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The main characteristics (intensity, dependence of frequency on scattering angle, line shape) of the 
radiation scattered by a transparent crystal not possessing a symmetry center are calculated. 
Scattering due to the quadratic and cubic terms in the expansion of the macroscopic polarizability 
in terms of the amplitude of the incident light (which is assumed to be monochromatic) is considered. 
It is shown that as a rule the efficiency of two consecutive three-photon processes is greater than the 
efficiency of a four-photon process. The effect of the finite cross section of the incident light beam 
is taken into account. 

THE nonlinear dependence of the polarization of a 
transparent medium on the amplitude of the light field 
(p(NL) = x< 2>E 12' + x< 3>E< 3>) causes a unique light scat­
tering, a distinguishing feature of which is an appreci­
able relative change of the frequency (on the order of 
unity) and large coherence scales (equal to the dimen­
sions of the entire scattering region). The scattering 
due to the cubic polarizability x13' was investigated in 
a number of works theoretically[I-3] and experiment­
ally[4•5l. This phenomenon, called scattering of light 
by light (SLL) or four-photon scattering, is best treated 
as the result of elementary four-photon processes of 
the form WI+ w;- ws + wa, ki + k;- ks + ka. Un­
like scattering that is linear in the intensity SI of the 
incident light (see, for example,r31) and is due to x12', 
SLL causes field fluctuations also at the anti-Stokes 
frequencies. 

As noted by Robl[Il, in crystals without symmetry 
centers (in which x<2 > ¢ 0) there is an additional SLL 
mechanism and, as will be shown below, x< 2> makes in 
some cases (particularly at small angles between ki 
and k;) the principal contribution. This process is 
described by second-order perturbation theory (with a 
perturbation energy density EpNL [ll), and can be 
represented as the result of two successive three-pro­
ton processes, the "virtual" wave being either the 
harmonic of the incident radiation ( w2 = 2w I) w I + w I 
- w2 + ws + wa (we consider for brevity only the case 
w; = w~> k; = ki) or a difference wave (wo = WI- Ws 
= wa- WI) WI- ws + wo, Wo +WI- wa. 

The process in which wo takes part was considered 
by Giallorenzi and Tang[sJ, who emphasized that this 
process limits the sensitivity of the infrared light re­
ceivers using parametric conversion of the frequency 
( w 0 + w I - wa) in the visible region (we note in this 
connection that the Bloembergen quantum counter, 
which can be regarded as a resonant frequency con­
verter with increased output frequency, should also 
have a "noise" proportional to sn. 

Processes quadratic in the intensity of the incident 
pump light in crystals with large polarizability x12' are 
of interest also in connection with the problem of pro­
ducing sources of coherent light with a frequency ex­
ceeding the pump frequency. The threshold of excita­
tion of the parametric generators, in which such 

crystals are used, can be lower than in the case of 
centrally-symmetrical media [71. 

In this paper we consider SLL with account taken 
of all the three principal mechanisms: via virtual 
waves wo and w2 and as a result of x< 3>. We use the 
following model: a flat nonlinear layer of thickness 2l 
is contained in an unbounded anisotropic dispersive 
transparent medium with homogeneous linear polariza­
bility. A plane (Sees. 1 and 2} or almost-plane (Sec. 3) 
monochromatic pump wave with constant amplitude 
propagates in a direction perpendicular to this layer. 

In Sees. 1 and 2 we use for the sake of clarity the 
classical calculation method, with the aid of a system 
of equations for the slowly-varying Fourier amplitudes 
of the field Ei(z)(i = 0, 2, a, s), and the quantum un­
certainty of the input amplitude Ea,s( -l) is taken into 
account only in the next order. The starting point in 
Sec. 3, where the correctness of such a calculation is 
confirmed and the finite character of the cross section 
of the pump beam is also taken into account, are the 
Heisenberg equations for the operators Ek(t). The 
employed approach is a generalization of the method 
of Louis ell et alP1, which makes it possible to treat 
quantum-mechanically the stationary problems of non­
linear optics, and particularly scattering processes. 

