
SOVIET PHYSICS JETP VOLUME 31, NUMBER 2 AUGUST, 1970 

THRESHOLD BEHAVIOR OF THE CROSS SECTION FOR THE IONIZATION OF 

ATOMS BY ELECTRONS 

R. K. PETERKOP and P. B. TSUKERMAN 

Institute of Physics, Latvian Academy of Sciences 

Submitted August 1, 1969 

Zh. Eksp. Teor. Fiz. 58, 699-705 (February, 1970) 

According to the theory of Wannier, the dimensionality of the regions of ionization in the space of the 
initial conditions reduces to unity at threshold. For a verification of the threshold law it is therefore 
sufficient to investigate the variation in linear sizes, i.e., to solve problems with a single variable 
parameter in the initial conditions. Numerical calculations of the classical ionization cross section 
are carried out for a model of this type. The results obtained confirm the Wannier formula 
(a ~ E1"127). It is found that this formula is also valid for total orbital angular momentum L > 0. 
The present-day experimental data are discussed. 

1. INTRODUCTION 

THE cross section for the ionization of a neutral atom 
by electrons near the ionization threshold can be written 
in the form 

(1) 

where E is the energy of the system "atom + incident 
electron," E = E1 - I, E1 is the energy of the incident 
electron, and I is the ionization potential. 

The question of the exact value of y has attracted 
considerable attention in recent years. In several ex
perimental works [1-3J a nonlinear behavior with an ex
ponent y close to, but somewhat larger, than that pre
dicted theoretically by Wannier (y = 1.127)[4J has been 
found. On the other hand, Zapesochnil' and Aleksakhin[sl 
concluded on the basis of the experimental data that the 
threshold behavior is linear (y = 1). 

In Born approximation one finds y = 1.5. In the Cou
lomb-Born approximation proposed by Geltman, [6 l y = 1. 
A linear threshold law was also obtained by Rudge and 
Seaton[7l and Kang and Foland[Bl via a limiting transition 
under the integral for the ionization amplitude. However, 
it can be shown [9l that this limiting transition under the 
integral for the ionization amplitude is not generally 
permitted, since it leads to an ambiguous result. Re
cently a method [1oJ has been proposed for the determi
nation of the threshold behavior of the ionization cross 
section by extrapolating from the properties of the 
doubly excited states of the H- ion. However, so far it 
has yielded only very uncertain results. 

From the theoretical point of view, the paper of 
Wannier[4l should be regarded as the most rigorous 
work in this area; Wannier finds y = 1.127 by the meth
ods of classical mechanics. Some new results have 
been obtained by Vinkaln and GaDitis [1ll through a de
velopment of the work of Wannier. The result of Wann
ier should be valid in the classical as well as the quan
ta! ionization problems, since the threshold properties 
of the cross section are determined by the behavior of 
the wave function at large distances, where classical 
mechanics is applicable. It can be shown[12l that the 
more usual (from the point of view of quantum mechan
ics) formalism of the quasiclassical (WKB) approxima-
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tion also leads to the result of Wannier. 
The cross section for the ionization of the hydrogen 

atom by electrons has been obtained by several au
thors [13' 14l by numerical methods of classical mechan
ics, i.e., by determining the trajectory by integrating 
Newton's equations. On the basis of an analysis of the 
results of the numerical calculations Burgess and 
Percival [1sl arrived at the conclusion that the threshold 
behavior of the ionization cross section in classical 
mechanics follows a linear law. This has been advanced 
as one of the arguments against the Wannier theory. [10l 

The purpose of the present paper is a more detailed 
numerical investigation of the threshold behavior of the 
classical ionization cross section. 

2. METHOD OF CALCULATION 

The initial conditions in the classical ionization 
problem form a 6-dimensional hyperspace. The ef
fective ionization cross section is proportional to the 
volume of those regions of the hyperspace in which the 
initial conditions generate the trajectories of motion 
corresponding to the emission of two electrons (if the 
coordinates are chosen such that the distribution func
tion can be regarded as constant, which is always the 
case for sufficiently small regions). Near the threshold 
the regions of ionization tend to zero. When the Monte 
Carlo method is used for the choice of the initial con
ditions[l3•14l the volumes of the small regions are de
termined with large relative error. An exact determi
nation of the volumes of the regions of ionization in the 
6-dimensional space for energies near the threshold of 
ionization requires excessive demands on computing 
time. Moreover, it should be taken into account that for 
small energies of the emitted electrons that interval of 
each trajectory in which the interaction of the particles 
is important, i.e., over which the numerical integration 
must be carried out, is increased. 

