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The contribution to the complex dielectric constant of a gas mixture due to a radiative chemical reac­
tion between the gases is calculated. The optical properties of a reacting mixture of gases are deter­
mined, including the coefficient of absorption or amplification of light, the intensity of chemilumines­
cence, and their frequency dependence. The formation of diatomic molecules from atoms is quantita­
tively analyzed. 

Self-stimulation of a radiative reaction by the light emitted during the reaction is considered. It is 
shown that the reaction can be divided into two stages: 1) a comparatively long period of accumulation 
of photons associated with a very slow chemical reaction, and 2) a subsequent short time period of 
rapid chemical reaction. The possibility of using a self-stimulated reaction to make a chemical laser, 
which was proposed inc81 , is considered. According to estimates, in such a laser with an initial con­
centration of 1019 atoms per em\ a coefficient of light amplification between 1 and 10 dB/em is ob­
tained, the pulse time of the reaction -10-9 sec, and the power per cm3 - 3 x 109 W. 

AT the present time chemical lasers, in which exci­
ted gas molecules appear as the result of a chemical 
reaction and their de-excitation serves as the basic 
mechanism of the laser, are well known. [l-71 In this 
connection a radiative transition of the electrons is ac­
complished in a molecule without its chemical change. 
However, as noted by one of the authors, [81 other cases 
when a photo-transition is accomplished during the time 
of an elementary event of the chemical reaction itself 
are also of interest. Precisely such cases will be theor­
etically investigated in the present article. 

Let us assume that there are two types of molecules 
in the gas which are able to participate in an exothermal 
chemical reaction. The latter represents a change of 
the electronic state during the collision and strong 
interaction of these molecules. Usually the excess en­
ergy is given to a third molecule, or else it is carried 
away by the molecules of the reaction products. How­
ever, another competing radiative reaction mechanism 
also exists in which the above-mentioned change of the 
electronic state is a photo-transition, and the excess 
energy luminesces. The first, i.e., the thermal-reac­
tion mechanism, dominates most frequently. But in the 
presence of a sufficiently intense light wave, a stimula­
ted photo-transition may turn out to be the dominant 
radiative mechanism. c81 The goal of the present work 
is a calculation of the rate of a stimulated radiative re­
action and an investigation of the feasibility of its use 
in a laser. 

A quantitative calculation will be carried out for the 
simplest model-a model of monatomic molecules. The 
results may be used for estimates even in the case of 
molecules containing many atoms. 

In the first place the imaginary part of the dielectric 
constant of a reacting gas will be calculated. From it 
we determine the coefficient of amplification (absorp­
tion) of the light wave that stimulates the reaction, and 
the number of elementary reaction events per unit time. 
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1. DERIVATION OF A GENERAL EXPRESSION FOR 
THE IMAGINARY PART OF THE DIELECTRIC 
CONSTANT OF A REACTING GAS 

Let us assume that the concentrations of the first 
and second types of atoms entering into the reaction are 
n1 and n2 , and the concentration of the reaction product 
is negligible. We are interested in the frequency range 
of the radiation that appears in connection with the 
chemical reaction. Let us assume that this range does 
not overlap with the absorption spectra of isolated 
atoms. Then only pairs of adjacent, reacting, unlike 
atoms will absorb light. This absorption is cancelled if 
the concentrations n1 or n2 vanish. Therefore a phenom­
enological expansion of the imaginary part of E in 
powers of the concentrations has the form 

Im e;=antnz + .... (1) 

In order to determine the coefficient a, it is sufficient 
to calculate Im E for a single pair of atoms of different 
type. 

One can obtain a general expression for Im E by using 
the density matrix method: cs11 > 

4ne2 0 

Ime=--Re lim J e<-im+~>t 
liw2 ~->+•_oo 

X Sp R (vxeiHtl~vxe-iHt!~ _ eiHtl~v.,e-IHtlllv.,) dt. (2} 

Here w denotes the frequency of the light, H is the en­
ergy operator of the system unperturbed by the light, 
R is the density operator of the unperturbed system, and 
v =~vi, where vi denotes the velocity operator of the 

1 

i-th electron. 

