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Langmuir-turbulence spectra and the possibility of propagation of low-frequency oscillations of the 
second-sound type in a turbulent plasma are considered. If collisions between plasmons and ions are 
not taken into account, there should be two stationary nonequilibrium distributions that correspond to 
stationary fluxes of the kinetic energy and of the number of plasma waves. Two branches of second 
sound should correspondingly exist. An exact power-law solution of the form k-7 is found for that 
region in phase space in which, along with four-plasmon interaction, nonlinear scattering of plasmons 
by ions is also important. It is proved that this distribution is stable with respect to low frequency 
disturbances. The stability is of a diffusion nature. 

1. INTRODUCTION 

THERE have been many recent investigations of the 
weak plasma turbulence due to nonlinear interaction of 
the waves resulting from various fragments of decay, 
coalescence, and scattering of the waves by one another. 
A characteristic feature of a plasma turbulence of this 
type is that it proceeds without direct energy exchange 
between the waves and the plasma particles. Such a 
turbulence is analogous in many respects to hydro
dynamic turbulence. Zakharovl1J has shown that in an 
isothermal plasma without a magnetic field there is a 
region in the wave-number space, in which the distribu
tion function (the turbulence spectrum) of the Langmuir 
plasmons has a universal power-law character. The 
existence of a stationary distribution of the plasma 
waves is due to the energy and conservation laws that 
hold when they are scattered or decay. This spectrum 
corresponds to a stationary flux of the plasmon energy 
from the generation region towards the region of larger 
wave numbers, where dissipation of the plasma-oscilla
tion energy takes place. The character of the turbulent 
spectrum of the plasmons is analogous to the well known 
Kolmogorov-Obukhov law for turbulent motion of an in
compressible liquid. Unlike hydrodynamic turbulence, 
in the theory of weak plasma turbulence it is possible 
to obtain a kinetic equation for the wave distribution 
function. The stationary distribution causes the integral 
of collisions between plasmons to vanish. 

The presence of a region of universal equilibrium in 
phase space of the waves should lead to the existence of 
low-frequency oscillations of the type of second sound 
in heliuml 2 ' 3 J or solidsl4 J. In this respect, plasma os
cillations are similar to phonons in condensed media. 
The mutual scattering of the plasma waves plays the 
role of normal collisions in which their total energy and 
total momentum do not change. It therefore becomes 
possible to describe hydrodynamically the vibrational 
motion of plasmons in the frequency region below the 
characteristic frequency of nonlinear interaction. The 
second- sound spectrum is linear, and the velocity is de
termined by the turbulence spectrum and by the magni
tude of the phase volume in which a stationary wave dis
tribution exists. The damping of these low-frequency 

oscillations is determined both by the interaction of the 
plasmons with one another, and by their scattering by 
electrons or ions, as a result of which a change takes 
place in the average energy, momentum, or number of 
plasma waves. Similar problems were discussed by 
Vedenov and Rudakovlsl. Second sound was considered 
within the framework of the quasilinear theory by 
Liperovski:l and Tsytovich lsJ and also by Ishimaru l7J for 
ion-acoustic plasma turbulence. 

The stationary distribution of plasma waves can ex
ist also in the case when it is necessary to take into ac
count the nonlinear scattering of the plasmons by the 
plasma particles, particularly by ions. The turbulence 
spectrum is established as the result of competition be
tween the four-plasmon interaction and the scattering by 
ions. The question of the stationary turbulence spectra 
under these conditions was considered inlaJ and inlsJ. 

In this paper we investigate the weak-turbulence 
spectrum both in the case of four-plasmon interaction 
and with allowance for scattering by ions. An investiga
tion of the stationary spectra for stability against low
frequency perturbations shows that the initial perturba
tions attenuate in time. The stability has a vibrational 
character (of the second-sound type) for the four-plas
mon interaction, and is aperiodic when account is taken 
of plasmon scattering by ions. The absence of oscilla
tions of the second- sound type in the latter case is the 
consequence of non-conservation of the energy and mo
mentum of the plasmons in collisions with ions. 

