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We consider the impedance of a metal in a magnetic field parallel to the surface under anomalous skin-
effect conditions. We show that the specularity coefficient appreciably affects the H- and w-dependence
of the impedance; this makes it possible to determine this coefficient. We show that taking specularity

into account may also lead to resonance effects.

1. INTRODUCTION

IN this paper we consider the influence of specular
electrons on the surface impedance of a bulk metal
specimen in a magnetic field parallel to the surface
when the skin-effect is anomalous. It is well known
(see, for instance, £'7??) that under anomalous skin-
effect conditions the main contribution to the current
comes from electrons that glance along the metal sur-
face or collide with it at a very small angle. It was
noted in 37 that in that case the reflection of an elec-
tron from the surface is nearly specular so that the bad
definition of the orbit along the surface may be large
compared to the size of the inhomogeneities in the sur-
face.

When there is a magnetic field parallel to the sur-
face these electrons lead to a new kind of orbit in the
surface layer: open orbits (see Fig. 1, orbits of type a,
H is perpendicular to the plane of the figure) which ap-
preciably affects the surface impedance.

Indeed, it is well known that b4¢s, the effective skin
depth is connected with the effective conductivity oggf
as follows:"

Seff ~ ———.
. Vooesr (L.1)

In the general case
(1.2)

where oy is the effective conductivity connected with
the electrons that do not hit the surface of the metal,
while og is determined by the electrons that hit the

Geff = Ov + 0s,

DWe use the following notation: o is the static conductivity when
there is no magnetic field, r the radius of the electron orbit, v, the elec-
tron velocity on the Fermi surface, n the elctron density, v =iw/S2 +
1/S2ty, w the frequency of the electromagnetic field, £ the cyclotron
frequency, / and t, are the mean free path and flight time;
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Q r r

-1 Vo 011 1
Teff = e—H—+2q(io)+—) ,
¢ dpy ty

-1 2%
(1—q)—7eff N

where q and dq/dp.l are, respectively, the specularity coefficient and its
derivative with respect to the quasi-momentum component at right angles
to the surface when the electron angle of incidence at the surface is zero.

We note that /I~ c?/62v,, where 62 = mc?/2mne?, i.e., o/l depends
only on what kind of metal we are dealing with.
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FIG. 1

metal surface (see Fig. 1, orbits b and a, respective-
ly).

The main contribution to the effective conductivity
comes from those electrons which gain the maximum
energy from the external electromagnetic field and
manage to lose it while they are in the skin-layer. Elec-
trons moving along the tangent to the metal surface and
therefore traversing a distance (5ef¢f)/? in the skin-layer
gain most energy in the skin-layer. They are a fraction
betf /(effr)'/? of all electrons.

For orbits of the kind of Fib. 1b, not all those elec-
trons will manage to collide and lose energy in the
skin-layer, but only the fraction (rdq¢)'/%/1. There-
fore

(rSef)" 1
1 — e’

0 eff
(degr 7)1

The last factor arises when we take into account the
possibility of repeated rotations of electrons in the
skin-layer.

For orbits of type a of Fig. 1 all electrons moving
along the tangent to the metal surface (incident at angles
of order (6eff/r)'/?) stay completely inside the skin-
layer. Therefore og ~ 00q¢s / (réeff)‘/ 2. When writing
down this last formula we assumed that the reflection is
purely specular and wt, < 1, i.e., we did not take it
into account that because of a change in the phase of the
electromagnetic field an electron may be decelerated
rather than accelerated. This occurs because in this
formula o is the static conductivity (o0 ~ ne’/mv,)
which is determined only if the mean free path [ is fi-
nite. In the general case we must replace I = vyt, by the
quantity leff (see footnote 1).

The quantity leff is obtained from the expansion of
the ‘‘angular resonance’’ factor

(1—qexp{—i(im+ito)dt'})-‘, T~2_2.%( Gerff

which occurs when we take into account the motion of
an electron along an orbit of type a of Fig. 1 with an
angle of incidence which is close to zero (T is the time
between two successive collisions of the electron with
the surface).