!)Our formula (2) differs somewhat from the one obtained in [9 ] 

since we have used a more exact expression for the energy of interac­
tion between the system and the electromagnetic wave, V = -(e/c) 
~Vi· Ai (A denotes the vector potential of the wave). The expression 
V = -p . E is used in [9 ] (p denotes the dipole moment, E is the electric 
field), which is suitable in the case of a potential field. 
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We choose the origin of coordinates at the center of 
mass of a pair of atoms, we denote the relative coor­
dinate of the two nuclei by r, the reduced mass by IJ., the 
total set of coordinates of all electrons by p, and we 
shall calculate the trace over the total system of ortho­
gonal functions cpgm(P, r) = cl>gm(r}I/Jg(P, r) where 
1/Jg(P, r) denotes the wave function of the electrons cal­
culated in the adiabatic approximation, i.e., for a fixed 
value of r, notably 

h• 
H=-:z;.c\,+d't',(p,r), d't',(p,r)'ljlg(fV)=Ug(r)'ljlg(p,r). (3) 

Here X(p, r) includes the kinetic energy of the electrons 
and the potential energy of their interaction among 
themselves and with the nuclei, but also includes the 
Coulomb interaction of the nuclei; Ug(r} denotes the 
potential energy of the nuclei when tile electrons are 
found in the state g. 

According to the adiabatic approximation 1/Jg(P, r) is 
a slowly varying function of r. Therefore, introducing 
the notation Hg =- (li2/21J.)Ar + Ug(r}, we have approxi­
mately 

Hll>gm(r)1jlg(p,r) ~ IJlg(p,r)Hgll>gm(r) =Egmll>gm(r)IJlg(p,r). (4} 

Here cl> m(r) is the wave function describing the trans­
lation~ relative motion of the atoms, m is the total set 
of quantum numbers determining this motion, and Egm 
denotes the energy of the translational motion of the 
atoms, which coincides with the total energy of the sys­
tem. 

We shall define the density operator R in terms of 
its matrix. We require that the matrix R be diagonal in 
the energy representation, but arbitrary otherwise. In 
the adiabatic approximation this means that the matrix 
R is diagonal for the basis cpgm(P, r). Introducing the 
notation (giRig') = llgg'Rg(Hg), one can rewrite Eq. (2} 
in the adiabatic approximation in the form 

4ne• 2 
lme=!i'Re Jim \ e<-i~••>1~ Sp7 [R8 (H8)-R8.(HII')I 

(1) 11-t:J_~ gg• 

X I v.,88 , 12 exp (! H g·t) exp (- {-n gt) dt. (5} 

It was assumed above that the population of bound states 
of the atoms is negligible. This means that for the 
bound states one should set Rg(Egm) = 0. For dissocia­
ted states Rg(Egm) is proportional to the inverse vol­
ume of the gas. If this volume is set equal to unity, then 
formula (5} will express the quantity (1} when n1 = n2 = 1, 
i.e., the coefficient a. 

2. CALCULATION OF THE IMAGINARY PART OF THE 
DIELECTRIC CONSTANT, THE COEFFICIENT OF 
AMPUFICATION OF AUGHT WAVE, AND THE 
RATE OF STIMULATED CHEMICAL REACTION 
FOR QUASICLASSICAL MOTION OF THE NUCLEI 

For quasiclassical motion of the nuclei, the terms 
Ar and Ug(r) in the operator Hg should be assumed to 
approximately commute. Therefore, in Eq. (5) one can 
replace the product of exponential functions by 
exp(Ulg'gt}, where 

(6} 

After this in Eq. (5) one can integrate over t, as a result 
one obtains 

0 

Re lim Jei<0,•,-ro>t+~ 1 dt=n6[Qg•g(r)-w]. (7} 
'11--++0 -00 

It is now convenient to calculate the trace in formula (5) 
for the complete system of Fourier functions eik · r j...fV, 
where Vis the volume of periodicity. Then with Eqs. 
(1}, (6), and (7) taken into account, one obtains from Eq. 
(5} 

