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We study the one-dimensional problem of the expansion of a rarefied cloud of hot electrons through a 
cold plasma. We show that the expansion process is accompanied by the excitation of Langmuir oscil
lations; the reaction of those on the hot electron distribution function is calculated in the framework 
of the quasi-linear approximation. Using a method which is similar to the Chapman-Enskog method 
we obtain "quasi-gasdyna.mical" equations which describe the expansion process. We find an analytical 
solution of these equations for different initial conditions. 

1. INTRODUCTION 

UNDER astrophysical or laboratory condition a situa
tion is often reached when in some region of space 
which is filled with a uniform cold plasma for some 
reason or other a small impurity of "hot" electrons 
appears with an average energy which appreciably ex
ceeds the temperature of the cold plasma. In the pres
ent communication we study the dynamics of the expan
sion of a cloud of hot electrons, restricting ourselves 
for the sake of simplicity to the one-dimensional case 
and assuming that there are no binary collisions. 

Let at time t = 0 the hot electrons fill the half-space 
x < 0 and let their initial concentration n~ be small 
compared to the concentration n of the cold plasma. As 
under the condition n~ « n we need only an insignificant 
change in the concentration of the cold electrons to 
guarantee the quasi-neutrality of the polarized electric 
field arising when the hot electrons disperse is small 
and does not turn out to affect their motion significantly. 
We could therefore expect that the hot electrons dis
perse completely freely and that their distribution func
tion at any time t > 0 is given bythe equation 

{ 0, v < xjt 
f(v, x, t)= fo(v), v > x/t ' (1) 

where f0 (v) is the initial distribution function of the fast 
electrons; we assume that it has a single maximum at 
v = 0. 

One sees easily, however, that the distribution func
tion (1) is unstable in the half-space x > 0 with respect 
to the excitation of Langmuir oscillations in the cold 
plasma (the so-called two-stream instability). The char
acteristic time T for the development of this instability 
is equal to wi)~n/n' (where Wpe its the electron plasma 
frequency, evaluated using the cold electron concentra
tion) which in the cases of interest is small compared 
to the observation time. The problem therefore arises 
about the effect of the instability on the expansion of a 
hot electron cloud. In the following we shall show that 
when t » T the motion of the cloud is described by 
relatively simple equations which we shall call (for 
reasons which become clear from what follows) "quasi
gasdynamical." We shall also find an analytical solu
tion of these equations. 

For information we mention that the problem of the 
dispersion of a dense (n~ = n) hot electron cloud was 
solved in [lJ, neglecting instability effects. 

2. DERIVATION OF THE QUASI-GASDYNAMICAL 
EQUATIONS 

To take into account the interaction of the fast elec
trons with the Langmuir oscillations excited in the 
plasma we use a set of quasi-linear equations [2 • 3111 

aJ a1 a at 
-+v-=-D-==Stj at ax av av , (2) 

(3) 

where D = D(v, x, t) is the quasi-linear diffusion coeffi
cient which is connected with the energy spectral den
sity of the Langmuir oscillations, W(v, x, t) by the rela
tion D = (41T 2e 2/m 2 ) W, while the rest of the notation is 
the usual one. The group velocity of the Langmuir os
cillations vg is small compared to the characteristic 
dispersion velocity of the fast electrons which is of the 
same order of magnitude as their thermal velocity and 
we drop therefore the term Vg 8Dj8x On the left-hand 
side of Eq. (3). 

On a time scale t >> T the instability is "fast," i.e., 
the right-hand sides of Eqs. (2), (3) which can formally 
be estimated to be Df/v2 and D/T are large eompared 
to the left-hand sides. When solving the set (2) and (3), 
we can thus use an expansion in the parameter T /t. 
The position is here in many respects analogous to the 
one which occurs in the dynamics of a normal gas where 
when we consider motions on spatial and time scales 
which are appreciably larger than, respectively, the 
mean free path and the time between binary collisions 
the kinetic equation is solved through an expansion in 
the inverse collision frequency. 

In zeroth approximation the function f is simply that 
source function fs which is established at each point in 
space as a result of quasi-linear relaxation and is de
termined from the condition 

llWe limit ourselves to the one-dimensional {in velocity space) quasi
linear equations, bearing in mind that in a plasma there is a rather strong 
magnetic field in the x-direction. 
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St f, = 0, aj, I av ~ 0. 

From this it follows that for the initial conditions con
sidered by us 

{ p(x,t) v<u(x,t) 
f (v x t) ...,..-

' ' ' - / 0 (v) v > u(x, t) ' 
(4) 

where p and u are some so far undetermined functions 
of the coordinates and the time. The quasi-linear diffu
sion coefficient Dis also not yet known; we can only 
state that it differs appreciably from zero in the veloc
ity range [0, u]. Outside this range diffusion can be 
neglected. 

