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The dispersion law for longitudinal optical phonons interacting with electrons in a quantizing magnetic 
field is studied. An analysis of the conservation laws shows that in the presence of magnetic quantiza­
tion there appear additional sections in the (w, q) plane in which Landau attenuation is absent. Disper­
sion curves in the regions q « w/v0 and q >> 2k0 are found. It is demonstrated that in the set under 
consideration there exist solutions of the acoustic type, analogous to acoustic plasmons. 

I T is well known that in a quantizing magnetic field the 
interaction of electrons with other elementary excita­
tions has a specific character. This is connected with 
the fact that the magnetic field substantially changes the 
spectrum of the electrons and breaks them up into 
groups, corresponding to different Landau levels. The 
change in the classification of the electron states and in 
the form of the conservation laws leads to a rearrange­
ment of the attenuation regions in the (w, q) plane, to an 
important transformation of the dispersion laws at the 
boundaries of these regions, and also to the appearance 
of new types of elementary excitations. 

The influence of a quantizing magnetic field on ele­
mentary excitations in solids has been studied in a num­
ber of papers. The influence of Landau quantization on 
the attenuation of longitudinal ultrasound was investiga­
ted for the first time by Gurevich, Skobov and Firsov£11 

(see also£21 ). The spectrum of plasma oscillations in a 
quantizing magnetic field has been studied b~ 
Zyryanov£31 • In a paper by Glick and Callen 41 the prob­
lem of the propagation of helicons in the presence of 
Landau quantization was treated. Ginzburg, Konstan­
tinov and Perel' lsl (see also£61 ) showed that in a degen­
erate electron gas magnetic quantization leads to the 
appearance of acoustic plasma oscillations. 

The dispersion law for longitudinal optical phonons 
interacting with electrons in polar semiconductors in 
the absence of a magnetic field was studied in the pa­
pers of Gurevich, Larkin and Firsov£71 and Lang and 
Pashibekova lBl • 

The present paper is devoted to the study of the spec­
trum of longitudinal optical vibrations interacting with 
an electron gas placed in a quantizing magnetic field. 

We first perform an analysis of the conservation 
laws. This enables us to find the damping regions and 
to draw a number of qualitative conclusions about the 
excitation spectrum in a quantizing magnetic field. 
Generally speaking, the presence of a magnetic field 
leads to anisotropy in the properties of the electron gas, 
with the result that elementary excitations cannot be 
divided into purely longitudinal and transverse ones. 
However, if the wave is propagated along the field, it is 
possible to treat the longitudinal and transverse solu­
tions independently. 

First of all we shall find the sections of the (w, q) 
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plane corresponding to excitation of an electron and 
hole with energy w and total momentum q, in the pres­
ence of Landau quantization (fl = 1). The edges of these 
sections define the regions of attenuation of the quasi­
particles interacting with electrons. 

We shall assume that the longitudinal wave is propa­
gated along the field (q II H) and that, consequently, 
transitions without change of n (n labels the Landau 
level) are allowed. 

In this case it follows from the energy- momentum 
conservation laws and the Pauli principle that the sec­
tions of the (w, q) plane corresponding to attenuation can 
be found from the relations (see Figs. 1 and 2) 

(1) 

where kn = -v'2m[ EF - (n + 1/2)0] is the height of the n-th 
tube, n = eH/mc is the cyclotron frequency, EF is the 
Fermi energy and m is the effective mass. The vector 
q has a single component in the direction of the field, 
q = (0, 0, q). Here and below we assume that the elec­
tron spectrum is isotropic and quadratic in the absence 
of a magnetic field. 

FIG. I. Schematic form of the dispersion curves of longitudinal 
optical phonons and plasmons. Five magnetic levels are occupied. The 
Landau attenuation region is shaded. The dot-dash line indicates the 
occurrence of giant oscillations of the absorption coefficient of the 
acoustic phonons. The dashed line describes the dispersion law for 
slowly decaying optical phonons. 
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FIG. 2. Dispersion curves in a 
leaf-type "window." 

At the intersection of attenuation regions correspond­
ing to different Landau levels a number of "windows" 
appear in which there is no attenuation. 

"Windows" of a first type have the form of leaves, 
spreading out from the coordinate origin. At small q 
they are bounded by the straight lines w = ttnq/m and 
w = kn +lq/m. Each "window" of this type is terminated 
on the line w = ~ at q = kn- kn +1' "Windows" of a sec­
ond type border upon the axis w = 0. They begin at the 
points q = 2Itn and end at w = ~ and q = kn + 1 + kn. 

Attenuation of the quasi-particles is also absent at 
w > q2/2m + koq/m and w < q2/2m- koq/m. "Windows" 
of the first and second type contract with decrease of 
the magnetic field and their height decreases. The total 
number of "windows" increases with increase in the 
number of occupied levels. 

