime denotes a submatrix with indices p, q, ... ). 
~ ~ 1 

Besides Bab• we shall also use bab = Bab· 
In the elimination of ~ and fp we have assumed that 

F p = 0. Usually this assumption is not stipulated espec­
ially, since a homogeneous system without external 
forces is cancelled out. Then, however, we lose the 
possibility of formally separating the system into the 
equations of state and the equations of motion, and both 
become differential. Fortunately, the internal variables 

~ are frequently separated in the equations of motion, 

Map = 0 (at least in the case when Xp are relaxation 
variables, which can always be redefined in this man­
ner[9J), and therefore Eqs. (6) and (3) coincide. Then the 
external forces F P can be introduced on the basis of the 
physical meaning of the equations of motion. 

The system (5)- (6) can also be rewritten in the form 
(4): 

A similar system can be obtained by eliminating~ and 
fp from (4) and assuming t~at Xp = 0, but this system 

will differ from (7), since Xa ;o0 Xa. This is natural, 
inasmuch as the conditions F P = o and XP = 0 are not 
equivalent. The condition F p = 0 is a physical require­

ment denoting the impossibility of controlling the un­
known parameters of the system, whereas XP = - bpa Fa 
- bpqF q = 0 specifies that the real external forces, are 

subject to a certain connection for whose existence of 
which there are no physical reasons whatever. The 
choice between the conditions F P = 0 and Xp = 0 is de-

termined by which of the variables xj and fj are actually 

coordinates and which are forces. Thus, the formal 
symmetry of the equations relative to the choice of the 
independent variables is lost when the incomplete des­
cription is used. We emphasize once more that this 
difficulty arises only for an inhomogeneous system of 
equations. 

3. CALCULATION OF THE FLUCTUATIONS IN THE 
CASE OF THE COMPLETE AND INCOMPLETE 
DESCRIPTION 

Complete description. The thermodynamic theory[11J 
yields the following formulas for the total intensities of 
the fluctuations: 

(x"xp) = kTba.p, 
(8) 

<f"xp) = -kT6 .. p. 

The time behavior of the fluctuations is described by the 
time correlation function 

(jlap(t) = (xa.(t')xp(t' + t}), (9) 

the calculation of which[12 ' 1 ' 2 ' 131 is actually equivalent to 
a solution of the macroscopic problem of the free mo­
tion of a system with initial conditions 

xa.l t.;;o = Xa.0 = "'f(x,.2 ) = "'fkTba.a., 

(x;x.J b;a 
x;lt.;;o=xl= y(xa.2) =Xa.o b=' 

(10) 

(11) 

corresponding to external forces that are constant when 
t:sO 

(12) 

The solution, which is in the form x13(t) = xjl/1 J3j (t), is 

multiplied by x~ and we obtain cpai3(t) fort > 0. For 
t < 0 we have cp aJ3(t) = cpi3a(-t) = ± cp a.e(-t). The actual 
averaging is carried out, of course, after the calculation 
of x~x13 (t), but this does not change the final result. 
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After calculating rp a{3(t) we can find the spectral inten­

sities of the fluctuations: 

(13) 

Another equivalent method of calculating (xax{3) w is 
provided by the fluctuation-dissipation theorem 
(FDT), which expresses the spectral intensities of the 
fluctuations in terms of the susceptibilities Paj3(iw) 
relative to sinusoidal external forces. By specifying 

Fk - eiwt, one obtains the solution of the system (2)- (3) 
in the form 

where pjk = (M + B)jk' and then 

kT 
(x~xB)w = -2-.- (PBa·- P~B). 

mw 

(14) 

(15) 

Inasmuch as in the thermodynamic description of the 
system the instantaneous values of the internal forces 
are assumed to be unique functions of the coordinates, 
it is easy to get from (15) 

(fafB)w = Ba;BBk(x;xk)w == kT (PBa•- PaB). (16) 
2mw 

It is clear that any of the described calculation methods 
is applicable to the system (4), and the same results 
(16) and (15) are obtained for (f f") and (x xa) , with 

a"w a"w 
P a{3 defined as the "susceptibility" fj = Pjk(iw)Xk. 

