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~e ~roble~ of the behavior of a slightly imperfect Bose gas in a field of randomly distributed impuri­
ties 1s cons1dered. The effect of the impurity atoms on the ground state of the system is determined and 
found to reduce to a local change in the density of the condensate near the impurity atoms. The spectrum 
a_nd attenuation of one-particle excitations are calculated. The spectrum of the long wavelength excita­
~wns t_urns out to be acoustic, and their scattering by fluctuations of the sound velocity induced by the 
1mp~nty atoms turns out to be Rayleigh scattering, i.e., the scattering cross section turns out to be pro­
portwnal to the fourth power of the wave vector of the excitation. The obtained results are used to esti­
mate the linewidths for the absorption and amplification of light by a Bose-Einstein condensate of exci­
tons in semiconductors. It is found that for a sufficiently high concentration of excitons this width is 
much smaller than the width of the usual exciton absorption line, which is due to the scattering of indi­
vidual excitons by lattice defects. 

INTRODUCTION 

IN an articleu1 by the authors at one time it was shown 
that the appearance of a Bose-Einstein condensate of 
excitons leads to a number of interesting features in 
the optical properties of semiconductors with allowed 
direct transitions. The major effect stipulated by the 
presence of the condensate is the formation of a line 
of negative light absorption. 

The results of article Ul were obtained by neglecting 
the scattering of excitons by defects in the crystal lat­
tice, and the estimates cited there for the linewidths 
did not take into account the specific properties of the 
scattering of excitons which are associated with their 
Bose condensation. The object of the present article 
is an investigation of the properties of a Bose-Einstein 
condensate of excitons in the presence of randomly dis­
tributed crystal defects. The results of article [ll were 
obtained for the case of a small density of excitons 
under the assumption of their effective repulsion. In 
this connection the problem in fact reduced to an inves­
tigation of an imperfect Bose gas of small density. In 
the present article we shall not complicate the discus­
sion by a systematic account of the internal structure 
of the excitons, but we shall treat the problem of a 
slightly imperfect Bose gas in a field of randomly dis­
tributed impurities. It should be noted that this prob­
lem is of interest by itself, irrespective of its connec­
tion with the optical properties of semiconductors con­
taining an exciton condensate. 

Those difficulties which arise in connection with an 
investigation of the scattering of particles with large 
wavelengths in a random field of defects are well known. 
These difficulties are associated with the fact that when 
the wavelength of the particle becomes comparable with 
its mean free path, it is necessary to take into account 
simultaneous scattering by different impurities. This 
complicated problem has not been solved up to the pres­
ent time. Since the basic features of a slightly imperfect 
Bose gas appear precisely in the region of small mo­
menta, at first glance it may seem that this markedly 

complicates the case, if it does not make it impossible 
in general to solve our problem. The situation, however, 
is not so hopeless. It is well known raJ that the long-wave 
one-particle excitations of a slightly imperfect Bose gas 
are sound quanta. Therefore one can anticipate that their 
scattering will obey the Rayleigh law, i.e., the cross sec­
tion turns out to be proportional to the fourth power of 
the wave vector. Therefore the mean free path will in­
crease more rapidly than the wavelength, and the non­
acceptable situation mentioned above will never be 
realized. 

The calculation presented below confirms these sim­
ple qualitative considerations. In the following section 
the spectrum and attenuation of the one-particle excita­
tions of a slightly imperfect Bose gas in a field of ran­
domly distributed impurities will be calculated, start­
ing from hydrodynamical equations. Then the same re­
sults will be obtained with the aid of the formalism of 
Belyaev, with additional account of the scattering by 
impurities. The first semi-phenomenological approach, 
being less rigorous, gives a physically more intuitive 
picture of the phenomenon under consideration. The 
microscopic theory, in which a rather complicated dia­
gram technique is applied, is much less intuitive. In 
return it eliminates doubt as to the correctness of the 
obtained results, since it does not contain any unproved 
assumptions. The agreement of the results of the semi­
phenomenological investigation with the results obtained 
in the microscopic theory to a certain extent confirm 
the correctness of the starting equation of the semi­
phenomenological theory. For simplicity we shall 
everywhere consider the temperature equal to zero. 