Im e = 16n3ez \""! [P (r·)- p •(r·) Jl v (r·) 12 r;'Vnlnz (8) 
w• f;t g 1 g 1 xgg' ' IFg(r;)- F,·(r,) I' 

where the rj are the distances between the nuclei at 
which the argument of the 6-function in Eq. (7} van­
ishes, Fg(r} = -aUg/ar is the force acting between the 
nuclei, and 

1 ( fl2k2 ) 
P8 (r)==vER8 - 2--J-U8 (r) . 

k fl 
(9} 

According to the well known properties of the diagonal 
elements of the density matrix R , Pg(r)dxdydz is the 
probability that the projections of the relative coordin­
ate r will have values in the following intervals: from 
x to (x + dx}, y to (y + dy), and z to (z + dz}; the poten­
tial energy of the interaction between the nuclei is 
equal to Ug(r). 

In order to clarify how one should choose Rg, as an 
example let us consider the case when Ug(r} has the 
form shown in Fig. 1. On it some of the curves of Ug_(r) 
vanish asymptotically as r-oo. Other curves (one of 
them is shown in the figure) here asymptotically tend to 
a constant positive value U2(oo) where among the curves 
of the second type there are some which intersect 
curves of the first type. Such a type of Ug(r} is often 
encountered, for example, when the molecule is hetero­
polar in the ground state (the curve U2(r}), and for large 
values of r the energy is lower in the states of the neu­
tral atoms (the curves Ut(r) and Us(r)). Thus, for the 
interaction between a hydrogen atom and a chlorine 
atom, the diatomic molecule possesses an appreciable 
dipole moment in its ground state. But as r-oo the 
state consisting of neutral atoms has a much lower en­
ergy since the separation of an electron from a cl- ion 
uses up an energy of 3.7 to 3.8 eV, but upon the neu­
tralization of the H• ion 13.6 eV of energy is released. 
Thus, U2(oo) is of the order of +10 eV. 

U(rJ 

-

FIG. 1 
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Going on to the choice of the average population Rg 
according to the assumption made at the beginning of 
Sec. 1, we shall assume that no bound molecules at all 
are present in the gas, i.e., the corresponding Rg = 0; 
in the case shown in Fig. 1, R2 = 0. We assume an 
equilibrium Gibbs distribution with a certain tempera­
ture T for the populations of all dissociated states of 
the atoms. Therefore we assume 

Rg = CS(Hg)e-H.tT, 

8{x) = { 1 for x;;;;. 0 C-t = ·~ JRg dsr. (10) 
0 for x<O ~ 

g 

Here Hg is the classical expression for the total energy 
of the relative motion of the nuclei. From Eqs. (9) and 
(10) one obtains 

P 1 { e-U,IT for U6(r) > 0, 
g{r)=ro 2n-''•l'- U6/T +[1- ct>{l'- U6/T)]e-u.tr for U6 (r) < o 

2 X 

Cll(x)=-=-Je-t' dt. 
l':rt 0 

From the normalization condition one obtains 

(11) 

C = (GVr1(27Tfi2/J.LT)312• Here G denotes the number of 
electronic states (the number of values of the index g) 
for which Ug("") = 0. For all other electronic states we 
assume Ug("") ~ T, and for them the population Rg = 0. 

We note that at first glance the right hand side of 
Eq. (8) appears to be equal to zero because of the anti­
symmetry of the expression which is summed over the 
indices g and g'. This is actually not so since rj also 
depends on g and g'; however these indices for rj are 
omitted in order to simplify the notation. 