2. LANGMUIR SPECTRUM 

We consider an isotropic weakly-turbulent plasma 
without a magnetic field. We assume first that the ions 
are infinitely heavy. We shall subsequently indicate the 
limitations imposed by allowance for the thermal motion 
of the ions. In this case the principal process of non
linear interaction of the waves is the scattering of two 
plasmons by each other. Obviously, three-plasmon 
processes are forbidden by the energy conservation law. 
We write down the kinetic equation for the distribution 
function of the plasma oscillations Nk(r, t) with momen
tum k: 

iJNk iJook iJNk . --at+ --aka;-+ veNk + ykNk + h{Nk}= 0. (1) 
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Here 

oo~o = ooo[i + 3/z{krd) 2] (2) 

is the plasmon frequency, w0 = (4we2n/m) 112 is the 
plasma frequency, rd = (Te/4we2n) 112 is the Debye radius, 
T e is the electron temperature, n is the electron den
sity, 

(3) 

is the frequency of the Coulomb collisions of the elec
trons, Nd ~ nrd is the number of electrons in the De bye 
sphere. The quantity Yk is the nonlinear damping decre
ment of the plasmons on the electrons. According tolloJ, 
the order of magnitude of the decrement Yk is 

3ooo 8 
'Yk ~ -(krd) 3-, (4) 

32n nT. 

where 

(5) 

is the energy density of the plasma waves. As is cus
tomary in the theory of weak turbulence, the ratio .W/nTe 
is assumed to be small compared with unity. It is then 
possible to neglect the change of the natural frequency 
of the plasmon as a result of nonlinear interaction of 
the waves, compared with the kinetic energy 

Finally, :4 {Nk} is the collision integral due to the 
four-plasmon interactionl1J, 

(6) 

I.{Nd= s I v.k,k,k"l 21l(k + k!- kz -.ka)~{oo~o + Wh, - Wh,- W•,) 
. {N.N.,N., + N.,N.,N.,- N.N.,N.,- N.N.,N.,} dak,dak2 da,k3• (7) 

The matrix element of the four-plasmon interaction 
IVkk k k 12 is a fourth-order function of its variables, 

1 2 3 
and in accordance with llll 

(8) 

(m is the electron mass). The explicit expression for 
the matrix element (8) is quite cumbersome and can be 
found inl1l. We note only that the function Vkk k 1r is 

1 2~ 

symmetrical relative to permutations within the first 
and second pairs of indices, and also with respect to 
mutual permutations of pairs of indices. 

The four-plasmon collision integral can be estimated 
in the following manner : 

(9) 

where 

(10) 

The collision integral (9) predominates when the condi
tions y4 >> Yk• ve are satisfied, i.e., in the wave-num
ber interval 

Ni"' nT./8 < krd < 8 /nTe. (11) 

The left- hand inequality corresponds to the condition 
y 4 > ve, and the right one to Y4 > Yk· In order for the 
region (11) to be sufficiently broad, it is necessary to 
have 

This condition is more stringent than the inequality 
l6:/nT e » 1/Nd in the quasilinear theoryluJ. 

(12) 

The integral for the collisions between waves satis
fies three conservation laws: of the total number of 
plasmons N = jNkd3k, of the total momentum 
P = JkNkd3k, and of the total kinetic energy T 
= JnkN}{<l3k. The conservation laws together with the 
symmetry properties and the homogeneity of the matrix 
element of the interaction define uniquely the stationary 
spectrum of the turbulence. The stationary distribution 
function Nk must be obtained from the condition that the 
collision integral vanish 

(13) 

Obviously, this distribution can exist only within a reg
ion (11) in which four-plasmon interaction predominates. 

Followingl1J , let us consider the temporal evolution 
of a narrow wave packet of plasmons, with wave numbers 
k ~ k0 , situated inside an interval (11). The wave-num
ber region k ~ k0 will be called the energy- containing 
region. As will be shown below, it is precisely in this 
region that the kinetic energy of the plasmons has a 
maximum. Owing to the scattering of the waves by one 
another, plasmon fluxes are produced from the energy
containing region in the direction of larger and smaller 
values of k. The flux to the short-wave region of the 
spectrum is accompanied by an increase of the plasmon 
energy. Owing to the conservation of the kinetic energy, 
the packet as a whole diffuses in the region of small k 
in such a way that the total kinetic energy is conserved. 
On the short-wave boundary of the interval (11), when 

k ~ k, = 8 I nT &d, 

energy dissipation takes place, and at small values 

k~ kt=nT./8N: ra 

there is plasmon absorption. 

(14) 

(15) 

It must be emphasized that the energy absorption in 
the region (14) proceeds with conservation of the total 
number of plasmons, since the plasmon-electron colli
sions conserve the total number of plasma wavesllOl: 
J ykNkd3k = 0. Therefore in the short-wave region of 
the spectrum (between k0 and ks) there is established a 
stationary plasmon distribution corresponding to a flux 
of kinetic energy independent of k. Such a distribution 
was obtained by Zakharovl1J and is given by 

iN= s d3kl4 {N.} ~ Nh,3k0 11 • (16) 