SEMIPHENOMENOLOGICAL INVESTIGATION OF THE 
PROBLEM 
In this section we shall start from the equation for 

the so-called "macroscopic" wave function >P:u 
ii'l" fj. 

i--;;:=- 2m '1"+,;1'1"12'1"+ V'V. (1) 

'lWe shall use the system of units in which h = I. 
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Here m denotes the mass of the particle, and V 
= I) u (r - Ri) is the potential of the randomly distrib-

i 
uted impurity atoms. The term T I wl 2 w takes into ac­
count the interaction energy of the particles in the low­
density approximation. The quantity T is the matrix for 
the forward scattering of particles by each other, and 
its sign corresponds to a repulsion between the parti­
cles. Equation (1) appears to be quite plausible, re­
calling the equation for the superfluid component in the 
two-fluid model of a superfluid liquid. [2J In the absence 
of impurities Eq. (1) gives exactly the same dispersion 
law for the elementary excitations as the microscopic 
theory of Belyaev. [sJ One can have confidence that Eq. 
(1) correctly describes the phenomena of interest to us. 

It is convenient to seek the wave function in the form 
\}I = rn ei<P, where n denotes the concentration and 
m-1V<P = v denotes the velocity of the particles. Accord­
ing to Eq. (1) n and v satisfy the system of equations 

an -at+ div(nv) = 0, 

{Jv 1 ( ~ {n mv2 ) 
-+-V ----+--+·rn+V =0. 
at m 2m '(n 2 

(2) 

Equations (2) describe both the ground state of the sys­
tem and the propagation in it of excitations whose spec­
trum and attenuation we must determine. 

In the ground state the velocity is equal to zero, and 
the concentration does not depend on the time. It is de­
termined from the second of Eqs. (2) in which av ;at and 
v are set equal to zero: 

~ -y7t ----+rn+ V=f!, (3) 
2m '(n 

where 11. is an integration constant which is the chemical 
potential of the system. It is easy to see that in the 
ground state the concentration of particles varies from 
point to point due to the action of the potential of the 
impurities. We must find this dependence of non the 
coordinates because the excitations are scattered both 
by the potential V and by the inhomogeneities of n. 

If the potential u (r) of an individual impurity varies 
slightly over distances of the order of the characteris­
tic length k~1 = (mTn0r 112 (n0 is the average concentra­
tion of bosons), then the concentration repeats the pro­
file of the potential V. In the present article we con­
sider the opposite limiting case, when the potential 
u (r) of an individual impurity corresponds to a short­
range interaction such that q1k0 « 1 (<P is the ampli­
tude for the scattering of a free particle by the poten­
tial u (r)), as of more interest physically. We note that 
the results which we obtain will also be valid for im­
purities with a slowly varying potential. In this case 
it will only be necessary to replace in all formulas the 
amplitude for the scattering by an individual impurity 
by the corresponding Fourier component of the poten­
tial u (r). 

Let us assume that the solution of Eq. (3) differs 
slightly from the homogeneous solution, i.e., we shall 
seek it in the form n = no + x, where no= n is the av­
erage concentration, and x, the correction which de­
pends on the coordinates, is small in comparison with 
n0 • In fact, in the immediate vicinity of an impurity 

atom (at distances of the order of <P) x is not small. 
But for the problem of interest to us concerning the 
scattering of long-wave excitations, this region turns 
out to be unimportant. Linearizing Eq. (3) with respect 
to x, we obtain the equation 

[- 2! + 3·rno- fl + V] 2~0 = 11- Tno- V, (4) 

whose exact solution, written in the momentum repre­
sentation, is given by 

X2(P} =g(p){(;tno-fl)6(p}+Tp,o[1+(-rno-!l)g(O)]}, (5) 
no 

where Tp,o is the matrix for the scattering of a particle 
with energy 11.- 3Tn0 by the potential V, and g (p) 
= - [(p2 /2m) + 3Tn0 - 11.r is the free Green's function. 
It is easy to verify that the matrix for scattering by the 
potential V of many impurities is represented by the 
sum 