From Im E one can easily find the imaginary part of 
the index of refraction n of light in the gas, Im n 
R: (1/2)Im E. If the intensity of the light wave increases 
in space according to the law I(x) = I(O)eax, then we 
obtain for the gain a 

(l) 

a=--lme. 
c 

(12) 

We define the rate W of formation of diatomic mole­
cules from atoms by a chemical reaction stimulated by 
light as the number of elementary reaction events per 
cm3 per sec. One can easily calculate W by comparing 
the energy given to the light wave by the electrons per 
cm3 per sec, Whw, with the divergence dl/dx of the in­
tensity of the wave. As a result one obtains 

W=~l(x). 
liw 

(13) 

Now let us present a criterion for the validity of the 
quasiclassical treatment of the motion of the nuclei, 
which was used above. It is necessary and sufficient 
that the inequality (bJ.LFg(rj)/p3)2 « 1 be satisfied at the 
points rj, where p denotes the larger of the quantities 
v'-2J.Lg(rj) or ..fl:I?F. A derivation of this criterion is 
given in article[101 . 

In the case when Ug(rj) is of the order of 1 eV, the 
criterion for the quasiclassical nature of the process is 
always well satisfied. However, if Ug(rj) < T, then the 
criterion is satisfied only at sufficiently high tempera­
tures. For example, if F g(r j) is of the order of 
108 eV/cm and J.L = 4 x 10-23 g, then the temperature 
must appreciably exceed 300° K. 

3. ESTIMATES OF THE COEFFICIENT OF AMPIJFI­
CATION OF THE IJGHT WAVE AND OF THE 
STIMULATED CHEMICAL REACTION RATE 

In general there are both positive and negative terms 
in the summation over g and g' in Eq. (8). The first type 
causes light absorption; the second causes amplifica­
tion. The ratio of the magnitudes of these terms may be 
very different. In order to obtain an estimate, let us 
consider the case when one term corresponding to 
amplification dominates in the summation, for example, 
the transition g' = 1 - g = 2 shown in Fig. 1. Here the 
sum over j contains two negative terms. Let us estimate 
one of them. 

Let us assume U1(rj) = 1 eV, T = 0.025 eV (300°K), 
G = 2, lvx12(rj)l = w x 10-s em/sec, rj = 10-8 em, 

IF1(rj)- F2(rj)l = 108 eV/cm, w/c = 105 cm-1, and n1 = n2 

= 1019 cm-3. In this connection one obtains P1 = 3.6/V, 
P2 = 0, and a = 0.25 cm-1. 

Cases are possible in which F1(rj) = F2(rj) at a cer­
tain frequency w0 • In fact, if one determines rj from the 
last equality, then the corresponding frequency w0 is 
determined by the equation wo = g12(r:'}. In this case in 
Eq. (8) the denominator of the term Jith g' = 1, g = 2 
cancels, which means a = ""· It is obvious that in this 
case the approximations used to derive Eq. (8) are in­
adequate. It is necessary to take into account the finite 
nature of the linewidth of the radiation for a fixed value 
of r, the finite width being due to the fact that U 1 and U 2 
are not the exact energy levels of the electronic sub­
system (the perturbation due to the non-adiabatic nature 
of the process and other effects have been neglected). A 
more general calculation, taking account of the non­
stationary nature of the levels U 1 and U2 (which we do 
not cite in this article) leads to the following changes: 
on the right hand side of Eq. (7) one should write 
r12/1r{[g12(r)- w]2 + r~2} instead of o[g12(r)- w], 
where r12 is the sum of the reciprocal lifetimes of the 
initial and final states of the system with respect to 
thermal transitions to any other state. As a result of 
such a generalization a term of the quantity (8) remains 
finite for arbitrary values of the difference 
IF1(rj)- F2(rj) 1. 

