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The mobility of dislocations under the action of an applied stress is considered. The basic mechanism 
of motion is activation. The cases of small and large stresses are investigated in detail and also long 
and short dislocations. A comparison of the calculation with the experimentally observed power-law 
dependence of the dislocation velocity on the stress is made. 

1. INTRODUCTION 

IN substances with a large Peierls barrier (Ge, Si, Fe, 
and others) the motion of the dislocations depends upon 
an activation mechanism: a dislocation ejects a segment 
bounded by two kinks (a double kink, see Fig. 1) into a 
neighboring potential valley. The time for formation and 
expansion of such a segment determines the mobility of 
the dislocations. 

Experimental investigations of the mobility of indi­
vidual dislocations have been carried out on german­
iumL1'23 and silicon.L3l The results of articles[l•33 are 
described by an empirical formula of the form 

(1) 

where v denotes the dislocation velocity, a is the stress, 
and m and U are constants. 1> Formula (1) confirms the 
activation character of the motion. Here the power-law 
dependence of v on o is nontrivial. Apparently the 
stress in the indicated experiments is not too large so 
that U does not depend on a. Such a dependence was ob­
served in experiments on plastic flow in the transition 
metals (see the reviewL4l ). 

The goal of the present article is a theoretical in­
vestigation of the dependence of the dislocation velocity 
on the applied stress, when it is small in comparison 
with the Peierls stress ap, and also an investigation of 
the dependence on the length of the dislocation. 

In a series of articles (see the review articles L4 •53 ) 
the activation energy U(a) was investigated in the case 
when the stress a is comparable with ap. A simple 
model of a dislocation is usually used: a string posi­
tioned in potential profile. The quantity U(a) is found 
from a solution of the mechanical problem for a non­
linear string.2> Such a treatment is valid for sufficiently 

FIG. I 

•>The results of the measurements on Ge by Kabler [ 2 ] appear to be 
different. In this connection, however, see the criticism in articles ( 1·3]. 

2lWe note that the critical size lc of a double kink is determined in­
correctly in [4 ]. In particular, for small values of a one must have lc-
1/nal. 

large stresses. Namely, it is necessary that the work 
ab3 of the external forces over a lattice period b should 
be large in comparison with the fluctuation energy T. 
For the case of small stresses Lothe and Hirth Lsl have 
proposed another treatment, which we shall follow be­
low. 

2. MODEL OF STRAIGHT SEGMENTS 

It is assumed that the dislocation segment which is 
ejected into a neighboring valley lies at the bottom (see 
Fig. 1). This means that it is found in a state of meta­
stable equilibrium with the crystal. The free energy F 
of a sufficiently long dislocation segment is determined 
by the formula 

fT(l) =2U0 - ab2l- a/l (l ~b). (2) 

Here l denotes the length of the segment, U0 denotes the 
energy of one kink, the second term is equal to the gain 
in energy due to the applied stress, and the third term 
describes the attraction between kinks. By definition 
the force of linear attraction is given by 

afT a 
p=-az=ab'- 1,. (3) 

This force tends to decrease small segments with length 
l < lc and to increase large ones with l > lc where 
lc = (a/ab2)112 (see alsoL7 J ). 

In such a formulation, the problem reduces to the 
well-known problem of the formation of a nucleation 
center in a metastable phase. A dislocation in trough A 
plays the role of the metastable phase, the stable phase 
corresponds to a dislocation in trough B (Fig. 1). The 
difference between our problem and the well-known 
problem of the formation of droplets in a supercooled 
gas (or bubbles in a superheated liquid) (seeLsJ) lies not 
only in the number of dimensions but primarily in the 
small difference between the phases. In the problem 
about the condensation of droplets, for example, the 
difference between the density of the liquid and the den­
sity of the gas is very important. Because of this a den­
sity gradient appears in the gas, and the growth of a 
droplet is determined by a diffusion current across its 
surface. In our case the density of the string's particles 
is identical in the different "phases". In such a situa­
tion diffusion growth of a segment is impossible. The 
motion of its boundaries due to a difference of the linear 
stresses p in the different phases (see Eq. (3)) is another 
simple mechanism for the growth of a segment. 

We note that our treatment is correct upon fulfillment 
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of the following conditions. The height of the Peierls 
barrier Uo ~ T so that transitions from one valley to 
another take place very slowly. In this case one can as­
sume that long dislocation segments are able to reach a 
state of equilibrium with the medium and that the transi­
tion of a dislocation into a neighboring valley is a slow 
diffusion process. 