(6) 

where t:,~, = tp,p' exp {i (p - p') Ri} is the matrix for 
scattering by an impurity located at the point Ri. Ac­
cording to the definition of n0 , the average of x with re­
spect to the position of the impurities is equal to zero. 
This determines the value of the chemical potential 11.. 
In order to find IJ., it is necessary to average expres­
sion (6) over all possible configurations of the impurity 
atoms. If the impurity atoms are randomly distributed 
over the crystal, the averaging means integration over 
the coordinates of each impurity atom with subsequent 
division by the corresponding power of the volume. In 
connection with such averaging the terms of (6), in 
which all impurity atoms are different, form the series 

il(p- p')vtp, 1,[1 + g(p)vtp, P + g(p)vt 0 , 0 g(p)vtp, v + ... ] 
= il(p- p')vtp, PI [1- g(p)vtp, 1,], (7) 

corresponding to successive independent scattering. 
Here lJ denotes the concentration of impurity atoms. 
Having substituted (7) into expression (5) and having set 
it equal to zero, we find that 

f.l = ·rno + to, oV. (8) 

But in addition to the series (7) the averaging of those 
terms of (6) in which the same impurity is encountered 
more than once gives an expression corresponding to 
simultaneous scattering. The diagrams shown in Fig. 1 
correspond to the simplest of these. Here a solid line 
represents the free Green's function, a cross repre­
sents the scattering matrix ~~" and the dashed lines 
join crosses pertaining to a single atom. 

Calculation of the so-called "imbedded" graphs of 
the type shown in Fig. 1a is rather simple. Inside the 
dashed lines two or more crosses corresponding to in-

- -,x::: ---x~x.....:::::x~x-
b 

FIG. 1 
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dependent scattering may be found. The summation of 
all such graphs leads to the result that inside the dashed 
lines a Green's function is found in which the energy is 
shifted by an amount -tv, i.e., equal to JJ.- 3Tn0 - tv 
=- 2Tn0• Thus, taking account of the imbedded graphs 
only leads to the replacement of tlf.p2mo by tp~pmo. In 

the general case it is impossible to take "overlapping" 
graphs of the type shown in Fig. 1b into account exactly, 
but we may neglect them if the impurity concentration 
satisfies the inequality vel /k0 « 1 where cp = mt/21T. 
We assume everywhere in what follows that this rather 
weak condition on the impurity concentration is fulfilled. 
In fact, since with the shift due to successive scattering 
taken into account the energy in the internal Green's 
functions of diagram 1b is negative and equal to - 2Tn0, 

its value is proportional to 

vcp2 (1} tv-(q:k0)ln - «;tv. 
ko Cjlko 

In order to illustrate the nature of the inhomogeneities 
in the concentration of bosons, which are generated by 
the impurity atoms, in Eq. (5) we fix the coordinate of 
the i-th atom and average over the position of all re­
maining atoms. In the coordinate representation we 
shall have 

XR;(r)=-no lr-cpR;i exp{-2kolr-R;i}. (9) 

Here it is appropriate to make a comment with regard 
to the assumption x << n0 , which we used in order to 
solve Eq. (3). As a consequence of this assumption 
formula (9) in general is not valid for I r - ~ I ~ cp. 
However, as will be shown below the Fourier transform 
of expression (9) appears in the cross section for the 
scattering of excitations. It is quite clear that for long 
waves, k << k0, the region r ~ cp in which the nonlinear­
ity of Eq. (3) is important and where x - n0 gives a neg­
ligible contribution (of the order of ( cp k0 ) 2) to this 
Fourier transform. 

Having determined the ground state of the system, 
we proceed to determine the spectrum and attenuation 
of its elementary excitations. For this purpose, having 
returned to Eqs. (2), let us consider a state differing 
slightly from the ground state, i.e., such that on = n 
- n0 - x << n0 , v2 « Tn0 m-1 • Linearizing Eqs. (2) and 
eliminating v, we obtain 

( 
02 -e'L\+~}6n=V{_!:_v[(e'-~}6n} 
dt' 4mz n 0 4m2 

+ ~ ["' ( 6n_!:_)- '\Ibn· V _7._] == F [x] fJn, (10) 
4m2 no no. 

where c2 = Tnoffi-1 • Equation (3), in which n = n0 + x. 
was used in the derivation of Eq. (10), and also the non­
linear terms in x are omitted on the basis of the re­
mark made above. The spectrum and attenuation of the 
elementary excitations of the system are determined by 
the poles of the Green's function G (w, p, p') of this 
equation. According to Eq. (10) 

G(w, p, p')= Go(~,, p)fJ(p- p')+ J (~~;~ Go(w, p) (piF [x]lp") G(w,p", p'). 