By complete analogy with what happens in usual gas
dynamics, the zeroth approximation distribution function 
is uniquely characterized by a finite number of param
eters (in our case there are two such parameters: p and 
u; in one-dimensional gas-dynamics there are three: 
density, temperature, and mass velocity). The problem 
now consists in obtaining equations for these parameters. 
In gasdynamics this problem is solved by taking the 
zeroth, first, and second moments of the kinetic equa
tion (taking into account that the collision integral leaves 
concentration, momentum, and energy of the particles 
invariant). In our case St f conserves only the particle 
concentration so that we can obtain only one equation 
through this method; this equation is analogous to the 
gas-dynamical continuity equation: 

a a pu2 (au i}u) -pu+--- /o(u) -+ u-::- =0. 
at ax 2 at ox 

(5) 

We can obtain a second equation for p and u as fol
lows. As D <lf/<lv ~ 0 as v ~ o, it follows from Eqs. 
(2) and (3) that 

a s" , a "s , , at n aD - fdv +-::-- v fdv =D-,-=---,-. 
at 0 OX 0 dV ltulpeV2 ot 

In that velocity range (0 < v < u) where the quasi-linear 
diffusion coefficient is non-vanishing, the distribution 
function is simply equal to p(x, t) so that 

and 

, I 

D=--v' p +--::-- pdt . ltWpe ( V 0 s ') 
n 2 ox 0 

(6) 

As in the point v = 0 the quasi-linear diffusion coeffi
cient must vanish we get from (6) the required second 
equation for p and u: 

u a ts , 
p+-- pdt =0 

2 ax 0 

One can easily reduce it to differential form: 

ap au u2 ap 
U-;:-- p-+--=0. 

ot . at 2 ax 
(7) 

It is interesting to note that just as the actual value 
of the effective collision frequency does not enter into 
the equations of ideal gasdynamics, similarly the pa
rameters characterizing the beam instability do not 
enter into the "quasi-gasdynamical" Eqs. (5) and (7). 

Knowing p and u we can find all macroscopic charac-

teristics of a hot plasma. For instance, we have for its 
concentration n' and average velocity v': 

m 

n'=pu+ f fo(v)dv, (8) 
u 

1 [ pu2 "" ] 
v'=n' --z+fvto(v)dv. (9) 

u 

We can also express the energy density of the Langmuir 
oscillations in terms of p and u: 

""s W m2 us D mpua U=Wpe -dv=Wpe-2 2 -dv=--. (10) 
v2 4n e v 12 

0 0 

3. SOLUTION OF THE QUASI-GASDYNAMICAL 
EQUATIONS 

To solve the set of Eqs. (5) and (7) we note that in 
the quasi-gasdynamical problem there are no param
eters of the dimensions of a length. Its solution is there
fore self-similar and has the form 

p=t"q(,s), U=u(s), s=x/t. (11) 

We determine the parameter 0! from the condition that 
the total number of particles in the half-space x > 0 
linearly increases with time. One sees easily that this 
condition leads to the value 0! = 0. 

By substituting (11) we get from (5) and (7) the ordi
nary differential equations 

dp du 
u(u- 25)-+ 2(u- 5) [p- /o(u)]-=0, 

d~ dg 

dp du 
u(u- 25)- + 2p£-= 0, 

d~ dS 
the solution of which can be found elementarily: 

= u2/2fu vdv 
p 0 /o ( v) ' 

p- fo 
t=U-
- 2p-fo 

(12) 

This solution determines implicitly the functions u(O 
and p(~) in the half-space x > 0. As regards the half
space x < 0 there the solution (1) is valid, as the cor
responding distribution function is stable. 

We can find from Eqs. (8) to (10) the macroscopic 
parameters of the hot plasma and the energy density of 
the Langmuir oscillations. We give in Fig. 1 the results 
of the appropriate calculations for the case when the ini
tial distribution function of the electrons is Maxwellian: 

1/ m ( mv2) 
/o =no' V 2nTe' exp· - 2Te' · 

We study now the problem of the expansion of a hot 
electron cloud in the case when its initial thickness is 
equal to zero. In other words, we consider an initial 
condition of the form 

(13) 

where N is the total number of hot electrons while the 
function g0(v) is assumed to be normalized to unity 

+co 

f go(v)dv = 1. 

Of course, in actual circumstances the initial thick
ness L of the cloud is always different from zero but 
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FIG. I. The general character of the solution in the case where the 
function f0(v) is Maxwellian. Along the abscissa axis we plotted the 
dimensionless parameter 71 = Hm/2T~)Yz. The dotted curves correspond 
to the free dispersion of fast electrons. 

if we consider motion at distances x » L the approxi
mation (13) is rather good. We note that the problem 
solved above of the dispersion of an initially half
bounded cloud in fact corresponds to the opposite lim
iting case, x « L. 