1. CONVERSION COEFFICIENTS IN THE CASE OF A 
PLANE PUMP WAVE 

Let E(r, t) = ~eiEi(z)exp (ikir- iwit) +c.c. and 
let the amplitudes of the scattered waves be much 
smaller than the pump amplitude; then the interaction 
of the waves in the nonlinear layer is described by the 
following system: 
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where 

dE2/ dz = (32 1 e'"''E~, 

dEo/ dz = flo,e'"•'E; + floa"e-'"•'Ea, 

dE,/ dz = fl,oe'"•'Eo" + (fl.,'e'"'' + fl.,"e'"')Ea", 

dEa / dz = flaoe'"•'Eo + ((3.,,'e'"'' + l3as"e'"')E.,", 

"··- ib -x~2> E " '- ib <2> E " " ·b <3> E 2 pzJ- t tJ !, pij- iXii 2, pij =t i'X,ij 1,, 

bi = 2rrwi I en/, n/ = ni cos ai cos ei, 

~. = kt- k,- ko, ~. = kt - k., + ko, L\ 2 = 2k 1 - k2,, 

tl1 =k2,-k,-k.,, ~= ~.+~.= ~2+~'; 

(1) 



SCATTERING OF LIGHT BY LIGHT IN A NONCENTRALLY SYMMETRICAL MEDIUM 473 

Xij is the contraction of the nonlinear susceptibility 
tensor with the corresponding vectors ei, n is the 
refractive index (with allowance for a correction pro­
portional to x131 I Ed 2 ), a is the angle between the ray 
and the wave vectors, and (} is the angle between the 
ray vector and the z axis (the scattering angle). 

In an infinite layer, stationary interactions are pro­
duced only between waves satisfying the laws of con­
servation of the frequency and the transverse momen­
tum, so that specification of the frequency, direction, 
and polarization of the observable wave (for example 
wa, ka, and ea) and of the pump wave at a known dis­
persion law wA (k) leaves the polarizations and the 
signs of the longitudinal momenta of the remaining 
three waves undetermined. Usually, however, the 
wave detunings t::.. are minimal for the forward waves 
( (} < 'IT/2) and for a definite combination of polariza­
tions (for example 2k~ - k~ - ki + k~ in a negative 
uniaxial crystal). We have therefore left out from (1) 
the polarization indices, and did not take into account 
the coupling with the backward waves. 

According to (1 ), the harmonic is independent of the 
remaining waves: 

• 
Ez(z)= ~21E1 J dz'e1"-". 

-1 
(2) 

To find the amplitude of the spontaneously scattered 
field, for example at the frequency ws, it suffices to 
find the conversion coefficients Ksi connecting the 
output amplitude Es(l) with the positive-frequency in­
put amplitudes E: a< -Z). Putting therefore Ei( -l) = 0, 
we obtain the following amplitudes that differ from 
zero in first order in E 1: 

• 
E!11 (:~;)=~soEo'(-l) J dz'ei"'•", 

-1 

• 
E~11 (z)=~0,E;(-l) J d:~;'e1"'•", 

::t 

• 
Eo' (I) (z) = /3oaEa. ( -l) s a:~;' e1"'·•'. 

-1 

(3a) 

(3b) 

(3c) 

Substituting (2) and (3) in the right sides of (1), we ob­
tain, accurate to terms of order E~, 

E,(l) =KsoEo'(-l) +KsaEa'(-l), Ea(l) =Ka.E.'(-l), (4) 

K,0 = ~.o2lf(~.l), /(z) = z-1 sin z, (4a) 

Ksa = ~sof3aa2l2f(~,l, ~al)+ f3sa',f32!2l2f(8'l, M)+ /3sa"21j(~l), (4b) 

I z 

f(x, y)= 1/2 J dzeixz J dz'eiyz' = i[f(x)e-iY- f(y)eix]! (x + y). 
-1 -1 

Formula (4a) determines the amplitude of linear scat­
tering (parametric luminescence-see, for example,[s,s] 
and the references given therein). 

The function I f(x, y) I has in the general case three 
resonant maxima, near which it is equal to I f(x)/y I if 
I y I » I xI, to I f(y)/x I if I xI » I y I, and to I f(x +y)/x I 
if x R: - y and I xI» I x + y 1. Thus, the connection 
between the frequency and the scattering direction in 
the case of coherent SLL is determined by the condi-

/Js =o 4'=0 

~I 
/J =o 

il~ ~. 
.as 1/J) /Js 

Four arrangements of the wave vectors k, at which the scattering is 
maximal (the indices I, 2, s, a, and 0 pertain respectively to the incident­
radiation wave, its harmonic, and to the Stokes, anti-Stokes, and differ­
ence waves). 

tions l::..s = 0, t::..a = 0 11 , t::..' = 0, t::.. = 0, and all three 
aforementioned mechanisms contribute to the last 
resonance (which can occur also in isotropic sub­
stances). These conditions specify four synchronism 
surfaces in k-space (seers,sJ). The arrangement of the 
wave vectors for different types of spatial synchronism 
is explained in the figure. The largest SL L effect as a 
result of x' 21 is reached in the case of double resonance 
( f ( 0, 0) = 1 ), when !::..2 = t::..' = 0 or t::..s = t::..a = 0 . 