(11) 

Here G0 (w, p) = (w 2 - c2p2 - (p4/4m2 ) + ior1 is the 
Green's function in the absence of an impurity, and 

(piF [x]lp')=(Y:_) [p''(P'+ p'') (pp') (p'4+m;'' + e')]. (12) 
no p-p• 4m2 

We are interested not in an exact solution of Eq. (11), 
but in a solution G (w, p) averaged over all impurity con­
figurations. One can find it by iterating (11) and averag­
ing all expressions which arise in this connection. The 
averaging procedure was explained by us in consider­
able detail in connection with the calculation of the chem­
ical potential; therefore we shall not concentrate atten­
tion on it just now. As usual the averaged Green's func­
tion has the form 

(13) 

The simplest term of the mass operator, ~1 
= (p I F [X] I p) vanishes since x = 0. The major term 
turns out to be the operator 

S d3pt 
~, = (2n)" (piF [x]IPt) Go((J), pt) (p.jF [x]l p), (14) 

which corresponds to the graph shown in Fig. 2a, where 
a cross means (p I F [ x] I p' ). For p « me (long wave­
length excitations) 

n vcp' [ ( (J) }3] ~.=---ep2 7+i -- . 
3 m me2 

(15) 

As simple but rather tedious calculations show, the ex­
pressions corresponding to the graphs for simultaneous 
scattering shown in Figs. 1b and 2b are 11 cp2 /k0 times 
smaller than (15). Having substituted (15) into (13) we 
finally find that for momenta smaller than me the pole 
of the Green's function G (w, p) is located at the point 

7n vcp2 :n: ( p }l (J)=ep---p-i-vcp2e - . 
6 m 6 me 

(16) 

The quantity -7?Tvcp2 j6m represents the change in the 
velocity of sound due to scattering by impurities, and 
t 1TllqJ2c (p/mc)4 describes the attenuation of the excita­
tions. Thus, the long-wave excitations of our system 
of bosons are sound quanta which, just as is assumed 
for a sound wave, are scattered by impurities accord­
ing to the Rayleigh law. 

_,...-- .......... 
-x---x-

a 

FIG. 2 

Here it should be noted that the Rayleigh character 
of the scattering of sound excitations in a superfluid 
liquid was obtained by Khalatnikov and Zharkov[41 with­
in the framework of a phenomenological theory of super­
fluidity. For an infinitely heavy impurity the interaction 
Hamiltonian used by them takes the form 

OEo I 1 o2eo '2 

Hint=app +-z iip' p, 

where e0(p) is the energy associated with the introduc­
tion of an impurity into the superfluid liquid and p' de­
notes the correction to the density. In application to a 
system of small density (c2 - p = mn) the differential 
cross section for the scattering of a phonon by an im­
purity at an angle 8 is given by 

( p2 } '[ iieo ii2eo ] 2 
da= -- -cosO-p-- , 

4nh2c2 iip iip2 
(17) 
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and one can easily determine the phenomenological con­
stants aE0jap and a2E0jap2 by knowing the distribution 
of the condensate concentration near an impurity atom, 
which is given by Eq. (9): 

8eo li2 
-=2:rt-q> 
ap m2 ' 

Thus p (a2E0jap2)j(aE0jap) ~:::: cpk0 « 1 and, considering 
the scattering of acoustic excitations of a system of 
small density by impurities with a short-range potential, 
one can restrict one's attention to only the first term in­
side the square brackets of (17) for all angles 8 with the 
exception of a small region near 8 = JT/2, which is unim­
portant to us since we are interested in the integral 
cross section, which determines the damping of the ex­
citations. In this connection expression (17) exactly 
agrees with the formula for the cross section for scat­
tering by an individual impurity, which in our formal­
ism can be obtained directly from Eq. (10) by substitut­
ing formula (9) into it. 

We may regard our problem as solved provided there 
is no "element of doubt" associated with the starting 
equation of the semiphenomenological theory. Therefore 
below we consider the problem of a slightly imperfect 
Bose gas in a field of fixed impurities at T = 0 starting 
from, so to speak, first principles. 