When the initial condition (13) is satisfied, the func
tion fs(v,x, t) is determined by the equation2 > 

{ p(x,t), v<u(x,t) 
f,(v, x, t)= 0, v > u(x, t) ' 

and the quasi-gasdynamical equations take the form 

(14) 

(15) 

(16) 

The solution of these equations is as before self
similar but now the parameter a = - 1 since in the case 
considered the total number of hot electrons is con
served, and not their flux through the plane x = 0. Sub
stituting p = C1 q(O, u = u(~) into Eqs. (15) and (16) we 
get 

dq du 
u ( u- 25) d5 + 2 ( u - s) q d5 - 2qu = 0, 

dq dn 
u(u- 25)-+ 2£q-- 2qn=0, 

d~ d£ 

or, which is equivalent, 

dn 
(u- 2£)q d£ =0, 

d 
-[n(u- 2;)q]=0. 
d~ 

It follows from (17) that 

n = 2£ 

(17) 

(18) 

2lTo be specific, we consider the solution in the half-space x > 0. 

(the solution u =constant, clearly, is a redundant one) 
and Eq. (18) is satisfied identically for any q(~). 

To find the function q(~) we use the exact equation 

of-+.-,, of =-n_!__~ aD 
at ax JtWpe av v2 at 

which is valid for any x (and not only when x » L) and 
which therefore makes it possible for us to take the 
initial condition correctly into account. We integrate 
this equation first over the time from 0 to oo and then 
over the coordinate between the limits (- 0, x) and use 
the initial condition (13). As a result we find that 

~ 

-Ngo(v)+v J f(v,x,t')dt'=O. 
0 

As the distribution function for x » L is given by Eq. 
(14) in which we must put, as we showed above, u = 2~, 
p = t-1 q(~), the last equations reduces to the form 

~ (E) 
-Ng0 (v)+v s_i___..::___d£=0, 

v;2 S 

from which we easily determine q(~): 

(~)=- N ~_.!!.__ go(2s) 
q ~ 2 d£ s 

Using now Eqs. (8) to (10) we can find n', v', and U: 

n' = _ N '1:2 _.!!._ go(2s) 
t - d'S s ' 

mN d go(2S) v'=;, U=--54----
3t ds s · 

(19) 

We have shown the form of the solution (19) in Fig. 2 
for the case when 

1~ ( mv2) 
go(u)= V 2nTe'exp - 2Te' · 

4. DISCUSSION OF THE RESULTS 

It is clear from Figs. 1 and 2 that taking the quasi
linear effects into account leads to an appreciable change 

Af!S:-
-1.2 -u.8 -ll,# o- 0.1 o,8 1,2 1 

FIG. 2. Solution of the problem with initial condition (13) for a 
Maxwellian function g0(v). Along the abscissa axis we plot the non-di
mensional parameter 71 = Hm/2T~)Y2 and along the ordinate axis the 
quantities A= (n't/N)(2rrT~/m)'lz and B = 3(Ut/N)(rr/2mT~)Y2 . The 
dotted curve corresponds to the free dispersion of the fast electrons. 
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in the form of the solution as compared to the case of 
free dispersion: the velocity of the motion is decreased 
and the leading front of the concentration becomes 
steeper; moreover, in the region x >> L there is a clear 
maximum in the function n'(x). These peculiarities of 
the motion become even more pronounced if the function 
f0(v) decreases at large v faster than the Maxwell distri
bution. We note that the energy density of the Langmuir 
oscillations which are excited in the system is of the 
same order of magnitude as the energy density of the 
fast electrons. 

The quasi-neutrality of the plasma during the disper
sion of the hot electrons is guaranteed when we take into 
account the opposing motion of the cold electrons rela
tive to the ions. It is clear that the solution given above 
is valid only so long as the velocity of that motion, which 
is of the order of magnitude of (n' /n)-../ (Te /m), does not 
exceed a critical velocity corresponding to the threshold 
for exciting ion-acoustic type oscillations in the cold 
plasma. The latter depends on the ratio of the tempera
ture of the cold electrons Te and of the ions Ti and in 
the particular case when Te = Ti it is of order of mag
nitude -../ (Te /m) . Bearing this in mind we get the fol
lowing limitation on the allowable value of the hot elec
tron concentration (for Te = Ti): 

n' < nYTc I Te'. 

If this condition is not satisfied the cold electrons suf
fer friction from the ions and as a result the polarized 
electrical field increases its magnitude and the speed 
of the dispersion of the hot electrons decreases. 

Our considerations must also be changed in the case 

when the external magnetic field is small or is not at 
all present so that the quasi-linear relaxation is three
dimensional (in velocity space). It is not excluded that 
there may then occur a solution of the collisionless 
shock wave type. 

In conclusion we note that the results obtained in 
sections 2 and 3 can be directly transferred to the case 
when in a strongly non-isothermal (Te » Ti) uniform 
plasma there is a cloud of "warm" ions with a temper
ature T{ satisfying the inequality 

The dispersion of such a cloud is accompanied by the 
excitation of ion-acoustic oscillations with a phase ve
locity of order -../ (T'/M) (where M is the ion mass) and 
a frequency close to Wpi· Under those conditions the 
distribution function of the ''warm'' ions satisfies as 
before Eqs. (1) and (2) (in which we must substitute M 
for m) and hence all derivations given in Sees. 2 and 3 
retain their validity. 
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