The fluctuations are sometimes regarded as the re­
sult of the action of fictitious extraneous forces, the 
spectrum of which, in accordance with (15) and (14), is 
given by 

kT kT 
(FaFB).,=-.- [(M + B)aB-(M +B)Ba·]=-. (M~B-MBa·).(17) 

2mw 2mw 

Incomplete description. The minimal work of the 
equilibrium transition x~ - xa at F p = 0 is 
R =- )1/2)faxa· By employing the usual procedurellll, 
we obtain for the fluctuations of the known variables 
formulas having the same form (8), but the coefficients 
Bab and bab are replaced by 

Thus, in the case of the incomplete description one ob­
tains correct formulas for the fluctuations of the known 
coordinates, but the fluctuations of the forces are calcu­
lated incorrectly. The reason is simple: b-k . J 
=- (&x/&fk)j .,k are coefficients that are at equilibrium 

with respect to changes of all the variables X·.,. k' par-
1 J' 

ticularly with respect to changes of the unknown xp. To 

the contrary, BJ·k = -(&fl. /&xk)x. have the meaning of 
l;<'k 

instantaneous moduli. In the case of the incomplete 
description, on the other hand, the usual thermodynamic 
methods make it possible to determine only the equili­
brium moduli B~b· Thus, for example, for fluctuations 
of the volume and of the pressure in a gas in which a 
chemical reaction is possible, formulas (8) yield 

(.W2)=- kT (~) ; \6p2)=- kT (!.!__) , 
ap ~ av n 

where n is the degree of completeness of the reaction, 
fJ. is the affinity (the difference between the chemical 
potentials of the reacting substances). To determine 
(&p/&V)n, it is necessary to fix in with the aid of an ex­
ternal force Fn (of type f.J.), whereas (&V/&p)J.l. is deter­
mined without an external action. If nothing 1s unknown 
concerning the reaction, then the usual theory yields 
(6V2 ) = -kT(dV/ap); (6p2 ) = -kT(dP/&V), and since it is 
impossible to introduce F n> both the derivatives will be 
defined at a constant fJ.. 

We have started here from the assumption that 
formulas (8), which are obtained in the case of the com­
plete description, are true. Munsterl 141 raised objec­
tions to these formulas for (faf {3) and (fax{3), on the 
basis of the fact that simultaneous fluctuations of the 
conjugate variables x!¥ and fa are impossible, since an 
ensemble in which neither xa nor fa is fixed is not de­
fined. Obviously, however, a thermodynamic system in 
which xa and fa are specified only in the mean can exist 
(for example, p and V in a gas under a heavy piston). 
Munster considers it possible to calculate the fluctua­
tions of fa only at fixed xa. Particular problems of this 
kind, of course, can also be solved with the aid of the 
general theoryllll. For the fluctuations of fa and f{3 at 
fixed xa and x{3 we have 

where j, k"' a, (3. In (19) there is introduced the symbol 
B in place of the previous B, in order to emphasize that 
this is the instantaneous modulus, and B0 is the equili­
brium modulus with respect to changes of all the Xi. 

Munster's result for fluctuations of the pressure in 
an ideal gas, or the more general result of Komarov and 
FisherusJ for an arbitrary liquid, is obtained from this 
directly, since for a canonical ensemble we have 

Bvv00 == - (!..L) , Bvv0 == - ( ~) . av s av r 

It must be emphasized that in such a thermodynamic 
calculation of (Op2 ) at V = canst it is assumed that in 
the system there occur simultaneously fluctuations of 
other pairwise-conjugate variables (in this case S and 
T, with OS and fJT = (&T/&S)yoS being functionally rela­
ted). Thus, Munster's result is obtained from a calcula­
tion based on foregoing his initial assumption that such 
fluctuations are impossible. 

Munster used the discrepancy between formulas (8) 
and (19) for a more extensive criticism of the thermo­
dynamic theory of fluctuationsl111 , expressing doubts 
concerning the possibility in principle of rationally de­
termining the fluctuations of intense variables. We see 
here that his example has no bearing at all on this 
problem. The thermodynamic theory is internally closed 
and admits of the calculation of fluctuations of all the 
variables, since they are uniquely connected by the 
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equations of state. This is true, however, only in the 
case of a complete description of the system. 

The spectral intensities of the fluctuations in the case 
of an incomplete description are calculated by starting 
from the system (5) and (6) by any of the two described 
methods. The results obtained for <Pab(t) and (xaxb)w 
are the same as before. Indeed, the use on going from 
(2) and (3) to (5) and (6) the condition F P = 0 alters 
neither the initial conditions (12) nor tlie calculations of 
the susceptibilities that relate xa with Fb. Only the 
second equation in formula (17) is incorrect, since now 

1 ~ 

P;b ;o< Mab + Bab" 
A certain difficulty may be raised by the calculation 

of <Pab(t) and (xax(3) w by solving the initial-condition 
problem. The latter are specified above in an inconven­
ient form, namely for the segment -oo < t =s 0 and not 
for the instant t = 0. In the case of the complete des­
cription, the continuity conditions require that the der­
ivatives xj' xj' etc.' up to an order equal to the order of 
the operator Mkj, vanish at t = 0. In the incomplete 
description, the order of the system is increased, and 
it is necessary to specify initial values of the higher 
derivatives of xa, xb, .... It is possible to use instead 
the conditions (12) for fa, fb, ... as conditions supple­
menting (10) and (11). This procedure was used by 
Mountainrs, 7J. It is easy to see, however, that this 
procedure, in spite ofrsJ, is perfectly valid although not 
universally usable (the number of conditions (12) may 
not be sufficient). 