THE MICROSCOPIC THEORY 

It is well known that at T = 0 all particles of a per­
feet Bose gas are found in the state of minimum energy, 
in other words, in the condensate. Therefore Wick's 
theorem is not valid for the field operators of the free 
bosons and, in considering the interacting Bose parti­
cles we may not use the usual diagram technique. A 
formalism for calculating the properties of a Bose s ys­
tem was developed by Belyaev. [3J Its distinctive feature 
consists in the fact that the operators C(~) of creation 
(annihilation) of particles in the condensate are sepa­
rated out in the field operators of the bosons. Here the 
one-particle Green's function is divided into two parts: 
the condensate - i ( T [ Ht) ~(t')]) and the Green's func­
tion G (x, x') = - i ( T [IJ!(x), lj!(x')]) for the excitations 
of the uncondensed phase, where lj!(x) and lj!'"(x) are the 
field operators of the particles after subtraction of the 
condensate operators ~ and ~'". Since Wick's theorem 
is satisfied for the free operators of the uncondensed 
phase, one can represent the Green's function of the 
uncondensed phase in the form of a sum of graphs in 
which the exact operators ~ for the condensate play 
the role of a classical external field, equal to ..Jn;, 
where n0 denotes the at present unknown exact con­
centration of particles in the condensate with the inter­
action taken into account. The summation of these dia­
grams leads to a system of equations relating the func­
tion G (x, x') and the "anomalous" Green's function 
F'"(x, x') = - i ( T [IJ!'"(x)lj!'"(x')]), corresponding to the 
propagation of a pair of particles which are excited 
out of the condensate. In these E!quations the concen­
tration n0 of particles in the condensate is a parameter 
which is later determined from the conditions that the 
total number of particles in the system is constant and 
minimization of its energy. 

In spite of the fact that in our problem the homoge­
neous nature of space is violated by the potential V of 
the impurities, as the condensate operators we distin­
guish operators for the creation and annihilation of 
particles in the state with zero momentum. Since the 
concentration of impurity atoms satisfies the condition 
vcp2jk0 « 1, as will be seen below, the interaction with 
the impurities turns out to be small in the sense that 
a macroscopic occupation of the state with p = 0 is not 
destroyed. 

The Green's functions of the uncondensed phase, av­
eraged with respect to the position of the impurity 
atoms, are expressed in terms of normal !:11(w, p) and 
anomalous !:02(w, p), !:20(w, p) self-energy parts in the 
following way:[sJ 

G(w,p) 

w- A (w, p) +p2/2m + S(w, p)- J.L 

F(w,p) (18) 

(w- A(w, p) )2-(p2/2m + S(w, p)- J.L)Z +,~02(w, p)~20 (w,p) + il) 

where 

A(ro, p) = I(.[~H(w, p)- ~"{-w, -p)], 

S(w, p)= 1 12f~11 (w, p)+ ~11 (-ro, -p)], J.L = ~ 11 (0, 0)-2;02 (0, 0). 
(19) 

The spectrum and attenuation of the elementary excita­
tions are determined by the positions of the poles of 
these Green's functions. 

In the absence of impurities and in the approximation 
of small density 

L 11 = 2Tno, L02 = L20 =;no, (20) 

where n0 denotes the concentration of the condensate, 
and T is the matrix describing the forward scattering 
of the particles against each other. We must determine 
the corrections to expressions (20) due to the interac­
tion of the particles with the impurity atoms, which we 
denote by A!: 11(w, p) and A!: 02(w, p). In this connection 
we shall use the usual technique of averaging over the 
position of the impurity atoms, which is used, for ex­
ample, in the theory of superconducting alloys. [sJ How­
ever, in our problem the situation is complicated some­
what by the fact that the interaction of the particles with 
the impurity atoms is significantly renormalized due to 
the interaction between bosons. In fact, as we saw in the 
previous section, the impurity atoms create around 
themselves inhomogeneities in the density of the con­
densate, and the excitations are scattered by both the 
potential of the impurity atoms and by these inhomoge­
neities. In this connection, together with the renormal­
ized interaction with an individual impurity atom (we 
denote the effective potential for such a process by r 1 

and we shall represent it by a clear triangle), expres­
sions appear corresponding to an interaction with in­
homogeneities in the density of the condensate which 
are "nonadditive" with respect to the impurity atoms. 
We shall represent them in the form of the graphs 
shown in Fig. 3. By definition these graphs cannot be 
represented as a sequence of triangles joined by a 
single line. 
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FIG. 3 

It turns out that multiple scattering by the potential 
of a single impurity atom and by the inhomogeneities 
of the condensate created by it give the major contri­
bution to ~~. A sequence of diagrams corresponding 
to this process is shown in Fig. 4. Since the scattering 