In particular, in the case F1(rj) = F2(rj) mentioned 
above one obtains the following value for the gain a 0 

upon taking account of the dominant term in the sum (8): 

16n3e2Pt(r;o) (r/)•Vntft:! lv r·o lz( I 82Qt21 )-'/, (14) 
ao li xl2 ( l ) r 12 a-• • . c roo ,- r; 

One can use formula (8) as long as the value of 
IF1(rj)- F2(rj) I is not too small so that here the result-

ing a « ao. 
In order to estimate the value of a 0 we use the same 

values of all parameters as were used above in order to 
estimate a. But instead of the quantity IF1(rj)- F2(rj) I 
which appeared in the expression for a, the quantity 
li v'n2 la 2g12/ar2 1r~ enters into a 0 , and one must estimate 

J 
its value. In order to estimate this quantity let us as-
sume that the point rj is located in a region where the 
curves U1(r) and. U2(r) can be approximated by parabolas, 
we assume that the infrared frequencies of the vibra­
tions of the nuclei in the states 1 and 2 are equal to wi 

" 
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in order of magnitude, and the difference between the 
squares of the frequencies in these states will be of the 
order of (1/2)wf. 

In order to estimate n 2 let us assume that the life­
time of the system in state 1 or state 2 is equal to s 
periods of the infrared vibrations. Thus, n2 = wi/21TS. 
As a result one obtains 

/ryr,2liJ2r.!,2/iJr2lr1 ~ l'f.!liul;3 /4ns. (15) 

For a numerical estimate of this quantity, let us take 
11 = 4 x 10-23 g and Ji.wi = 0.1 ev. In order to estimate 
s, let us assume that a thermal transition of the system 
from state 2 (or state 1) to any other state g takes place 
near a point of intersection or close approach of the 
curves U2(r) and Ug(r). For each passage of the system 
through this point we assume the probability of a 
thermal transition to be equal to 10-2;[111 thus s = 50. 
As a result a value for (15) on the order of 1.6 
x 10-5 g cm/sec2 is obtained. Here a 0 = 2.5 em-\ i.e., 
the gain is very large. 

Now let us go on to an estimate of the rate of a chem­
ical reaction stimulated by light. It is determined by 
formula (13). If the gas is irradiated by light from an 
extraneous source with I = 105 W / cm2, then for 
'li.w = 2 eV and a = 0.25 cm-1 (n1 = n2 = 1019 cm-3) one 
obtains W = 1023 cm-3 · sec-1. Therefore, all of the initial 
atoms are combined into molecules after 10-4 sec. 

It is of interest to determine the reaction rate under 
conditions when the gas is located in a reflecting con­
tainer and the reaction is stimulated by the light crea­
ted during the course of the reaction. Let us assume for 
simplicity that the mirror surfaces possess 100 percent 
reflectivity, and that at the instant of time t = 0 light of 
intensity I0 , exceeding the threshold of the laser regime, 
already exists in the space. Let n1 = n2 = n be the con­
centrations of the gas atoms which have not reacted. 
The kinetics of the stimulated reaction is described by 
the equation 

iJn 
-=- W ==- ~ln2, I =lo +(no- n)liwc, (16) 

iJt 

where {3 = a/1iwn1n2 is a constant which does not depend 
on n1 or n2 (see Eqs. (8) and (12)). If no denotes the con­
centration of atoms which have not reacted at the mo­
ment t = 0, the initial photon concentration q0 = I0/flwc, 
r-1 = {31iwc(n0 + q0)2 , and if we introduce the dimension­
less concentration of atoms z = n/ (no + q0), then the solu­
tion of Eq. (16) has the form 

1 ( 1 ) t -+In --1 =-+canst. 
z z ~ 

(17) 

This dependence is shown in Fig. 2, on which it is neces­
sary to choose the point t = 0 to be that place where z 
corresponds to the initial concentration no. 

The first of Eqs. (16) does not take into account the 
absorption of light by the diatomic molecules which are 
produced as a result of the reaction, which corresponds 
to the assumption of infinitely rapid removal of these 
molecules. If such a removal actually does not occur, 
then the dependence shown in Fig. 2 is valid only at not 
too small values of z. The largest reaction rate Wmax 
is reached for z = 2/3. It is given by W max 
= 4(no + qo)/277. 