(1.3)

Oy ~ 0

)"', 1.4)
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Thus,

0s ~ (0/1) (Besr /1) "Letr. (1.5)

Now 6eff (see (1.1) and (1.2)) depends on whether oy
or og (see (1.3) and (1.5)) is the larger. If oy >> og we
have, using the relation o/l ~ c?/6%v,

~ (622001 — 2y ™ 1.6
Beft (62—0)-‘1 ey ) ) (1.6)
We also use a well-known result (see ' 1) that for
sufficiently weak magnetic fields (|27y| 2 6¢ff is com-

pletely independent of H while in strong fields (|2wy|
<< 1) we have deff ~ H™*/?, We note that also for cy-
clotron resonance occurring when |(exp 27y) — 1|<< 1
(w = nQ, where n is an integer) we obtained the correct
index (¥s) of the resonance factor [1 — (exp —27y)] in
the case of a quadratic dispersion law when all elec-
trons rotate with the same frequency §2. When the dis-
persion law is not quadratic we must take it into ac-
count that not all electrons take part in the resonance
but only those with frequencies Q(p;) that are extrema
V{lth respect to pz, in order to obtain the correct index
(*/6)-

If, however, oeff is determined by og rather than by
oy (see (1.5)) two cases are possmle.

If 1 —q>> 210~ 1(t')eff/r ;ﬁ we have og
~ 0(0eff/1)(1 —q)™" and og ~ oy and the H- and w-
dependence of deff is practically the same as in the
case (1.6).

In the opposite limiting case we get

Seft ~ [ézr"?o)“-r;-% 1%,

(1.7)

The w- and especially the H-dependence are essen-
tially different in (1.6) and (1.7).

The introduction of the reflection coefficient, which
is a steep function of the collision angle with the sur-
face (see Fig. 2a; a is the angle of incidence to the
surface of the electron), allows us thus to say something
about the quality of the surface.

Moreover, taking the specularity coefficient into ac-
count for metals with a non-convex Fermi surface leads
to a resonance as in that case there are electrons for
which the orbit is geometrically separated (see Fig. 3).
Electrons which collide with the metal surface in such
a way that the sections I or II coincide with the metal
surface are geometrically separated.

2. MATHEMATICAL STATEMENT OF THE PROB-
LEM. SOLUTION OF THE KINETIC EQUATION IN
TERMS OF QUADRATURES AND CONTRIBUTIONS
OF DIFFERENT PARTS OF THE SOLUTION UN-
DER ANOMALOUS SKIN-EFFECT CONDITIONS

Let there be a high-frequency electromagnetic field
in the half-space occupied by a metal in a magnetic
field parallel to the surface and directed along the z-
axis. In that case the complete set of equations con-

sists (see ['7?)) of the Maxwell equations which in the
one-dimensional case have the form
bt
ESW)=—is(¥), w=23, (2.1)
jy=0 (2.1a)

(the y-axis is along the interior normal to the metal
surface) and the kinetic equation for the non-equilib-
rium correction to the distribution function f,, which in
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terms of the variables €, pz, t (t is the time in which
an electron revolves along its orbit in momentum
space) has the form

[/}
Tt Ption+ = npEm

(2.2)
(We have here 1ntroduced the free flight time ty(€, pg, t)
instead of the collision integral; this can always be done
under anomalous skin-effect conditions.)
The current is connected with f, through
2
j=—o2 [ vha, 2.3)
where v = 9€/9p while the integration is over the whole
of momentum space. The periodicity of f, plays the
role of a boundary condition in t:

1 as) (2.4)

2n
'f‘(t+ﬁ)=ﬂ(t)’ 0="> c (2:1: de
The boundary condition in the coordinate y has the
form (see '*?)

iy =0,%) o0 =q(e, p:, )iy =0, 9(8)) +p,  (2.5)

@(t) is determined as follows: px(t) = px(¢(t)) where t
< o(t) <t +21/Q (see Fig. 4). For a convex Fermi
surface ¢(t) is uniquely determined. The quantity p

is a linear functional of f,. The only requirement which
p must satisfy is that j(y) vanishes for y = 0.