At the edges of the attenuation regions anomalies 
should arise in the spectra of the longitudinal excita­
tions. For example, at the edges of "windows" of the 
second type, giant oscillations of the absorption coeffi­
cient and of the phase velocity of the longitudinal ultra­
sound arise[l' 2 l. Logarithmic singularities of the polar­
ization operator at the points q = 2Itn with w = 0 lead to 
oscillations of the static screening potential (gJ with 
periods ..... (2knr 1 • The possibility of propagation of 
acoustic plasma oscillations is connected with the exis­
tence of the "leaf windows" [sJ. 

Below it is shown that similar singularities arise 
also in the optical phonon spectrum. Furthermore, the 
spectrum of longitudinal plasmon oscillations is changed 
in a quantizing magnetic field. 

We turn now to an analytic investigation of the prob­
lem. We shall assume the temperature to be zero and 
shall neglect collisions. We shall assume also that 
perturbation theory is valid, i.e., the electron gas satis­
fies the high density approximation and the coupling 
constant of longitudinal optical phonons with electrons 
is small. 

We must, however, bear in mind that perturbation 
theory does not apply at the edges of the attenuation reg­
ions. The point is that the vertex part in the Dyson 
equation at these edges has a singularity corresponding 
to small momentum transfers. Moreover, we must note 
that, in the system under consideration, generally speak­
ing, a superconducting transition is possible[wJ. This 
corresponds to another singularity in the vertex part. 
We, however, shall assume that the Coulomb repulsion 
dominates the phonon attraction and that there is no 
transition to a superconducting state. 

The spectrum of the elementary excitations can be 
found from the Dyson equation. In writing the Dyson 
equation we shall take into account both Coulomb inter-

action and the electron-electron interaction caused by 
exchange with the optical phonons[ 7J. Using the expres­
sion for the electron polarization operator in a quan­
tizing field (see, for example/2 J) we obtain the disper­
sion equation in the form 

(2) 

where ao = £00/me2 is the effective Bohr radius, 
wt = ( £00 / Eo) 112w 1 is the transverse optical phonon fre­
quency, 01 = c/eH is the square of the magnetic length, 
N is the number of occupied Landau levels, Eoo is the 
dielectric constant due to the inner electrons, Ec is the 
coupling constant for electrons and optical phonons, 
1/ Eo = 1/ Eoo - 1/ Ec, Eo is the static dielectric constant 
and w 1 is the longitudinal optical phonon frequency. 

We first consider the solutions for small q in the 
region w > q2/2m + koq/m, where there is no damping. 
After simple calculation, we obtain from Eq. (2) 

w'(q)=w'+ (w'-w,'e~/eo)~YN q', (3) 
w,'JJ 4e~/ec + 'j,wp2 (w 2 - w,'e~/eo)" 

where 

w 2 =~{w•'+ Wp2 ± V (w12 + wp2} 2 - 4:: w12wp'}, 

w~ = 47Te2no/m£00 is the plasma frequency, n0 is the elec­
N 

tron density and YN = I; k~. For (wp/w 1) 2 « 1, we 
n=O 

obtain from (3) 

_ 8oo ~~~~YN w,'(q)=wt'+-wv'+--2 q', 
Ec €c<Ol 

" '( )- e~ '+ 2~VN 2 Wp q --Wp --q' 
eo Wp 2 

(4a) 

{4b) 

where f3 = ~e2/1rm2 £00 • In another limiting case (wp/w 1 ) 2 

» 1 we obtain 

_ 2 ( )- e~ '(i w,'e~)+2~YN 2 
C!l! q --WI --2 - --2 q, 

eo Wp Ec Wp 

_ '( ) 2 +f.~ , + ~YN , 
lOp q =Wp ~W,- Wp 2 q•. 

(5a) 

{5b) 

In a strong magnetic field, when only one Landau level 
is occupied, formula (4a), for example, may be written 
in the form 

(6) 

where Vo = v'2(EF- ~/2)/m. Consequently the coeffi­
cient of q2 , determining the spatial dispersion, decrea­
ses as H-2 with increase of the field. We must note that 
with increase of the field, the attenuation region in this 
case is displaced in the direction of greater q. 

To calculate YN in (4a)- (5b) when a large number 
of levels are occupied, we use the Poisson summation 
formula. The result can be represented in the form 

(2m)'/, { 2 'f, 1 y, 
Y.v=--Q- s"F -16£F Q2 

~ 

+ Q'·;, [ .E (- 1)'+1!-'i,{cos(2nle)S(l'2nle) + sin(2nle)C(l'2nle)}]}, 

~' ~) 

where S(x) and C(x) are Fresnel integrals and € = EF/~. 
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The first term in the right- hand side of (7) defines the 
spatial dispersion in the absence of the field. The next 
two terms describe the monotonic field-dependence of 
the coefficient of q2 and the oscillations of this coeffi­
cient of the de Haas-van Alphen type. 