The reaction is characterized by two effective times: 

z 

O,J 

t, 

I 
' I 
I 
I 
I 
I 

t I 

r~ 

FIG. 2 

1) a time t1 of an accumulation of photons, during the 
course of which their concentration increases by many 
orders of magnitude, but the concentration of atoms de­
creases by only 1 to 5%, t1 = rln(no/ q0); 2) a subsequent 
period t2 of rapid change of the concentration, during 
the course of which z changes from 0.95 to 0.5; t2 = 4r. 

Let us consider a numerical example: no= 1019 cm-3 
and a = 0.25 cm-1. Here one obtains T = 1.3 x 10-10 sec, 
Wmax = 1028 cm-3 ·sec-\ and t2 = 5.2 x 10-10 sec. For 
qo = 100 photons/cm3 in a single mode one obtains 
t1 = 5.2 x 10-9 sec. Thus, a stimulated reaction will 
bear the nature of an explosion. 

Now let us estimate the time of the same reaction, 
but taking place in connection with spontaneous photo­
transitions. ac photons are radiated in each mode per 
cm3 per sec. In the interval of frequencies dw there 
are (w2/1r2c3)dw modes. Therefore, the reaction rate 
associated with spontaneous transitions is given by 

(18) 

where ll.w is the effective width of the band of spontane­
ous radiation of light, and am and wm are the values of 
these quantities at maximum intensity of the radiation. 

For a= 2.5 em-\ ll.w = 0.1 wm, flwm = 2 eV, one ob­
tains Ws of the order of 7.5 x 1023 cm-3 · sec-1. Here 
the reac~on time is of the order of 10-5 sec. This time 
is appreciably larger than the time t 1 during which the 
stimulated reaction occurs. Thus, spontaneous transi­
tions cannot compete with stimulated transitions. 

4. FEASIBILITY OF CONSTRUCTING A LASER THAT 
OPERATES BY USING A STIMULATED CHEMICAL 
REACTION 

Let the distance between the laser mirrors be L and 
let all the space between the mirrors be occupied by 
atoms of the first and second types. Let 1- r denote the 
fraction of the light energy which is lost during propa­
gation of the light from mirror to mirror, including 
reflection from one of the mirrors. Then, as usual, the 
condition for amplification of the light wave has the 
form reaL > 1. In order to maintain a large value of a, 
an inversion of the populations of the levels is required, 
i.e., a predominance of the concentrations of the atoms 
over the concentration of bound molecules. One can 
guarantee this, for example, by a sufficiently rapid 
''blowing out'' of the gas through the space between the 
mirrors. 
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For L = 100 em and r = 0.9 one obtains Q' > 10-3 cm-1 

from the criterion cited above. For the values of the 
parameters used above in order to estimate 0' 0 , this 
criterion is satisfied for n > 2 x 1017 cm-3 • 

Let us consider in more detail the case when the 
reaction product has not moved away completely, the 
reaction takes place as a pulse and is damped when the 
concentration of the bound molecules becomes compara­
ble with the concentration of atoms. The kinetics of 
such a reaction (with the exception of its last damping 
phase) is described by formula (17) and Fig. 2. The en­
ergy radiated spontaneously will be small in comparison 
with the stimulated-radiation energy radiated if t 1 is 
much smaller than n0/Wsp· This reduces to the inequal­
ity 

(19) 

Here Q' does not appear at all. Inequality (19) is already 
satisfied at the threshold concentrations n0 , even if one 
sets ~w = Wm· 

The light energy released during the duration of a 
pulsed reaction, referred to a unit volume of the gas, is 
of the order of fiwn0/2, which for fiw = 2 eV and 
n0 = 1019 cm-3 is equal to 1.6 J/cm3 • The average power 
of the light energy radiated per cm3 is equal to 
nwno/2t2 = (1/8)ct3(fiw) 2n~, which amounts to 
3 x 109 W · cm-3 for fiw = 2 eV, no= 1019 cm-3 , and 
Q' = 0.25 cm-1• 

For given values of G'(W) and r(w) the theory of a 
laser may be developed without choosing a specific 
model for the working substance. Therefore, in the 
case under consideration the theory of the laser will 
have the same form as in all other cases. 