In the case considered we can put p = 0 in the basic
approximation in (6 ¢ /r)'/% Physically this is con-
nected with the fact that under anomalous skin-effect
conditions the ‘‘population’’ of non-equilibrium states
with |vy| << v, is considerably larger than the ‘‘popu-
lation’’ of states with other values of vy, and during
collisions with the surface transitions from states with
|vy| << v, are thus most probable. This is completely
analogous to the possibility of introducing a free flight
time t,(e, p,, t) under anomalous skin-effect conditions
(see ['1). We introduce ¥(y, p) = fi(y, p) — fi(y, —p). As
€(p) = e(—p) we have the following expression for the
current:

]=—__jv11fdp (2.6)
We put

Z(p)=—:—{ +io +——}

to(p)

Using the symmetry of the collision integral under
the transformation p — —p, we then get L(—p) = —L(p).
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And thus we can write (2.2) for p and —p in the form

ot v gy 2.7
Srentieaen=c B, 20

5 oo
%{/i(y,—p)—ll(p)h(y,—p)=e:u((12) E(y)é—- (2.7a)

Acting, respectively, upon (2.7) and (2.7a) with the op-
erators 3/3y — L and 3/3y + L and subtracting the two
results we get

v 6fo) (2.8)

F; S
—_—1e —2¢E(NL{ —=L
(50— 22) ¥.m=—2B@)E(
From this it is clear that we can continue the functions
¥(y, p) and E(y) in an even manner into the region y < 0
and perform the Fourier transformation in Eqgs. (2.1),

(2.6), and (2.8):®

(k2 4 12) (k, p) + 297 (0, p) = Zeéi’,(k)L(uj ;f") (2.9a)

& (k) + 2B, ()= — 2 ; 4y, (2.9b)
Ju() =0, (2.9¢)

, H
Ji(k)=— %ec—j vy (k; €, ps, t)de dp, dt. (2.9d)

For the integration we changed from the variables py,

Py, Pz to €, py, t. We must still write down the bound-
ary cond1t1on for ¥(y, p). Subtracting (2.7a) from (2.7)
and putting y = 0, we get

¥/(0, p) = —L[f(p) + H1(—D)].

One shows easily that if in the change of variables p
changes to €, pg, t, then —p changes to €, —pg, t+7/9.
Using (2.5) we then get

v (0; 8, pry t) =

= {72+ 00 ¥ (05 02 0)— 20¥ (02,2001 (2..10)

1—
where ql = q(e, pg, t), q, = ale, Pz, @(t).

In the calculations we used the fact that for a convex
Fermi-surface ¢(t + 7/2) = ¢(t) + /2. We have here
also introduced the following definition: q(p) = q(—p).
This can be done because q(p) was initially defined for
those p for which vy(p) > 0 (see (2.5)). Similar to
Eq. (5.2) of {'!, we can get one solution of (2.9a) peri-

odic in t, where ¥'(0; €, p,, t) is given by (2.10):
(k &, Pz, t)

t+2n/Q

== f g(k; e, pz,t1)exp{Iyodtz}cos{kjv,, dtz}dti, @.11)

where

z:r/n ,
1 dt
=in +“‘—"‘—1 T
Yo to(e, Pz 1) = + 0 to(&, Pz t,)
afo |Vv|
ke, pnti)= ———
e P )= E G " T s

X[(1+ q12) ¥ (0; &, Py 24) — 202°F (05 &, Py 9 (84) ) .
Performing simple but cumbersome calculations we
find s

k)= Y { o0 &:00— [ Quths 1) &5y a |,
pury 0 (2.12)

DWe have not taken into account here that ¥'(y, p) has a disconti-
nuity at'y = 2r, provided q differs from unity for electrons which are
incident to the surface at small angles. However, this is unimportant for
us as we are interested in q close to unity.

2n/Q t+2n/Q

Hiy(k)= .f vi(t)de j v;(t)

2e 2¢°H ( Ofoy dedp,
de / e — 4

t

4
X exp{ J.w dtg} cos{kj v, dtz} dty;
t t

2n/G

dp
—em_'i [ vityae
o

(2.13)

Qus(k; k') = ZEHJ‘(—-%?)de

2/ t

X j |vy(21) | dt1 cos (kj vy dtz)
3 t

tep2n/R
-
{( 1—gq, ti)exp{ j Yo dtg}) dty
o(t)
4 : t
f .
X f v;(E)exp {f\’o dtz}COS {k'j.uy dtz}dg
w(t)=2v/e i i

o(t) ot
-1
— % (t,)exp{ - j Yo dtZ}( 1—aq (tl)exp{_ J. Yodtz}) dty

@(th)

X I v;(E)exp {J.’Yodtz} cos{k’Jv dtg}dg}

In what follows we shall assume that (6¢¢/1)
<< 1/Qt,. We can then put &_(k) identically equal to
zero in Egs. (2.1) and (2.12) in the main approximation
in (6eff/r)'/? and we need not at all consider (2.1a) as
it is used only to determine Ey (for the reasons for this
see [12 5]).