This distribution is an exact solution of Eq. (13). 
On the other hand, in the region between k1 and ko 

there should be established a stationary flux of the num
ber of plasmons. In order to determine in this region 
the dependence of Nk on k, corresponding to the station
ary plasmon flux, it suffices to express the change of 
the plasmon number in terms of the plasmon distribu
tion function and wave number. In the region k ~ ko we 
have 

The flux of plasmons jN does not depend on k if 

N~o ~ k-1313. (17) 

The arbitrary constants in (16) and (17) can be obtained 
from the condition for the "joining together" of the dis
tribution function Nk at k ~ ko with (16) and (17). 
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It is easy to verify that this distribution is also one 
of the exact solutions of Eq. (13). In fact, this equation 
was transformed in[1J into (see Eq. (22) ofr1J) 

S"'d Is"' d II W.,,.,.+.,"-OO,Ol',ro" [t ( (ll )' ( (ll )' 

0 
00 0>-ro'w w'sw"·<;(oo'+w"-w) 8 + w'+ro"-·w - ;;;;-

-(~)'][ ( (ll )"/,+3·-(~)"1'+"'-(~)"'"3']= 
II 1+ I+ II I II 0. 

(ll (ll (I) -(1) (:) ,,, (18) 

The solution is sought, in the form of a power-law func
tion Nk ~ k2s, the variables chosen to be w = k2 , and 
W ww 1w2w3 is a homogeneous function of its variables of 

the order of 5/2, with the same symmetry properties as 
IVkk k k 1. 

1 2 3 

It is obvious that this equation is the solution not only 
when 11/2 + 3s = -1, but also when 11/2 + 3s = 0, i.e. ,I> 

2s = - 11/a. (19) 

Another pair of power-law solutions with s = -1 (the 
Rayleigh-Jeans distribution) and s = 0 does not agree 
with the stationary conditions for any physical quantity 
in the wave-number region under consideration. 

The structure of the four-plasmon collision integral 
is such that the turbulence is local and isotropic. A 
proof of this statement, as well as the convergence of 
the integrals in Eq. (13) when the obtained solution is 
substituted in it, can be obtained by the same method as 
in[1J. 

We thus arrive at the following picture of the turbu
lence of Langmuir plasmons. The waves of the initial 
packet, localized at the initial instant in the region 
k ~ ko, are spread over the phase volume, both in the 
direction of k > ko and in the region k < k0• A station
ary flux of kinetic energy towards larger k sets in 
(Nk ~ k-1313), as well as a stationary flux of waves in the 
long-wave part of the spectrum (Nk ~ k-1113). Both reg
ions of universal equilibrium exist only when the condi
tion (12) is satisfied. 

kl 

The figure shows schematically the spectral distri
bution of the density of the kinetic energy of the plas
mons Tk = {k2 /27T2)flkNk in the interval between k and 
k + dk. In the region k < ko, where the spectrum (17) is 
realized, the dependence of Tk on k obeys the asymp
totic law 

(20) 

and in the region ko < k < ks, 

(21) 

If there is no generation of plasma waves when t > 0, 
then the distribution Nk is non-stationary. The charac
teristic time of this non-stationarity is of the order of 
the time of nonlinear interaction 

1 [ ((C)2]-1 
't'- y.-- Cllo(kord) 2 ';;T . 

1>V. E. Zakharov has advised us that he obtained a similar turbu
lence spectrum for waves on the surface of a liquid [ 12 ]. 

The dissipation of the kinetic energy occurs in the 
region of wave numbers k ~ ks, and wave absorption 
takes place at k ~ k1. With decreasing energy and 
plasma-wave number in the energy-containing region, 
the quantity k1 increases and ks decreases, i.e., a nar
rowing of the phase-space region in which the distribu
tions (16) and (17) exist takes place. A quantitative 
consideration of the kinetics of such a relaxation is a 
complicated problem and calls for the solution of the 
nonlinear integral equation (1) in the non-stationary 
case. This is the situation when there is no source of 
plasma waves at k ~ k0 • The turbulence spectra (16) 
and (17) with stationary fluxes of the kinetic energy and 
of the wave number are established only in the presence 
of a source of plasma oscillations. 