In another limiting case, when q » ko, the disper­
sion law for the optical phonons has the form 

2 ( ) _ ~ {i Boo { 16nno _4 + 32yN -s)} w q - w,- -- -- q -- q , 
Be ao 3naoa 

(8) 

where n0 is the electron density. As in the case of small 
q, it is not difficult to find the form of formula (8) for 
N=OandN»1. 

It is of very great interest to examine the solutions 
of equation (2) inside the "windows" of the first and 
second type. The polarization operator at the edges of 
the "windows" has a logarithmic singularity. 

We consider the solutions in the "windows" of the 
leaf type. The polarization operator goes to -oo at the 
left-hand edge of the "leaf window" and to +00 at the 
right-hand edge. Therefore, solutions of Eq. (2) exist 
in these regions irrespective of the sign of the Dii func­
tion. In the case where n < wt. the solutions in the 
"windows" of the leaf type are acoustic plasmons, 
attenuating at w = n. For small q these solutions were 
investigated inl5l. 

If Q > Wt> then for W < Wt> i.e., in the region Where 
Coulomb repulsion is dominant (Do > 0) there exist 
solutions of the acoustic plasmon type, terminating at 
w = Wt· In the frequency interval Wt < w < n' i.e.' in 
the region where phonon attraction is dominant (Do < 0), 
solutions also exist which begin at the point of intersec­
tion of the straight line w = Wt with the left- hand edges 
of the "leaf Windows," and terminate at W = 0, if 0 < W1 

(see Fig. 1). For W1 < 0, when the Do function changes 
its sign twice in the interval (0, n), the solutions in the 
"leaf windows" are decomposed into three parts (see 
Fig. 2). 

In the "windows" of the second type solutions exist 
only when 0 > Wt, in the interval Wt < W < 0. In the 
vicinity of the points of intersection of the straight line 
w = Wt with the edges of the ''windows,'' the solutions of 
Eq. (2) can be written in the form 

(9) 

An explicit expression for the constant Bn can be found 
without difficulty from Eq. (2). The plus sign in (9) 
refers to the solution at the left- hand edge of the 
"window," the minus sign to that at the right-hand edge. 
To obtain the dispersion curves in the right- hand end of 
the "window" it is necessary to replace n by n - 1. A 
schematic form of the dispersion curves inside the 
"windows" of the second type is depicted in Fig. 1. 
Exact solutions of Eq. (2) in these regions, as in the 
"windows" of the leaf type, can be found only by means 
of a computer calculation. 

The attenuation of the excitation experiences a jump 
at the edges of the "windows" we have considered. The 
attenuation of optical phonons at the edges of "windows" 
of the second type is analogous to the attenuation of 
acoustic phonons, considered inl2 l. This does not imply, 
however, that optical phonons are not well-defined 
everywhere outside the "windows." With increase of q 
and w the attenuation decreases, on the average, as 

1/wq3 • Estimates we have made show that for the typi­
cal semiconductor parameters n ~ 1017 cm-3, m = 0.1mo, 
Wt ~ 1012 sec-\ E ~ 10 and H ~ 104-105 Oe with q ~ 2ko 
the attenuation is small. For n << wt. the solutions in 
the region where there is attenuation go over to the so­
lutions found inl7l in the absence of the field. 

Up to now we have assumed that there is no tempera­
ture-diffusion of the distribution function and we have 
not taken electron diffusion into account. From analysis 
of the imaginary part of the polarization operator at 
finite temperature 

I II( ) m h ( w ) 1_, [ (mw/q-q/2)2-kn2] 
rn q, w = - 8naq 8 2kT c 1 4mkT 

Xch-'[(mw/q+q/2)2-k,.~] (10) 
4mkT 

it follows that temperature-diffusion of the edges of the 
attenuation regions in the high frequency case under 
consideration will be exponentially small if the condi­
tion kT « n' kT « Wt is fulfilled. Electron collisions 
can be neglected if w is much greater than the collision 
frequency. 

The anomalies in the optical phonon and plasmon 
spectra described above can be detected in experiments 
on the scattering of cold neutrons and X-rays. For this 
it is necessary that the experimental accuracy guaran­
tee a momentum resolution of not less than 2(kn- ko + 1). 

Modern experimental technique llll enables us to obtain 
such accuracy in fields H ~ 105 Oe. 

In conclusion, we express our gratitude to the partici­
pants in the seminar in the department of theoretical 
physics of the Gor'ki:l State University for discussions. 
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