We note that the results obtained do not depend at all
on this last approximation which was made merely to
simplify the calculations (this is already clear from the
qualitative consideration in the Introduction).

(2.14)

3. CALCULATION OF THE SURFACE IMPEDANCE

The surface impedance is introduced as follows:

e g )= ZIZWEv (0). (3.1)

First of all it is necessary to evaluate the current
density jo (k). Its magnitude will depend significantly on
how close to unity the reflection coefficient is in the
‘‘angular resonance’’ factor (see (2.14)).

The following cases are possible:®

I. The condition
1— qi(ne—0) > |pefr | (3.2)

holds. We shall see that experimentally this case can-
not be distinguished from the purely diffusive case.
II. The inequality

3)We introduce the notation

2. Beff \eyd
Peff=g-( < ) (ﬂ(na—0)+2m(na—0)w(na))

r

where
aq aq aq eH aq e de dg
(na)=—P5'——P = — Vg = ——
at ap dpy 3 opy ¢ dpx Bp,,
We have used here the fact that p, = 0 and px(n{x) vy(’r)a) =

Yo(ngy) =iw + 1/te(n,,). The quantity 7N is determined from the con-
dition vy(na) =0(x=1,2) (see Fig. 4). We note that we can express
Peff in terms of Toff (se€ footnote!).
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1—qi(ne —0) < |peff |. (3.3)
is satisfied. One can then have
[oesr | <1, (3.3a)

which corresponds to the case when all electrons which
are important in the case of the anomalous skin-effect
with vy ~ 0 are specularly reflected from the surface
and due to that the surface impedance is determined
solely by those electrons, or one can have

(3.3b)

when only an insignificant part of the electrons that are
important from the point of view of the anomalous skin-
effect are specularly reflected, which leads to the fact
that the surface impedance is determined by electrons
that do not collide with the surface.

We consider now consecutively all cases. We can
then always evaluate the current density using the sad-
dle point method as those k are important for which
kv, /@ > 1.

I. In the case (3.2) we can use (2.12) to (2.14) to
evaluate j “(k). As the final answer is extremely com-
plicated, we shall formulate the results of the investi-
gation,

In the cyclotron resonance region, when |(exp 27y)
— 1| 1, the surface impedance, or rather its deriva-
tives with respect to H and w will be practically inde-
pendent of the specularity coefficient.

The smooth part of the impedance (the non-resonance
region) will change when we change q:(nq +0) to the
quantity ~ (1 — q,(nq — 0)) "*/%. It is important that in
the main approximation in (1 — q,( Na — 0)'1/3 this
change depends neither on the frequency nor on the
magnetic field. In that case it is therefore practically
impossible to determine experimentally the magnitude
of the specularity coefficient.

II. When conditions (3.3) and (3.3a) are satisfied we
can satisfy ourselves that the term with Q ,,(k,k’) (see
(2.14)) will give the main contribution to the current
density (2.12). The contribution from the term with
.}s”uy(k) (see (2.13)) will be smaller by a factor
(Geﬁ /r)'/?, After rather complicated calculations of the
integrals, using the saddle-point method, we get for the
current density (compare [81)

]/neH 1 1
= r'h v |dE'Ev (k')
Ink)= 2',A»fdé’< o (e
(3.4)

[oeft | >1,

where

PR, cr=rh Z.f . vrinozilvv)(ﬂz) [ai(na_

(3.4a)

r is a characteristic radius of the orbit, the determina-
tion of which we shall not give, since it does not appear
in the final equations.