FIG.4 

by one impurity atom occurs in the background of the 
interactions with all remaining impurity atoms, the 
solid lines in these graphs denote the exact, averaged 
Green's functions given by (18). Thereby all possible 
"imbedded" diagrams are taken into consideration. 
As to the scattering by inhomogeneities in the concen­
tration of condensate which are nonadditive with re­
spect to the impurity atoms, which corresponds, for 
example, to the diagram shown in Fig. 5c, we show that 

FIG. 5 

upon fulfilment of the condition vel' /k0 << 1 one can 
neglect this process, and one can equally well neglect 
simultaneous scattering by additive inhomogeneities 
for different impurity atoms (for example, the diagram 
shown in Fig. 5a where the black triangle denotes the 
sum of the diagrams in Fig. 4). 

Because of the fact that there are several types of 
Green's functions, and also normal and anomalous func­
tions among the effective potentials r (with two incom­
ing or outgoing lines), it is convenient to carry out cal­
culations in matrix form. In this connection the solid 
line shown in Figs. 4 and 5 is associated with the ma­
trix 

G(w,p)= ( G(w,p) F+(w,p) ). 
F(w,p) G(-w,-p) 

(21) 

The effective potentials r are also represented by mat­
rices. The convenience of the matrix formulation con­
sists in the fact that matrix multiplication automatically 
sums all topologically equivalent diagrams, differing 
only by the type of internal Green's functions and effec­
tive vertices. 

In order to fulfil this program we must first deter­
mine the effective potentials r . The difference between 
r 1 and the potential of an individual impurity is due to 
the existence of graphs of the type shown in Fig. 6. 

FIG. 6 

Here a small circle denotes the potential u (q) of an in­
dividual impurity, the solid lines represent the functions 
(18) for the uncondensed phase, in which w = 0, since the 

impurity atoms are assumed to be fixed, a rectangle rep­
resents the matrix T for the scattering of particles 
against each other, and the zig-zag lines correspond to 
the condensate operators. At small momentum trans­
fers these diagrams are as important as the "hole" po­
tential u (q). In this case the smallness of the density of 
the condensate is cancelled by the small denominator of 
the functions G (0, q) and F (0, q) as q - 0. 

Having combined all graphs of the type shown in 
Fig. 6 in which the circles of the potential u (q) are dis­
tributed in different ways with regard to the rectangle T, 

we obtain the following result to first order in the im­
purity potential: 

f,,p,p+q-U{IJ) (~ ~)=u(q) (~ ~) ·2Tno(G(0,<J}+F(O.q)].{22) 

The quantity (r1 - u)11 is twice as large as r~2 because 
of the presence of the exchange diagrams. We at once 
note that expression (22) vanishes at zero momentum 
transfer q because of the properties which the Green's 
functions for the uncondensed phase possess at zero 
momentum. In fact, formulas (18) are valid only for 
momenta different from zero. [SJ At zero momentum 
the functions G and F vanish by definition since they 
are constructed out of operators with nonvanishing 
momentum. Of course, this remark pertains to any 
diagram in which there are unintegrated Green's func­
tions of the uncondensed phase. 

Since we are considering impurity atoms with a 
large short-range potential, it is impossible for us to 
confine our attention to the graphs of Fig. 6, but all 
diagrams of this type should be taken into account, in 
which every kind of number of circles corresponding 
to the impurity potential is distributed on the line with 
zero frequency. It is not difficult to verify that the 
summation of such diagrams leads to a replacement 
of the potential u (q) in the right hand side of expres-

sion (22) by t0~~02, which is the matrix for the scat­
tering of a free particle with energy - 2~02 by a single 
impurity. We shall represent this quantity by a cross. 
Now we may write in explicit form an integral equation 
for the effective scattering matrix for scattering by a 
single impurity, corresponding to a summation of the 
graphs in Fig. 4: 

TP~P'= (~ ~)u(p-p')+ (~ !)·2-rno[G(O,p-p') 

-2•"' s d3p" { ( 1 0 ) ( 2 21 ) +F(O,p-p')]to,P-P'+ (2n)" 0 1 u(p-p')+ 1 

X2-rno[G(O, p- p") +F(O, p- p") ]f,;~;':_P"} G(w, p")T:", P'· (23) 

The change ~~ of the mass operators due to multiple 
scattering by a single impurity is given by 