However, the problem can be considerably simplified. 
In the Wannier theory the important point is that it was 
shown that such coordinates C1, C2 , ••• can be introduced 
in phase space for which the volume of phase space cor
responding to ionization varies only in a single coordi
nate for E - 0 and remains constant in all others. This 
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means that the dimensionality of the region of ionization 
in the space of the initial conditions reduces to unity for 
E - 0. Hence the linear dimensions (i.e., the distances 
between the boundaries of the regions of ionization) near 
threshold decrease according to the same law which gov
erns the variation of the volume of the region of ioniza
tion. An exception to this are those directions along 
which C2 = const. But in the general case, for an arbi
trary choice of the linear dimensions, the probability 
for choosing C2 = const is infinitely small. Thus the 
investigation of the regions of ionization may be re
placed by a study of the intervals of ionization. 

Wannier [41 has considered the ionization with total 
orbital angular momentum of the electrons L = 0. How
ever, at large distances one can neglect the centrifugal 
forces compared with the Coulomb forces. Therefore, 
the threshold law of Wannier should be valid for arbi
trary values of L, but the larger the value of L, the 
smaller will be the energy region in which it is valid. [lll 

As will be seen, this conclusion is confirmed by the nu
merical results of the present paper. 

In the investigation of the intervals of ionization one 
must consider cases in which only one of the six pa
rameters of the initial conditions is variable. We have 
carried out detailed numerical calculations for a model 
of this type. We assumed that the atomic electron at 
the initial instant has a velocity of one atomic unit and 
is located on a circular orbit with a radius of one atomic 
unit (i.e., on the first Bohr orbit). The incident electron 
moves in the same plane and has fixed impact param
eter p and a distance from the nucleus d at t = 0. The 
mass of the nucleus is regarded as infinite. The only 
variable parameter of the initial conditions is the angle 
cp which determines the position of the atomic electron 
on its circular orbit at t = 0. 

By numerical integration of Newton's equations of 
motion, we found the energy of the incident electron E 
for t - oo. The calculations were carried out on an 
electronic computer by the Runge-Kutta-Merson method. 
As a criterion for the accuracy of the calculation one 
may regard the conservation of the integrals of motion 
(the energy of the system and the total angular momen
tum). These quantities differed by no more than 10-5 

atomic units when evaluated at the beginning and the 
end of the trajectory. The initial distance and the cor
responding final distances were chosen such that the 
interaction energy of the interaction between the elec
tron and the atom or between all particles (in the case 
of ionization) was less than 1 to 3% of the total energy 
of the system E. 

3. RESULTS AND DISCUSSION 

For the main calculation we considered two cases. 
In the first case we set p = 0, which corresponds to L 
= 1. In the second case we chose p such that the total 
angular momentum of the system was L = 0. In Fig. 1 
we show a typical dependence of E on cp for L = 1 and 
two values of E. One of these energies is comparatively 
large, the other is close to the threshold. It is seen that 
the form of the curve shows almost no change with vary
ing E. 

The intervals of the angle cp in which E > E corre
spond to a direct excitation of the atom; the intervals 
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FIG. I. Dependence of the final energy of the incident electron on 
the initial polar angle of the atomic electron at the energies E = 0.7 at. 
units (curve I) and E = 0.05 at. units (curve 2) for L =I. The intervals 
of ionization forE= 0.7 at. units are indicated by heavy lines. 

where E < 0 correspond to exchange excitation, and the 
intervals where 0 ::o E ::o E, to the emission of two elec
trons, i.e., to ionization. The four intervals of ioniza
tion are indicated by heavy lines in Fig. 1. We have in
vestigated one of these (AB). The points A and B were 
determined with the help of the method of chords. The 
length of the interval of ionization Scp = A - B was de
termined with an error of 10-5 radians. The case L = 0 
was investigated in a similar manner. The form of the 
curve E{cp) for L = 0 differs little from that for the case 
L=l. 

The dependence of the intervals of ionization on the 
energy E for L = 0 and L = 1 is shown in Fig. 2. For 
greater clarity we have drawn the ratio Scp/E. In the 
case of a linear threshold law Scp /E = const. For a 
comparison we show the curves corresponding to the 
threshold law of Wannier {Scp = const • E1 "127). It is seen 
that for small energies the numerical points fall nicely 
on the Wannier curves. For L = 0 the Wannier formula 
is valid in the region E < 0.08 atomic units (2 eV), and 
for L = 1 it is valid in the region E < 0.05 atomic units 
{1.4 eV). 