The problem has thus been reduced to determining
the surface impedance Z y (see (3.1)) from the set of
integral equations

4nio Vo eH?
— kzgu(k)_ 2E,’ (0)= = VCZhB ,-5/;2 Auy-

X J.dk’gv(k’) V=121 (35
0

1 ( 1 _ 1 ) "
VRN [k—R|% (ke R)R

0)+ 201(1a = Ovo(ne) |
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To solve the problem in the general case we can
most simply proceed as follows. We introduce the quan-
tities

& (k) = &x(k)cos ¢ + &.(k)sing,
8. (k)= —8.(k)sin o+ & () cosep, (3-6)
where we define ¢ from
tg 29 = 24.; [(Aux — Az). (3.7

We introduce E;{r(O) and E;/(0) through similar for-
mulae. (3.5) then becomes

— K&y (k) — 2B, (0)
o Y et

¢z c2h3

1 { 1t }
ViR Vk—k | (k+k)n S
W=z, 7, (3.8)

rh j Ak & (k')
0

Agrr = Azx 0082 @ 4 244, cos psin ¢ + A, sin2 g,
Ay = Ay sin? ¢ — 244, cos @ sing + A, cos® . (3.9)

We write (3.8) in a more convenient form

24y 1_e,ajd§r1; (§/ f 1 _ 1 }
TE O ’ vga'llg ¥lh o (E+E)"

(3.10)
where
o=mn/2+argdpp; E=k/ky,
4 L2 2l , s
kw=[ o Z/:r eh3 ”’IAu'u'l] ~(g—'"/’6‘zlAu'u'l) i
me2
B= Fold=—gp (0) s Fe®.  (3.10a)

The surface impedance Z“V (see (3.1)) can be ex-
pressed in terms of the formulae:

Zyw = Zyry €082 @ + Zyr sin? @,

22y = (Zxx» — Zyyp)cos @sin @, (3. 11)
Zyy = ZyxrSin? @ + Zyyp cos? @,
where Zu’u’ is determined from
4nio Ep (0 8in
Zyp = — w(0) _ 8o Fo(¥)dt=—"—1(o). (3.12)

e En/(0)  cku g

The quantity ¢ (see (3.7) and (3.4a)) is in general
complex, i.e., we cannot diagonalize the surface impe-
dance by rotating the axes in the xz-plane.

One can solve Eq. (3.10) exactly in the general case
(see the Appendix). We give the result in two important
limiting cases when ¢ is a real quantity and the Z“r“f
(see (3.12)) are the principal values of the impedance
tensor.

If

g 1
o< Tt("“_°)+to(na)"

we have Zu'u'(w) ~ @3/

- H™, when >' 90, (Na— 0) ’
e < -0,

H", when

If
6q1 1
—(Me—0 e B
0> )+t0(‘ﬂ¢z)‘
we have Z,r /(w) ~ w, ZH,MI(H) ~ H™Y5,
In the general case we can give an expression for the
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impedance using (3.11), (3.12), and (A.13)—see the Ap-
pendix.

In the case when conditions (3.3) and (3.3b) are satis-
fied, the main contribution to the current will come
from the electrons that do not hit the metal surface and
from the electrons which are diffusely scattered by the
surface. The contribution from the specular electrons
will be smaller by a factor pggs and this case is, in
fact, practically purely the diffuse case. The H- and w-
dependence of the impedance is in the main approxima-
tion the same as the one given in case L

4, CONSIDERATION OF A NON-CONVEX FERMI
SURFACE

If the intersection of the Fermi-surface with a plane
at right angles to the magnetic field is non-convex, we
have for the boundary condition for the kinetic equation
instead of (2.5):¥

fi(y=0:t)lvy<t>>o=an(s,lh,t)ﬁ(y=0; Ps(2)), (4.1)
s=1
where k is the number of those solutions of the equa-
tion px(t) = px{epg(t)) for which @g(t) satisfies the con-
dition t < @g(t) =t + 27/Q and vy(gg(t)) < 0; finally,
the quantity ¥ depends on t.

We must solve Eq. (2.2) with the boundary conditions
(2.4) and (4.1). The simplest method to obtain the solu-
tion (see, e.g., ??) is the one in which one determines
the energy acquired by an electron along its motion in
the electromagnetic field, taking the possibility of col-
lisions into account and the probability for a scattering
from the surface under various angles. One can at once
write down the answer for the case of a convex Fermi-
surface and one obtains it relatively simply. However,
for the case of a non-convex Fermi-surface even in the
case k <2 (see (4.1) and Fig. 3) it is rather cumber-
some to obtain the answer and we shall not write it
down. We only discuss the results.

It is clear from the solution that for fixed p; the in-
tersections I and II (see Fig. 3) are separate. This
geometric separation of the orbit leads to an effect
which is completely analogous to the cyclotron reso-
nance which only occurs for electrons which collide
with the metal surface.” The resonance will occur at
frequencies which are extremal with respect to py be-
cause there are relatively more of such electrons than
with other values of p,.