It was assumed above that during the time t 1 the light 
wave is able to traverse the distance between the mir­
rors many times. However, the opposite case t 1c < Lis 
also possible, in which case the mirrors cease to play a 
role. This case will be separately considered in the 
following Section. 

5. REACTION IN THE REGIME OF MULTIMODE 
SUPERLUMINESCENCE 

Let us assume that the linear dimensions of the space 
occupied by the gas exceed t 1c in all directions, i.e., 
during the time of the reaction the radiation is not able 
to escape beyond the limits of the gas. In this case one 
can use the approximation of an infinite gaseous medium 
and an isotropic, coordinate-independent intensity of the 
light. One can relate the calculation to a unit volume of 
the gas. Let us assume, just as above, that the concen­
tration of the bound molecules being generated is negli­
gible. 

Let q w denote the concentration of photons in any of 
the modes possessing a frequency w. This concentra­
tion is determined from the equations 

{)q., 
Tt = ca(w) (q., + 1) == c~ (w) liwn2 (q., + 1), (20) 

0~=-cn2 1:~(w)liw(q.,+1) or 1:q.,=no-n, (21) 

where ~ denotes a sum over all modes and over the two 
polarizations of light. It is assumed that no radiation is 
present in the volume at t = 0. Just as in Sec. 3, one 

can divide the reaction into two stages: 1) a period of 
accumulation of photons associated with an almost un­
changed value of n with an effective time t', and 2) a 
subsequent period involving a rapid change of n with an 
effective time t". 

During the course of the first period, in Eq. (20) we 
assume n = no and we obtain 

q., + 1 = exp {cBiiwno2t}. (22) 

We determine the value of t' from the condition that 
0.05 no of the atoms react during the first period: 
~qw(t') = 0.05 no. In order to evaluate this sum, we ex­
pand G'(w) near its maximum in powers of w- wm: G'(w) 
= Q'm- y(w- wm) 2 • As a result the following equation 
is obtained for t': 

(23) 

The spectral distribution of the intensity of the radia­
tion approximately coincides with the distribution of the 
quantity (22). The half-width of this distribution is given 
by fiw = 2v'(cyt) 1 ln 2, i.e., the radiation band narrows 
with time. 

Passing to an examination of the second stage of the 
reaction, let us assume that at the moment t' the quan­
tity fiw is considerably smaller than the half-width of 
the curve Q' (w). In this case, in the first of the formulas 
(21) one can take wj3(w), as a slowly varying function of 
w, outside of the summation sign at the point wm. As a 
result this formula coincides with Eq. (16) in which one 
should set Io = qo = 0 and {3 = f3(wml· The solution of this 
equation is given by formula (17) and is shown in Fig. 2. 
Thus, the duration of the second stage of the reaction, at 
the end of which n = n0/2, is t" = 4r, in the same way as 
in Sec. 3 but in the expression for T one should set q 0 

= 0 and t3 = f3(wml· 
In order to determine qw(t) during the second stage 

of the reaction, we eliminate n2dt from Eqs. (20) and 
(21). One can easily integrate the obtained equation, and 
as a result one obtains 

q., + 1 ( 1-z )a{w)fam 

q.,' + 1 = 1 - z' ' (24) 

where q'w and z' denote the concentrations of photons 
and atoms at the moment t = t'. Having substituted 
z'. = 0.95 and q'w from formula (22) into Eq. (24), we ob­
tam 

[ 
eu ] a{ro)/«m 

q.,+1= 0,05 (1-z) . (25) 

This formula determines the time dependence of qw if 
one substitutes z(t) from Eq. (17) or from Fig. 2 into it. 

The moment of time t', dividing the two periods in 
which different approximations were used above in order 
to solve Eqs. (20) and (21), was to a considerable extent 
chosen arbitrarily. Therefore, the obtained results are 
only valid in that case when they are slightly sensitive 
to the choice of t'. We show that this is actually so upon 
consideration of numerical examples. 