3. DIFFUSION OF SEGMENTS ACCORDING TO SIZES 

During the time of growth of a segment of critical 
dimensions (if it is large in comparison with b) the mo­
tion of the boundaries (kinks) is able to become steady. 
The velocity w of the steady-state motion is determined 
by a balance of the difference in stresses and the force 
of friction. Without going into a detailed investigation of 
the dissipative processes, let us introduce the mobility 
Jl: 

W=J.tp. (4) 

Equation (4) determines the change in the length l of the 
segment due to the difference in the stresses p. 
Thermal fluctuations lead to random changes of l. In 
order to describe the growth of a segment, we introduce 
a distribution function f(l, t) which obeys the diffusion 
equation: 

of oi 
-at+m=o, 

of of ( a ) j=-D--'-2wf=-D-+2J.t crb2-- f. 8l I ol [2 

(5) 

(6) 

The diffusion coefficient D is related to the mobility 11 
by the Einstein relation so that j = 0 in the static case, 
and the distribution function f becomes a Boltzmann 
distribution: 

f = Ae-7(QIT, (7) 

It is assumed that in the initial state (t = 0) short seg­
ments of length smaller than a certain value l1 << lc are 
able to reach thermodynamic equilibrium and are des­
cribed by the functions (7), but for l > l1 the function 
f(l, 0) vanishes. 

For large transition times T in the quasisteady- state 
approximation one can regard the probability current j 
as constant in the initial stage of the process. From 
Eq. (5) it is seen that j is connected to T by the relation 
j = 1/T. Using Eq. (6) we find 

j = 2jLT A ~ e ff(l)/T dl, (8) 

where the constant A= e:T(O)/Tf(O, 0) (see Eq. (7)). Of 
course, l = 0 should not be understood literally. As the 
zero region of distances we admit distances which are 
smaller than l1 but large in comparison with b. For us 
it is important that the constant A does not depend on the 
applied stress and does not contain an exponential de­
pendence on 1/T. A has the dimensions of an inverse 
length. We shall regard the value of A - b-1. 

From Eq. (8) we find the following expression for T: 

'1'----b_ ~ eff(l)/Tc!l (9) 
2J.t1' 0 - . 

Using Eq. (2) we reduce the expression for T to the form 

(10) 

where K1 is the Macdonald function. 
In the limiting case of large stresses (a ~ a 0 

= T2/4atb2) from Eq. (10) we obtain 

a'l• a-'1• { 2(U0 -bl'acr)} 
T= exp . 

J.tf2nbT T 
(11) 

This is a case customarily encountered in statistics, 
when nucleation centers with dimensions close to criti­
cal give the major contribution to the transition. 

In the other limiting case of small values a « a 0 , 

values of l - T/ab2 introduce the major contribution to 
the integral (9). This is associated with the fact that the 
fluctuations of the length in the region of an extremum 
of ET(l) are large. In this connection 

1 
't=--e2Uo/T, (12) 

2J.tab 

In what follows we shall understand by lc the character­
istic vfl].ues of the lengths of the segments, i.e., lc 
= ...fatjab2 for a ~ a0 and lc = T/ab2 for a ~ ao. The 
limiting cases of small and large values of a were first 
investigated by Lothe and Hirth. [9J 

4. VELOCITY OF INDIVIDUAL DISLOCATIONS 

Now let us consider a dislocation of total length L. 
In order of magnitude the average number of segments 
N(L, t) ejected into valley B during a timet« Tis 
given by 

L t 
N(L,t)=--. 

lc 'I' 
(13) 

In fact, T is the time for the creation of a nucleation 
center of critical dimensions. The probability for the 
appearance of such a nucleation center in a dislocation 
segment of length lc is equal, in order of magnitude, to 
t/T. One can determine the number of nucleation cen­
ters appearing in a dislocation of length L during a time 
t by dividing it mentally into segments of length Lc and 
multiplying the number of such segments by the proba­
bility for the appearance of a nucleation in each of them. 
It is assumed that in regard to the attainment of critical 
dimensions by a nucleation, the kinks move rapidly so 
that the time, during which a dislocation goes from one 
valley to the other, is appreciably smaller than T. 