The resonance frequencies will be

o= oW =M+ e M- A, (42)
where m, n=0, 1,2 and » and X are the times when
the electron collides with the metal surface which goes
through the sections I or II (see Fig. 3) for extremal
values of p,. We write down the resonance part of the
impedance Zpeg for the frequencies w ™" = (1/2m)m™

x [@(x) —A] for section II of Fig. 3. This can easily be

4 Under anomalous skin-effect conditions the contribution from
diffusely reflected electrons which correspond to the p in (2.5) is small
and we can therefore put p equal to zero in (4.1).

5)We assume then that the specularity coefficient for electrons which
hit the surface is such that it corresponds to a non-vanishing geometrically
separated orbit.
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done, using simple physical conciderations. The ampli-
tude of the resonance will be of the order of the cyclo-
tron resonance amplitude so that the resonance electron
approaches the surface along the tangent and acquires

thus at each approach to the surface an amount of energy

of the same order of magnitude as an electron that takes
part in cyclotron resonance acquires from the electro-
magnetic field. The sharpness of the resonance curve
will be less than in the case of cyclotron resonance be-
cause the mean free path is effectively diminished when
non-specular reflection from the surface is taken into
account. Thus®

o(4)

Zres ~ Z(0) (1 — QI(}")eXP{ ~ vodt'})_%’
A

where A corresponds to intersection II of Fig. 3 for an
extremal value of py; Z(0) is the impedance when there
is no magnetic field. We get a similar form for the im-
pedance for the frequencies of (4.2).

An experimental study of the resonance of electrons
colliding with the surface might make it possible to use
the height and steepness of the resonance curve to de-
termine the specularity coefficients near geometrically
separated intersections for extremal values of py.

5. CONCLUSIONS

The introduction of the coefficient for the reflection
of electrons from the surface of a metal in a magnetic
field parallel to the surface under anomalous skin-
effect conditions leads thus to a number of observed ef-
fects, and one can use the dependence of the specularity
coefficient on the electron angle of incidence to study
those effects experimentally.

First of all, the specularity coefficient leads to a
change in the smooth part of the magnetic field and fre-
quency dependence of the surface impedance.

The following cases are then possible:

I. 1 -q(ng —0) >> pegf. In that case there is prac-
tically no effect whatever of the specularity coefficient
on the H~ and w-dependence of the impedance and in
rather weak magnetic fields (|27y| 2 1) the impedance
is completely independent of H and equal to the impe-
dance for H = 0; however, when |27y| << 1, Z(H) «H™*/®
and is independent of the dispersion law. At cyclotron
resonance which occurs when w = mQ (m an integer)
the specularity coefficient has then no influence what-
ever.

II. 1-q(ny —0) K pegf- We must consider here two
possibilities:

1) If peft << 1, the H- and w-dependence of the im-
pedance depends significantly on the relation between
the quantities 3q(n, — 0)/8t, w, and 1/t, and differs
from the dependences in case I. The ratio of the real
part of the surface impedance to the imaginary one also
depends on H and w. An experimental study of the H-
and w-dependence of the impedance can thus determine
q and 3q/3py for vy = 0.

We note a very strong effect which occurs when we
take specularity into account. The asymptotic behavior
in H of the impedance in strong magnetic fields in the

6)The 1/6th power is obtained when we take into account the fact
that the dispersion law is not quadratic (see [1]).
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case I when the specularity is unimportant will be Z(H)
xH™'/® but in case II, 1) we shall have Z(H) <H'/®
i.e., there is a difference of %s in the indexes of the
powers which, of course, can be observed as the mag-
nitude of the field can here be changed by several or-
ders of magnitude. Indeed, the strength of the field is
determined by the condition |27y| = [r(1 + iwty)/1]<< 1.
If then [aq/apyl eHvy/c >> |iw + 1/t,|, the asymptotic
behavior will be H*/3, while in the opposite limit it will
be H™'/®, If we use for the experiment samples for
which [ is 1 mm and the magnetic fields reach such
magnitudes that r ~ 10™ cm or H = 10* to 10° Oe this
gives already three orders of magnitude.” If therefore
there is in such a range of fields a change from one
kind of dependence to another we can at once find the
magnitude of daq /apy

2) If, however, pegs >> 1, the impedance will in the
main approx1mat10n in (6eff /r /2 be the same as in
case I for q =0, i.e., this case corresponds to purely
diffuse reﬂectlon. The specularity coefficient is thus
important only in case II, 1).