Thus, not only the integral but also the spectral in­
tensities of the fluctuations of the generalized coordin­
ates xa can be correctly calculated in the incomplete 
description of the system, when the moduli Bab are re­
placed by the corresponding operators Bab· This cir­
cumstance was apparently first pointed out by Rytovl3 J. 
He, however, attempted to use the FDT for the calcula­
tion of the fluctuations of the generalized forces fa· This 
problem, in the case of the incomplete description, can­
not be solved. Indeed, 

(/./b),= BacBb./.XcXd), + (BapBbc 

± BacBbp)(XcXp)ro + BapBbq(XpXq)O> 

=I= BacBb./.XcXd)" =I= Bac0Bbd0(XcXd)" =I= 11acBbd•<xcxd)w. 

The first of the incorrect formulas does not take in 
general any account at all of the fluctuations of xp, while 
the other two represent xp as single-valued functions of 
xa, whereas actually the fluctuations of xp are partially 
independent of Xa and of course are unknown in the in­
complete description. 

Rytov started from the system (7) and employed the 
FDT in the form 

(20) 

where Pab(iw) is the susceptibility matrix (fa= PabXb), 
and is the inverse of the matrix 

(21) 

It is obvious that the _!esult given by (20) does not coin­
cide with (16), since Pab ;o< Pab· The incorrectness of 
formula (20) can also be verified by integrating it with 
respect to the frequencies (the method of integration is 
indicated in Rytov's paper[3J; from now on it must be 

recognized that by virtue of the causality principle the 
functions 'bab(iw), s,_b<iw), 'Pab(iw), etc., cannot have 
poles at Im w < om , and in addition Mab(O) = 0 and 
Mab(oo) = oo). Integration yields 

(/a/b) = kT[Pab (0) - Pab (oo)] = kTBab0• (22) 

This should indeed be the case, since the FDT for 
(faf(3) is equivalent, in this formulation, to the problem 
with initial conditions 

--- Bba.O 
/ult..;;o=l'kTBuu0i /blt<o= B""0 /ult<O· 

Rytov did not notice this error, since he considered the 
case of weak dispersion, when B~b ~ Bab· 

One might hope that because of the cancellation of 
errors formula (20) will make it possible to obtain cor­
rect formulas for the fluctuations of the coordinates. 
This, however, is not true : 

2:~00 (x..zw.,=liualipb"(Pba"-Pab) 

= o ... opb' (Bb:Pcd 0 Bda' -11acPcdBdb) 
= liuaB./p~·- lipa "11adPCid =I= ppa."- pup, (23) 

if the matrices Bab and bab are not real. For simplicity 
we have confined ourselves here to the case of symme­
trical matrices B and b. Integration of (23) with respect 
to the frequencies leads to 

(xa.xp)=kT{bap+ £ Bad(-sk) 
k 81< 

X [PM(- sk) Res li ... (sk)- P<ld(- sk) Res lip. (sk)]} (24) 

where iwk = sk are the poles of the functions b. In a 
particular case when baa= 0, the thermodynamic formu­
las predict independent fluctuations of Xa and x~, 
whereas (24) yields (xax(3) ;o< 0. This is precisely the 

result obtained by Rytovl3 J, who obtained in a relaxing 
medium a correlation between the fluctuations of the 
density at different points of the medium. A correct 
calculation, of course, cannot yield such a result for the 
complete (spectrally unresolved) fluctuations, if one 
does not assume from the very outset that the equations 
of state have a nonlocal characterllsl. 

4. FLUCTUATIONS OF HYDRODYNAMIC VARIABLES 

As the generalized coordinates xi, which give the 
complete description of the single- component solid 
medium in the absence of relaxation, we can choose, for 
example, the values of the components of the displace­
ment vector u for different volume elements dV and the 
increments of the entropy pOSdV (S-entropy per unit 
mass). The conjugate internal forces will then be the 
quantities fdV and -I> T, where f is the volume density of 
the elastic forces. The system of linearized hydrody­
namic equations, separated into equations of state and 
equations of motion, takes the form 

B"u ( , 1 ') . au 'V' ou f p/ii2- TJ~ +"3TJ~ graddivat-TJoo "m=, 
PT!!._=xV'T 

8t ' 

Cv PT . 
6S=-6T+-d!VU, 

T p 

f = (K + 1/aJJ-)grad div u + JJ-V2u-PT grad T. 