Let us compare with the aid of (4) the contributions 
of the different processes to the scattering amplitude 
at resonance, when f(x) = 1, f(x, y) = ± i/ l::..i l (!::..i-wave 
detuning of the corresponding non-synchronous inter­
action, see the figure). The ratio of the amplitude of 
quadratic scattering due to x121 to the amplitude of 
linear scattering is of the order of {3/ l::..i (or {3l in the 
case of double resonance when l::..i = 0). In a lithium 
niobate crystal, the parametric gain factor {3 is equal 
to 1 cm-1 at S1 10 MW/cm2 (the last figure is de­
creased by four orders of magnitude if the polarization 
vectors of all three waves taking part in the non­
synchronous process are parallel to the symmetry 
axis of the crystal). For waves of the same polariza­
t,ion, l::..i reaches 103 cm-1; when the polarizations are 
different, on the other hand, l::..i can be much smaller 
(at a definite orientation of certain crystals, as is well 
known, !::.. 2 = 0; in addition, l::..i = 0 on the line of inter­
section of the synchronism surfaces !::..a and l::..s). 

The ratio of the SLL amplitudes at the anti-Stokes 
frequency when t::.. = 0, due to x' 21 and x131 , has accord­
ing to (4c) the order of magnitude ( 4'1T2/n0 t::..aAo) 
(x<2l2fx<3>). Let x'2l = 10-s (cms/erg)l/z, Xra> =10-15 
cm3/erg, t::..a = 102 em-\ Ao = 2/J., and n0 =2; then this 
ratio is equal to 102. 

2. INTENSITY OF SCATTERED LIGHT 

To take into account the quantum fluctuations, we 
replace the slowly-varying amplitudes Ei and Ei by 
the operators Ek and Ei{, which are proportional to 
the annihilation and creation operators and are deter­
mined by the relations 

E(r,t)= J dkEk(z)expi(kr-wkt)+h.c., (5) 

(Ek(-l)Ek,+(-l)> = icki2.0(k- k'), (6) 

llScattering at b. a= 0 determines the limiting sensitivity of a step-up 
frequency converter. 
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where the angle brackets denote averaging over the 
initial vacuum state and Uk = awklak is the group 
velocity. 

Let us fix k = ka, and denote by k = ks the vector 
complementing k and defined by the equations 

Olj;-= 2rol- Olt 1 kL = kL, 6k < n/2; (7) 

It then follows from a comparison of (5) with the defi­
nition of the amplitudes Ei that 

Ek = E.ll(k- ka), Et I EJ;:= (E. I E,)dli, I dk, = E.u., I E,u,., 

so that we have in place of (4) 

Et(l) = (u.,/u,,)K.,Et (-/) 

and when (6) is taken into account 

(Ek+(/)Ek.(l)) = IK.,c,l 2(u., I u,)ll(k- k'). (8) 

The factor preceding the ll function determines the 
intensity of the fluctuations to the right of the non­
linear layer: 

S = ~ dkSk, Sk =(2n)-'cna cos a.(E~~.+(l)Ek,(l))lll(k- k'). 

In comparison with experiment, it is more convenient 
to use the concept of the spectral brightness of the 
radiation, i.e., the power per unit area, frequency, and 
solid angle (at a fixed direction k): 

(9) 
Swc(ka) =laiKasl~sna' I roans', 

where the quantity Ia = fiwak~l81r3 cos aa can be de­
fined as the spectral brightness of the vacuum fluctua­
tions of the one polarization in the medium at the fre­
quency wa. 

We now assume that the pump beam has a Gaussian 
field distribution in the transverse cross section: 

E 1(x, y) =E1 exp[-(x2+ y2) /w2]; 
then 

J IE1 (x,y) l4 dxdy= IEd 4AI2, 

where A= 1Tw 212 is the effective cross section of the 
beam, so that the power radiated in unit angle and 
spectral intervals (the spectral strength of the light) 
is equal to 

Pwo (ka)= s Swa(k.)cos e. dxdy = 1I2A cos e.r. IKaal 2ro,na' lro.n:. (lOa) 

Analogously, the power at the Stokes frequency is 

Proa(k,)= A COS 6.1,!!.!_ (0)0,1 K,o 12 + 20)", IKsa 12) · (lOb) 
Ws no na 

The first term in (lOb), which determines the power of 
parametric luminescence, coincides with the formula 
obtained by Kleinman[9J (and in the case of a 0 s = 0 it 
coincides with the result of[3 l), provided I E 1 1~ is ex­
pressed in terms of the pump power ( P 1 

= en1cos2a 1A I Exi 2121T) and it is recognized that we are 
using double the defined value of x12l. 