( ~~"(ro,p) ~~oz(w,p) ) .. 
~~(w,p)== ~~2"(w,p) ~~(-w,-p) =vT •.• , (24) 

where 11 denotes the concentration of impurity atoms. 
The interaction of excitations with inhomogeneities 

in the density of the condensate which are nonadditive 
with respect to the impurity atoms correspond, for ex­
ample, to the diagrams shown in Fig. 7, in which the 
crosses pertain to different impurity atoms. If in these 
diagrams both crosses belong to one and the same im­
purity atom, they represent nonlinear corrections of 
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FIG. 7 

order cpk0 « 1 to the additive part of the inhomogeneity 
in the density of the condensate which appears in Eq. 
{23), and we may neglect them. On the other hand, from 
here it follows that we must solve Eq. (23) with the same 
degree of accuracy. The exact Green's functions aver­
aged over the position of the impurity atoms, which enter 
into Eq. {23), in turn are expressed in terms of the ma­
trix elements T~ '· Therefore, Eq. {23) should in gen­
eral be solved sell-consistently. But, as we see below, 
the attenuation of elementary excitations turns out to be 
so small in comparison with their energy that one can 
neglect it in the solution of Eq. {23). The change in the 
energy of the excitations due to scattering by impurities 
only leads to a shift of the chemical potential. In this 
connection the value of the chemical potential IJ., which 
is determined from condition (19), which is equivalent 
to the requirement of minimizing the system's energy 
with respect to the concentration of particles in the 
condensate, lsJ turns out to be such that in Eq. (23) it 
is necessary to substitute the Green's functions {18) 
in which ~ 11 - IJ. = ~02 = Tn0 • Strictly speaking, the in­
teraction with impurity atoms leads to a renormaliza­
tion of the velocity of sound. However, as was shown in 
the preceding section, ~c2/c2 ~ vcp2 /k0 « 1, where c2 

=m -lT n0, and to take this renormalization into account 
in Eq. {23) would require an excess of accuracy. 

Now, having used the definition of tp~;,no which is 

the matrix for the scattering of a free particle by a 
single impurity: 

-2tnJ 1 s d3p" t;,2;';,0 u (p"- p') 
lp,p• =u(p-p)- (2:rc) 3 p"2/2m+2tn0 

==[1+tg(-2tn0)]u, {25) 

we operate with the operator [1 +tan(- 2Tn0 )] on Eq. 
{23 ). The equation which is obtained as a result admits 
a solution by the method of iteration with respect to the 
parameter cpk0 « 1. Neglecting the dispersion oft, to 
the first approximation we obtain 

- t, p,--p ! ( 2 1 ) 2Tno --1- , 

1 2 2,;no-f- (p- p') 2/2m 

r.~ •. -t (~ ~) = , (26) 
0 p=p 

Having substituted {25) into {23) and {19) we find that 
actually ~02 = Tn0, and IJ. = Tn0 + tv, i.e., the chemical 
potential is shifted by an amount tv in comparison with 
its value in the system without impurities. An imagi­
nary part of T~,p' appears in the second approximation: 

"' _ s d8p' t2 [ ( 1 0 \ _ ( 2 1 ) 2,;n0 ] (J w ') 
lm T P.P- Im (2:rt)a 0 1~ 1 2 2,;n0 + (p- p')2/2m ( 'p 

[(1 0) (2 1) 2,;no ] 
X 0 1 - 1 2 2tno+(p-p') 2/2m · (27) 

Since the singularity of the functions G(w, p) and F(w, p) 
at zero momentum is not essential inside the integral, 
we have used formulas {18) in Eq. {27) without any re­
strictions. In the acoustic portion of the spectrum, which 
is the region of interest to us, i.e., for w << Tn0 = mc2 , 

p «me= k0 

1 ( p• (I)• 10 p2w2 } ( 1 -1}} 
+ 16 m2 + m2c2 + 3 m2c2 . -1 1 · (28) 

The following approximations give small corrections in 
the parameter cpk0 « 1 to expressions {28) and (26). 
In the opposite limiting case p » k0 , w » T n0 , formula 
(27) gives the usual expression 27Tvcp2p/m for the atten­
uation. 

Now let us clarify the role of simultaneous scatter­
ing of the excitations by several impurities. As we al­
ready said above this is, in the first place, correlated 
scattering by the potential of several impurities and 
the additive part of the inhomogeneity of the density 
of the condensate, created by those same impurity 
atoms and, in the second place, scattering by inhomo­
geneities in the concentration of the condensate, which 
are nonadditive in the impurity atoms. 