Moreover, the specularity coefficient leads in the
case of non-convex Fermi surfaces to a phenomenon
which is completely identical to cyclotron resonance
occurring only for electrons which collide with the sur-
face. The difference consists in that the ‘‘steepness”’
of such a resonance is less due to an effective diminu-
tion of the mean free path because of non-specular col-
lisions with the surface.

The author is grateful to M. Ya. Azbel’ for suggest-
ing this topic and for useful hints.

APPENDIX

We solve Eq. (3.10) exactly using the method given
in 7}

—§2Fo(§)+1=ef°]°d§'h<§)__{ L@y
[}

veg Lg—¢ln (E+E)"

We are not interested here in the solution of FU(S) it-
self, but in the quantity which determines the impedance

Io= jF., £)dt. (A.2)

We change variables, ¢ = et Fo(et) = g(t). Equation
(A.1) becomes

erig(t)+ et jd"g("){ [T—ev[h (1+et 7y }_em (A-3)
In a two-sided Laplace transformation the representa-
tion of the function g(t) will be

+oo c+ico

M(Z): j‘e—lfg(t)dt’ g(t)=~ J‘ e”M(z)dz. (Ao4)
We can write (A.2) in the form
+00
IG=M(———1)=jg(t)e‘dt. (A.5)

One shows easily that if we choose M(z) such that
a) M(z) would be analytical in the band =3 <Rez < b

DOf course, there is still an upper bound to the magnetic field in
order that the conditions for the anomalous skin-effect are satisfied,
§/r<1(H< 108 Oe).

D. B. DUBOVSKII

(b > — ') everywhere, except in the point z = -2,
where there is a simple pole with residue 1, b) M(z)
satisfies the difference equation

M(z—>/2) + e°K (2) M (z) =0, (A.6)

21/5 1\ . nz n 1
K(z)=-_p?t—l"(—z)l"(z+?)smé—cosz—(z—E—) (A.7)
(where I'(z) is the gamma-function (see '®?, pp. 49 and
54-55) then g(t) defined by (A.4) satisfies the initial
equation (A.3).

We put
_ 2/5n Y __z+42
M(z)_Sln—%;[.(—z—l——z)L(Z)e y U=— 5/2 lo, (A'B)

and then L(z — %2) — K(z)L(z) = 0, and
‘L(z) is analytical for —3 <Rez<<band L(—2) = 1. (A.9)

By direct substitution we can check that

L(z)=A[(1£z)2) D(2-D(-2) (A.10)
satisfies all conditions (A.9), provided

A=l L zt21" . A.11

A“F{sz+yj ’ (A.11)

1 T (— 2/5(z 4 2) )sin 2/sn(z + 2)
D(z)=—2—1n{ T'(—2%/5(z+3/2))sin2/s0(z + 3/2)

e ) (A )t el )
T'(—=2/5(z2 —2))T(— ¥/52) S tgt/onz

sin2/sm(z 4 2) sin 2/s (2 + 3/5) ) e
sinz/m(z+1)sin2/5rc(z+1/2)sin2/5n(z+5/2)] } "(A.12)

X

If we add to D(z) a function a(z) periodic with period
% and analytical in the band —3 < Re z < b, all prop-
erties (A.9) will also be satisfied. We show that this
function a(z) can be put identically equal to zero. First
of all, a(z) increases more slowly than exponentially
as z — «. In the opposite case M(z)|, . o — exp{e?}

and one could not have any Laplace transform. From
the periodicity and analyticity of a(z) in the above-
mentioned band it follows that it is analytical in the
whole plane. It can therefore in the whole plane be
written in the form of a finite polynomial (see, e.g.,

[9], p. 61). A finite polynomial can be periodic only if it
is simply identically equal to a constant. This constant
can be put equal to zero as it does not contribute to
M(z). We have thus shown that there is a unique solu-
tion to (A.9) and hence to (A.1). Using (A.5), (A.8),
(A.10) to (A.12) we find

4n2 5n

. /’I‘(l‘/s (%/5)
sin 2/5m —63—5111-5—( 2oos 5 ) I3(f/s5) ]
(A.13)
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