The interval of ionization can be written in the form 

{2) 

The derivative dcp /dE has the meaning of a differential 
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FIG. 2. Dependence of the intervals of ionization on energy for L = 
0 and L = I. Dashed curves: curves of the type const. E0· 127 • 
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cross section for the ionization. If the curve of E ( <p) 
is smooth, as confirmed by our calculations (cf. Figs. 
1 and 3), one can regard it as a straight line in a suffi
ciently small interval of ionization, i.e., regard the de
rivative d<p /dE as independent of E. ll Then 

s~ ~ Ed'l' I de. (3) 

We note that according to (3), the curves shown in Fig. 2 
represent the differential cross section for ionization. 
Evidently, the linear threshold law would hold if the form 
of the curve E ( <p ) were exactly conserved as E changes, 
i.e., if the derivative d<p /dE were also independent of E 
as E - 0. The presence of a small nonlinearity implies 
that d<p /dE must decrease with decreasing E. The 
Wannier formula holds when 

(4) 

Therefore, in the Wannier theory, the differential 
cross section for ionization is independent of E near 
threshold but depends on E. On the other hand (cf. Fig. 3), 
d<p/dE =cot a. Therefore 

lim a= n/2. (5) 
E~O 

The curve E ( <p) must intersect the E = 0 axis at right 
angles at E = 0, i.e., must go through a bend, which 
should also be observable at energies E close to zero, 
as is indeed the case (cf. Fig. 3). The bend continues 
to show up also into neighboring regions corresponding 
to the excitation of highly-excited discrete states. Here 
we have for the cross section for the excitation of the 
n-th level 

(6) 

When comparing the Wannier theory with the experi
mental data, several points must be considered. Fairly 
close to the threshold the ionization cross section is 
practically a straight line as a function of the energy. 
The Wannier formula also differs from a straight line 
law only at very small energies. Thus the region of 
nonlinearity, in which the special features of the Wannier 
theory show up appreciably, may be smaller than the 
region of applicability of the Wannier formula. For ex-
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FIG. 3. Dependence of eon <Pin the neighborhood of the interval 
of ionization for L = I and E = 0.05 at. units (curve I) and E = 0.005 
at. units (curve 2); dashed curves: tangents to the curves ate= 0. 

1lThis result has been obtained earlier with the help of the Wannier 
theory. [ 11 ] 

ample, in the case of the ionization of helium atoms [2J 

the Wannier formula is in satisfactory agreement with 
the experimental data up to energies of 10 e V above 
threshold, but the region of nonlinearity extends only 
over a few eV. 

By the similarity principle we may conclude that for 
atoms with a smaller ionization potential the region of 
nonlinearity must be smaller. The nonlinearity is 
caused by the behavior of the wave function at large 
distances, where classical mechanics is applicable. At 
the boundary of the reaction zone and the region of clas
sical motion the wave function (in the quantum case) or 
the distribution function (in the classical case) can be 
regarded as approximately constant. One may therefore 
expect that the regions of nonlinearity are approximately 
equal in the classical and quantum theories. For the 
classical ionization cross section the similarity prin
ciple holds; [l 5J this follows from the fact that the Cou
lomb interaction is a homogeneous function of the coor
dinates. According to this principle, the trajectories of 
motion remain similar when the energies of both elec
trons are changed in the same way. If a (w10 E1 ) is the 
classical cross section of ionization from an initial 
state of the atom with energy w1, then the ionization 
from another initial state with energy w2 (for the same 
energy E1 of the incident electron) is given by the for
mula 

(7) 

where a= w1 /w2 • 

For excitations from higher levels the cross section 
is shifted towards smaller energies of the incident elec
tron. Hence the region of nonlinearity shrinks. This is 
true when one considers ionization from different levels 
of the same atom but it will also hold approximately for 
different atoms. 

This conclusion is confirmed by the experimental 
data. In the case of the ionization of hydrogen the re
gion of nonlinearity is appreciably smaller (about 0. 5 
eV) than in the case of helium. [1' 2 J For the ionization 
of alkali metals, which has been considered by Zape
sochnyi' and Aleksakhin, [5J the region of nonlinearity 
must be even smaller. This may explain why these 
authors have not observed a nonlinear threshold be
havior of the ionization cross section. The even 
stronger nonlinearity than predicted by Wannier, as 
found by Brian and Thomas, [2 J can be explained par
tially by the circumstance that these authors have used 
the Wannier formula for a too wide region of energies 
(up to 10 e V above threshold). Moreover, as also no
ticed by other authors, [3 J it is desirable to improve 
their data in the threshold region (up to 10 eV above 
threshold). Thus the present-day experimental data do 
not exclude the validity of the Wannier threshold law, 
but for a definite solution of this problem further ex
perimental work is needed. 

In conclusion we note the falseness of one particular 
argument which has recently been advanced against the 
Wannier theory. According to the similarity principle, 
the trajectories corresponding to the ionization from a 
given level do not go over into each other when only the 
energy of the incident electron is altered (the usual for
mulation of the problem in scattering theory). On the 
basis of this, Temkin et al. [lDJ arrived at the conclusion 
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that the use of the similarity principle in the Wannier 
theory is not allowed and hence the results of this the
ory are not justified. However, Wannier used the prin
ciple of similarity for the determination of the behavior 
of the entire manifold of trajectories of ionization (for 
all initial conditions). The trajectories of ionization 
from a fixed level are part of this manifold, which in
deed does not change according to the similarity prin
ciple; i.e., the trajectory is shifted within the entire 
manifold. But at the same time, as part of the manifold, 
it tends to zero according to the same law. 
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