In experiment one usually measures integral power 
(integrated over the area of one of the resonance 
curves)[xoJ, for example the light intensity 

(11) 

where llw is the effective frequency band. For exam-

ple, for anti-Stokes resonance at t:J. =O(t:J.a ;o! 0) we have 

llro = nl-1 18~ I aro.l-1 = nl-1 cos e.1 u,-1 - u.-1 cos ~./cos a.l-1. (12) 

As will be shown in the next section, formulas (10) 
and (12) are valid separately only if the cross section 
of the pump beam A is sufficiently large, and at the 
same time (11) remains in force in many cases of 
practical importance for arbitrary values of A. 

3. INFLUENCE OF BOUNDEDNESS OF THE CROSS 
SECTION OF THE PUMP BEAM 

According to (10)-(12), the nonlinear scattering 
power is Po ~ P~ l I A, and to increase it it is neces­
sary to focus the pump beam. This, however, de­
creases the length of the coherent interaction and 
simultaneously increases the width of the resonance 
(for waves with nonzero scattering angles Bi). Let us 
examine the joint influence of these factors, using as 
an example a Gaussian pump beam with a plane phase 
front (i.e., under the condition k 1w2 » l ): 

E, (r) = Ed(r), f(r) = exp {ik,z- [ (x- a,z) 2 + y2] I w}. (13) 

A. We consider first scattering by x13l, described 
by a perturbation energy 

H' = - 112 J dkdk'x~~,E12Ek+Ek,+exp {i(ro + ro'- 2ro1)t}/2(k + k') +h.c., 

I oo 

/m(k) == J dz J dxdyexp {- tkr}f"'(r) (14) 
-l -oo 

I 

= m-1nw2exp {-(kx2+ kl)w214m} J dzexp {iz(mk1 - k, ·- a1kx)}. 
-I 

The slowly varying operators Ek: are connected here 
with the Heisenberg-repr~sentation creation operators 
ai(t) by the relation Eie1wt = ckak(t), so that 
[Ek, Ek:'J =I Ck l2 1l(k- k') and the Heisenberg equa­
tions take the form 

dEkldt = ili-1 1 ck 12E12 J dk'Ek,+i~k,eit{oo+ro'-2w,)f2(k + k~). (15) 

We fix k = ka; then, since f2 has a sharp maximum at 
k' = 2k1 - ka ~ ks, it follows that w' ~ Ws + us(k' - ks), 
so that in first approximation we have 

E~1)= E~0'+ 2nili-1 lca I 2E1~~; s dk'E~~.,+I2(k + k')ll(u.(k'- k,) ). (16) 

Let the initial state at t 0 be the vacuum state; then 

(E~1l + Jt:l) = 2n (t- t0 ) I c.2c,x~~ ENh 12 

X J dk'l/2(ka + k') l211(u,(k'- k,) ). 

The energy in the "mode" k is equal to ( Hk) 
= fiw (Ek Ek) I I Ck 12 , and the radiated power is Pk 
= d(Hk)ldt, so that 

P.,a(ka)= 1I2A cos 6alababsiX~~ E1212Ka(~), 

where the line shape is determined by the function 

g.(~)=(u.,l2n2A) J dk' lh(ka + k') l26(u.(k'- k,)) 
l 

= I1dzdz'exp[i~(z-z')- c:.zl )"]I Ws 

~ 

We note that when we make the substitutions w2 

(17) 

(18) 

(19) 
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- 2w2 and D.- ll.s, Eq. (19) describes the line shape 
of linear scattering at frequency w0 , and therefore the 
subsequently discussed properties of the function g(ll.) 
can be readily transferred to this case (seer3 ' 91). At 
D. = 0, the maximum value of g(ll.) takes the form 

c.(o)=4l2 [ rit~m- 1- 6:-•·] = 412 ( 1- !2 + ... ) , {2o) 

where ~(!;) is the probability integral and ; = 2l/ws. 
When;>> 1 we have ga(O) = 2lwsfi, i.e., the at 
large scattering angles of the additional wave coherent 
interaction length is equal to wsfi. which is the 
dimension of the scattering volume along the direction 
of this wave. From (20) follows the condition for ap­
plicability of the model of the plane pump wave to the 
calculation of Pwn in the case of scattering by x13J 

namely ws » l (at Ch = 0 this condition takes the form 
tan 6s « w/l ~ {Afi).2 J It is important, however, that 
the integral of g( D. ) does not depend on w: 

(21) 

Thus, we actually have Pn ~ A-1 in this case. We 
note that the expressions that follow for Pn from (18) 
and (21) coincide with those following from (4c), (lOa), 
and (11 ). The ratio of (21) to (20) determines the ef­
fective line width; in particular, at ; » 1 it is equal 
to ;{jw/ ...fi. 