(25) 

(26) 

(27) 

(28) 
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Here K (the isothermal volume modulus), u (the shear 
modulus), Cy (the specific heat), and PT (the thermal 
coefficient of pressure) can be replaced in a relaxing 
medium by the operators K, 'ii, c:y, and PT, which can 
be complex functions of the frequency in sinusoidal 
processes. The coefficients of the shear and bulk vis­
cosities 17 :X, and 17;:, pertain to rapid processes (w - oo); 
in slower processes, it is necessary to add to them the 
imaginary parts of the dynamic moduli K(iw) and u(iw). 
The form of the system (25)- (28) differs from the usual 
form in that it does not contain the additional coordin­
ates and forces, such as the strain and elastic-stress 
tensors, the heat-flux vector, and the increment of the 
specific volume (density). Accordingly, the system does 
not contain the additional equations of state relating 
these variables with u, f, oS and oT; if these were to be 
retained, this would not influence in any manner the 
method of introducing external forces or the further 
calculations. Equations (27) and (28) have not been 
solved with respect to f and oT, as in the system (2), 
but this of course is of no significance. 

By way of external forces, it is necessary to include 
in the system (25)- (28) the field of the volume forces 
with density F and the field of the fictitious extraneous 
"temperatures" ®,replacing f and -oT in (25) and (26) 
by f + F and ® - o T. It is then necessary to expand all 
the variables into a spatial Fourier spectrum 
u = ~ukexp(ik · r). After calculating the susceptibilities, 
it is then possible to find the spectral (w, k)-intensities 
of the fluctuations of S and u. The latter make it possi­
ble to calculate the fluctuations of the quantities of 
greater physical interest, such as the strains uik 
= (1/2)(ou/oxk + auk/axi), and particularly the volume 
deformation ujj = -o p/ p. These calculations are 
analogous to those performed by Rytovl1J. They yield 

pkT ( k2 ) (cSp2)ook = -c. c. , 
(2n) 4iw - pw2 + k 2M 

(29) 

o'(cSS') k=-~[ k'xCv 
00 (2n)'iw (iwpCv+k'x)T 

k6x2pr2 ] + C k' '"" -c.c. ' p(iwp v+ x)(-pw2 +km) 
(30) 

pkT [ hfxfJr ] p(cSScSp) OOk = - --- --;-:-~c;;---;--;-;;-:--;---;;--:--;-;;::;: ... ~ -c .c. , 
(2n) 4iw (iwp v + k2x) (- pw2 + k21v1) 

when 
(31) 

4 ( 4 ) iwTfir2 
!J=K +-il+ iw -T]oo1 +TJoo11 + . . 

3 3 zwpCv + k2x 
(32) 

Integration of these expressions with respect to w and k 
yields for the spatial-correlation functions 

kTp2 

(op(r)cSp (r'))= (K + 'Mi)o cS(r- r'); 

(.SS(r)cSS(r'J>=~[ '/ailCv+KCp] .S(r-r') (33) 
p K +'fail o 

etc. If we integrate (93) over an arbitrary volume V 
which is large compared with dV, then we obtain the well 
known expressions for the fluctuations of the thermo­
dynamic quantities: 

VkT [ '/ailCv + KCp ] 
(.SV') (K + 4/ail)o ; (.SS')= Vk K + 4/ail o; 

(6V6S)= VkT [ K P~/ _ ] . 
+31--lo 

If there is no relaxation, when the system (25)- (28) 
yields the complete description, the same result is ob­
tained also from Rytov's formulas. In the presence of 
relaxation, his formulas give incorrect results: 

(.SV')= VkT [ 1- 4/a~to(Koo- Ko)/KooKo]; 
Ko + 4/3~lo 

(1\p(r)op(r')) =FO for r=Fr'. 

The reasons for the error were discussed earlier. 
The spectral intensities of the temperature, ex­

pressed in other generalized forces in a nonrelaxing 
medium, are given by Rytov's formulas, and in there­
laxing medium cannot be calculated at all. This entails 
serious difficulties in the calculation of the intensity of 
the scattered light. Therefore, for example, in the case 
of an incomplete description it is impossible to take into 
account the contribution of the temperature fluctua­
tions ll7l. 

If the dielectric constant E depends on the unknown 
internal variables xp, then it is obviously impossible to 
replace the explicit allowance for these variables by 
introduction of dispersion in K, PT, and Cy· It is in 
general meaningful to confine oneself to a calculation of 
the fluctuations of the hydrodynamic variables only if E 

does not depend on xp. As seen from the foregoing, this 
means actually that we must have (oE/oxp)s, P = 0, a 

condition hardly satisfied in experiments. On the other 
hand, if for example (ot:/oxp)T, p = 0, then the theory 

described above does not suffice for the calculation of 
the reflection of light, and it is necessary to introduce 
the internal variables in explicit form. 

In conclusion, the authors consider it their duty to 
express their gratitude to M. Sh. Giterman and I. Z. 
Fisher for a useful discussion of the work. 
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