Some of the simplest diagrams corresponding to 
these processes are shown in Fig. 5. We omit the 
rather complicated calculations and immediately pre­
sent the result of an estimate of the magnitude of these 
graphs. It turns out that any of the diagrams of this 
type, notwithstanding the factor vcp2/k0 which were­
gard as small, contains terms proportional to a smaller 
power of the frequency than {28). In the region of the 
acoustic part of the spectrum these terms are individ­
ually large, but all together they cancel satisfactorily. 
The remaining terms are of the same order in fre­
quency as {28), but vcp2/k0 times smaller than this ex­
pression. Therefore, if the concentration of impurity 
atoms satisfies the inequality vcp2/k0 « 1, one can 
neglect the processes of simultaneous scattering. 

One can easily understand the physical meaning of 
the condition vcp2/k0 « 1 by having noted that 1/vcp2 

is the mean free path of a "hole" particle, and k~1 is 
that characteristic length over which "dressing" of the 
particles occurs, owing to the interaction with the con­
densate. Therefore the condition vcp2 /k0 << 1 means 
that on the path between collisions a particle is able, 
by interacting with the condensate, to change into a 
sound quantum, and only upon fulfilment of this condi­
tion can one expect Rayleigh scattering of the one­
particle excitations in a Bose gas. 

Having determined A(w, p), S(w, p), and ~ 02{w, p) 
from formulas {28), {26), {24), and {20), and having 
substituted them into {18), we obtain the result that in 
the acoustic part of the spectrum the attenuation of the 
excitations is given by 

'\' = _:: v~c (-p-} 4 , 
6 me 

i.e., it agrees with the semi-phenomenological calcula­
tion. In the absence of a condensate the attenuation 
would be equal to 27Tvcp1>/m. Thus, in a system contain­
ing a condensate the scattering of the long wavelength 
excitations turns out to be strongly suppressed. This 
effect is due to both the change in the spectrum of the 
excitations and the distinctive screening of the impur­
ity potential due to perturbation of the density of the 
condensate near the impurity atoms. 

CONCLUSION 
Now let us go on to the question of the width of the 

lines for the absorption and emission of light by a 
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Bose-Einstein condensate of excitons in semiconduc­
tors with allowed direct transitions. This width is de­
termined by the scattering of single-exciton excitations 
of the system with momentum 21TM -1, where A is the 
wavelength of light in the crystal, because the emission 
and absorption of light by the condensate of excitons 
are accompanied by the creation of a single-particle 
excitation with such momentum. r1 J If the concentration 
of excitons is sufficiently high so that an excitation with 
momentum 21TliA-1 belongs to the linear part of the spec­
trum, i.e., if the inequality 

t.-1 ~me I 'blli = Ynf In, 

is fulfilled, where f denotes the amplitude for the scat­
tering of the excitons against each other, this width 
turns out to be (1/12) 1r372(nf;\ 2r 3/ 2 times smaller than 
the linewidth for absorption by free excitons. Thus, 
for example, in GaAs for a concentration of excitons 
of 10+16 cm-3 the line would be narrowed by roughly 
100 times. Such a strong suppression of the scattering 
might lead to an interesting property for a laser utiliz­
ing the line of exciton amplification. Such a laser might 
be achieved in the form of a p-i-n structure. r6l For 
resonator dimensions of the order of 10-1 em, the dis­
tance between the modes 1011 sec-1 may turn out to be 
larger than the linewidth. In fact, the width of the ex­
citon line in GaAs usually amounts to 1011 to 1012 sec-1 • 

The presence of the exciton condensate should reduce 
it to 109 to 1010 sec-1• On the other hand, as was indi­
cated in r1J the frequency of the exciton amplification 
line varies with the concentration of excitons, and con­
sequently with the level of injection. Therefore the fre-

quency of the amplification line will coincide with the 
eigenfrequency of the resonator only for certain values 
of the injection level, and the dependence of the inten­
sity of light generation on the injection current must 
have the form of abrupt spikes. The indicated feature 
would permit one to determine whether generation is a 
consequence of ordinary interband transitions, or 
whether it is associated with the appearance of a Bose­
Einstein condensate of excitons. 
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