According to Eq. (13) the average number of nuclea­
tion centers appearing per unit time and per unit length 
is equal to 1/lc T. However, according to Lothe and 
Hirth, [gJ this quantity is equal to 1/bT (in our notation). 
This leads to an essential difference in the dependence 
of the velocity on the stress: instead of v - a3 12 (form­
ula (17)) v - a is obtained. The reason for the dis­
crepancy consists in the fact that in[9 J nucleation cen­
ters being formed at distances smaller than lc from 
each other were actually assumed to be independent. In 
fact, one should identify them because they combine, not 
yet having achieved critical dimensions (before the 
stage of expansion with constant velocity 2w = 211ab2). 

Let N(L, t) ~ 1. Then the average distance between 
segments is equal to lcT/t. The nucleation centers en­
large with a constant velocity 2w so that after a time of 
order t' = lc T /wt the entire dislocation crosses into the 
neighboring valley. 

We shall assume that the expansion takes place suffi­
ciently rapidly so that t' << T. In this case the value of 
t' coincides with t in order of magnitude. From here we 
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obtain 

t = l'lc't I w, l' == wt = l'lcW't. (14) 

The velocity v of the dislocation is determined by the 
formula 

v=blt=bl'wllc-r:. (15) 

Formula (15) is valid under the assumption L » l'. In 
the opposite case the time for a transition of the dis­
location into the neighboring valley is equal to Tlc/L 
and the dislocation velocity is given by 

V= bL/-r:lc. (16) 

Thus the velocity of dislocations linearly depends on 
their length for small L < ...ficwT and does not depend on 
L for L > ../lcWT. This conclusion is evidently in quali­
tative agreement with experimentlsJ, in which the de­
pendence of v on the radius of a dislocation loop was 
measured. 

In the region L > ..JlcWT the velocity v depends on the 
stress in the following way: 

u>uo. 

(17) 

(18) 

In the region of a linear increase of the velocity with 
length, the coefficient associated with L in two limiting 
cases is given by 

(19) 

(20) 

Let us emphasize that an exponential dependence on 
1/T may also be contained in fJ. (a Peierls barrier of 
the second kind). For very small stresses the kink 
moves so slowly that a segment of critical size is not 
able to "get started" during the time of its formation. 
Then, in order of magnitude T agrees with the time for 
the advance of the dislocation by one lattice constant. 
In this case 

(ub3 <ii; Te-2Uo'T), V = b I 't. (21) 

We emphasize that the estimates obtained by us for 
the velocity of motion of dislocations only pertains to the 
case of sufficiently long dislocations, namely L >> lc 
= T/crb2 • In this case the dislocation moves by ejecting 
a double kink of size lc into the valley with a smaller 
value of the energy. In the opposite case, L < lc, the 
whole dislocation undergoes random jumps. The time 
for a single jump is determined by formula (9), where 
the integration is carried out from 0 to L. A directed 
motion arises due to the small difference in the fre­
quencies of jumps along and opposite to the direction of 
the acting forces. The corresponding value of the dis­
location velocity is given by 

l' = 2uub2e-ZL'oiT = b/-r:. (22) 

Thus, for very small lengths L the velocity becomes 
a non vanishing constant quantity. A schematic graph of 

FIG. 2 

the velocity as a function of the length is given in Fig. 2. 
The dependence of v on cr and on L is usually ob­

served in an experiment. In this connection, it is not 
known beforehand to what range of parameters a given 
experiment refers. Therefore one can actually only talk 
about the exponent m in the empirical formula (1) or 
about the dependence of the activation energy on cr. In 
the case of long dislocations the different dependences 
of von cr for small (cr « CTo, formula (17)) and large 
(cr » cr 0 , formula (18)) stresses correspond to the dif­
ferent dependences of v/L for short dislocations (form­
ulas (19) and (20)). 

The most detailed experiments with regard to meas­
urements of the velocity of motion of individual disloca-

. . nd '1' (1,3] tions were carr1ed out on germamum a Sl 1con. 
Experiments on silicon give m = (3/2) ± 0.1, an activa­
tion energy which does not depend on cr, and a linear 
dependence of v on L for small lengths in complete 
agreement with our theory (the case of small stresses). 
Unfortunately the dependence of v /L on cr for small 
lengths was not measured. 

. (l] • al f The experiments on germamum g1ve v ues or m 
between the limits 1.0-1. 2. It is possible that in this 
case the mobility of the kinks is small. There are no 
measurements of the dependence of the dislocation 
velocity in germanium on their length. 

The authors thank V. L. Indenbom for calling their 
attention to this problem and V. I. Nikitenko for a dis­
cussion of the experimental situation. 
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