It was assumed above that near its maximum G'(w) is 
an even function of w - wm. However, if the maximum 
of Q' is located at a point w0 corresponding to a transi­
tion to a configuration rj for which Qt2 (r) has an ex­
tremum, then G'(w) is extremely asymmetric in the 
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neighborhood of the maximum: if &1 12(r) has a minimum 
at r = rj then 

a(co) = ao -y(co- coo) 2 for co> coo, 
a(co) = 0 for co< coo. (26) 

If n12(r) has a maximum at r = rj, then 

a(co) = ao- y(co- coo) 2 for (!) < wo, 
a(co) = 0 for (!) > wo. (27) 

In this case it is necessary to introduce the following 
changes in the formulas obtained above. The right hand 
side of Eq. (23) should increase by a factor of two. One 
should use the formula Ow = v'(cytt1ln 2 for the half­
width of the spectral distribution of the intensity of the 
radiation. 

If the maximum of a(w) is located at the point w0 , 

then the parameter y entering into Eqs. (26) and (27) 
can be approximately related to n 2 which has been en­
countered above. In order to do this, one can identify 
the half-width of the curve a(w) obtained by two 
methods: 1) as the deviation of the frequency from w 0 , 

for which Eqs. (8) and (12) give a value for a which is 
two times smaller than (14) (this deviation turns out to 
be equal to lw- Wol := t.w = 8 r122>); 2) as the deviation 
in the frequency from w 0 , for which Eqs. (26) and (27) 
give a(w) = ao/2 (here t.w = ~). Equating the two 
indicated quantities, we obtain 

(28) 

For numerical estimates we shall use this formula 
and the previous values n2 = 5 X 1011 sec-\ flw 0 = 2 eV, 
and no = 1019 cm-3 • In this connection, from Eq. (23) but 
with the right hand side doubled, one obtains u = 16.3. 
Hence for ao = 2.5 cm-1 one obtains t' = 2.1 x 10-10 sec 
and t" = 5.2 x 10-11 sec. The half-width of the curve 
a(w) is given by t.w = 4 x 1012 sec-1; the half-width of 
the spectral distribution of the intensity at the moment 
t' is given by Ow = 1.1 x 1012 sec-1. 

If the duration of the first stage of the reaction is re­
defined so that the coefficient 0.01 stands on the right 
hand side of Eq. (23) instead of 0.05, then in this connec­
tion the coefficient associated with (1- z) in the square 
brackets of formula (25) decreases by only 5%. Hence 
the small sensitivity of the results to the arbitrary 
choice of z' is evident. 

The results obtained above indicate that it is possible 
to make lasers in which a stimulated photo-transition 
occurs during the elementary chemical reaction event 
itself and accelerates the rate of the latter. Such a laser 

2> It should be taken into consideration that near r/ there are two 
values of rj at which an identical frequency w is emitted. Therefore in 
Eq. (8) in the sum over j one should keep two terms which are almost 
identical in magnitude. 

may possess a large gain and a large power of outgoing 
radiation. On the other hand, the system under consid­
eration is also of interest from the point of view of ac­
celerating the chemical reaction and controlling it. 
Thus, a quantitative calculation has confirmed the esti­
mates made by one of the authors, l8J and the advantages 
mentioned there of the type of lasers under considera­
tion. 

It is of interest to compare the stimulated reaction 
in the multi-mode regime, which was considered in Sec­
tion 5, and the reaction in the single-mode regime, 
which was considered in Sec. 3. For multimode super­
luminescence the maximum of the intensity of the radia­
tion spectrum coincides with the maximum of a(w) at 
wm. For the single-mode regime the emission is mono­
chromatic and its frequency is determined by the fre­
quency of the original radiation with intensity Io. For 
identical values of a and no the rate of the fast stage of 
the reaction turns out to coincide in both cases; the 
duration of the slow stage of the reaction turns out to be 
several times longer in the single- mode regime. The 
radiated power is the same in both cases, but in the 
single-mode regime it is concentrated in a very narrow 
range of frequencies and directions of propagation. 
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