B. We now turn to scattering at the anti-Stokes fre­
quency via the difference wave, which is described by 
the perturbation 

H' =-J dkdk'E1E.+ei(ro-ro,Jt[ 1/2)(~~-E •• +ei"''1f1(k + k') 

+xk~•Ek.e-iro'tjt(k-k')J+ h.c., (22) 

The first term yields we omit (Ek'(O), since we are 
interested in the vacuum initial state) 

(t) . _1 2 (2) J 11 (O) + ft (k' + k")exp {it(ro' + ro" -ro1)} 

Ek' =!li !col )(osEt dk Ek" '( '+ 11 _ )+rl • 
! Ill (I) lllt u (23) 

where k' RS k0, k" RS ks, and we introduced a converg­
ence parameter a= +0. Substituting (23) in the second 
term of (22), we get 

X Jdk'dk"E~it /t(k.-k')/t(k'+k") 6(ro.+ro"-2wt). (24) 
i(ro' + ,ro" -rot)+ a 

Just as in the derivation of (18), we obtain 

P.,11 (ka) =A cos Balal~.o~osl 2 (w,n.' /ro.ns')g.(A., A,), 

I (k.- k')/ (k' + k") lz 
Ca(A.,A,)= (;:~~ J dk"li(u,(k"- k,)) I J dk' 1 iu0(k'- ~o) +a 

l % 

=__,;_ J dqexp {- wzqz }I J dz J dz' exp{ iz (a.+ p~q) 
4n 4 -t-l 

+ iz' (A,- p;q + p.q) - ( z :.z' nr' 
where q is a two-dimensional vector, Pi are two­
dimensional vectors with components Uix/Uiz and 

(25) 

(26) 

Uiy /uiz, and Wo == w .f27tan 6 o (in the derivation of the 
last expression for ga we have assumed for simplicity 
that a1 = 0). 

2>In [3 ] we wrote !/.JAin error. In addition, formula (2) of that 
reference contains an extra minus sign. 

Let us examine the resonance ga at D. = ll.a + ll.s 
RS 0. Let ID.awo + 11 » l/wo; then 

S 4nll {)L\ ,-1 g.(A.,il,)droa=-2 --
Lla Ollla 

(27a) 

and we get for Pn a value that coincides (apart from 
the factor 2 connected with the non-additivity of Pn in 
this case over the cross section of the pump beam) 
with the results of the preceding section (see formulas 
(lOb), (11 ), and (12)). If the inverse inequality holds 
(small beam radius w or large angle 6 0), then 

J g.(Ll.,Ll,)dro.=n2wo2lloil/ow.!-•, (27b) 

so that Pn does not depend on A. Results similar to 
(27) are obtained also for the areas of the other reso­
nances (ll.a RS 0 or ll.s RS 0). 

C. Finally, in the case of scattering via a harmonic 
(at a 1 = a2 = 0), the line shape is described by the func­
tion (26) with the substitutions ll.s - ll.2, D. a - D.', 
and 6 0- 0, so that we get for Pn expressions that 
are likewise independent of A at sufficiently small A. 

The foregoing calculations can be extended without 
difficulty to the case of "two-beam" experiments[ 4l, 
when k 1 ¢ k~. At large angles cp between k1 and k~, 
second-order scattering by x12J does not play any role 
(since the transverse momentum should be conserved 
with exponential accuracy in the production of the 
virtual waves ko and k2 ), and the interpretation given 
in[4 J for the experiment (in which cp = 90°) is correct. 
At the same time, the estimate given at the end of Sec. 
1 shows that in many non-centrally-symmetrical 
crystals, at cp ~ 0, the intensity of the SLL due to x< 2> 

should greatly exceed the scattering due to the cubic 
nonlinearity. 

In conclusion we note that the foregoing calculation 
method, which uses Heisenberg's equations for the 
amplitude operators, has apparently certain advantages 
(e.g., compactness and parallelism with the classical 
methods of nonlinear optics) over the scattering­
matrix method[ 6 J. 
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