Let us discuss now the question of the influence of 
the thermal motion of the ions. In a non-isothermal 
plasma, the situation is complicated by the existence of 
ion sound and decays of Langmuir plasmons with par
ticipation of ion-acoustic oscillations. We shall there
fore consider an isothermal plasma. For simplicity we 
confine ourselves to the wave-number region 

(22) 

in which plasmon scattering is almost elastic, i.e., the 
relative change of the plasmon energy in collision with 
the ion is small: 

jQk-Qk,,::::::: jk-k 1 j::::::: (~)'"_1_~1. 
Qh k 9M krd 

Inasmuch as the process of energy transfer in colli
sions is slow, the corresponding term in the kinetic 
equation (1) describes nonlinear diffusion of plasmons 
ink-space. According torsJ, this additional term is of 
the form 

In order of magnitude, the collision frequency of the 
plasmons with ions is 

(23) 

1 ~ m w02Nkk m E 
vi=-vi{N"}- 3·10-~---- 10-~----. (24) 

Nh M nTerd2 M nTek•rd• 

The results obtained above remain valid also when ac
count is taken of the thermal motion of the ions under 
the condition that lie :;::, vi, i.e., (krd)2 

~ 10-4(m/M)(&/nTe)Nd. If this inequality is violated, 
then the lower limit of the region of existence of sta
tionary spectra (16) and (17) will be determined not by 
the paired collisions of the electrons, but by the induced 
scattering from the ions. The total damping on the elec
trons and ions has a minimum at 

krd ::::::: (m /300M) 'I•. (25) 

Therefore the stationary distributions (16) and (17) can 
be realized in a relatively narrow region, where 
(m/300M) 115 < lif/nTe < 1 near the minimum of the total 
damping. Thus, allowance for the thermal motion of the 
ions leads to a decrease of the phase- space region in 
which the stationary spectra (16) and (17) are estab
lished. 

It is interesting to note that a similar Langmuir tur
bulence can be realized in principle also in an electron 
solid-state plasma, for example in semiconductors. 
Intense plasma oscillations can be produced by electron 
beams or by optical pumping. Under these conditions, 
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the limitations due to stimulated scattering of electrons 
by ions do not play an important role, since the effec
tive mass of the ion Meff = p/n = MN/n (Ni » n) is 
larger by many orders of magnitude than the true mass 
(here p is the mass density of the crystal, Ni is the 
atom concentration). Then the lower limit of the turbu
lence spectra k1 is determined by the collisions of the 
electrons with the impurities, phonons, and other scat
terers. 

A stationary distribution of plasmons exists also in 
that region of k space where besides four-plasmon 
interaction it is necessary to take into account also 
scattering by ions (23). In this case Eq. (1) for the 
stationary distribution 

(26) 

is an expression of the condition that the change of the 
plasmon density Nk due to their mutual scattering is 
offset by the stimulated scattering by the ions. It is easy 
to obtain an exact power-law solution for this equation, 
by using the properties of homogeneity and symmetry of 
the four-plasmon interaction operator. We put Nk 
= Ck-v. We then get from (26) 

(27) 

whence v = 7, and the constant C coincides with const, 
which contains the k-independent factors of the collision 
integrals (7) and (23). Consequently, the spectrum of 
the stationary turbulence is 

(28) 

It should be mentioned that the possible existence of 
a stationary spectrum in this case was already pointed 
out in[aJ, where the non-stationary width of a plasmon 
packet, due to competition between four-plasmon inter
action and nonlinear scattering by ions, was deter
mined. Just as in the cases (16) and (17), turbulence 
with a spectrum (28) is local and isotropic. This spec
trum is also non- stationary, strictly speaking, if there 
is no source of plasma waves. The characteristic non
stationarity time is of the order of (vi + y 4r 1 • It should 
be noted that the exact solutions obtained above for the 
weak-turbulence spectra differ from those obtained 
in[8 ' 9J by approximate calculations. 

3. STABILITY OF DISTRIBUTIONS AND THE POSSI
BILITY OF SECOND SOUND IN A TURBULENT 
PLASMA 

In this section we investigate the stability of the tur
bulence spectra against low-frequency perturbations. 
We assume that the perturbation frequency is small 
compared with the characteristic frequency of the non
linear interaction that determines the stationary distri
bution of the plasmons. In the case when the thermal 
motion of the ions is not taken into account (M-oo), 
the stability of the spectra (16) and (17) has an oscilla
tory character. These oscillations constitute second 
sound in a turbulent plasma. When account is taken of 
the ion motion, the stability of the distribution (28) has 
an aperiodic (diffusion) character, because of the non
conservation of the energy and momentum of the plas
mons when they are scattered by the ions. 

In order to determine the dispersion law and the 
velocity of the second sound, we write out the equations 

for the total number of plasma oscillations, for the 
summary momentum, and for the total kinetic energy. 
We neglect here the stimulated scattering of the plasma 
waves by plasma particles and collisions between elec
trons, i.e., we put lie = Yk = 0 in (1). Allowance for these 
collisions leads to damping of the second sound. We 
multiply (1) by unity, by the plasmon wave vector k, and 
by the kinetic energy nk, and integrate over the phase 
volume in which the plasmons have a stationary distri
bution. Owing to the conservation laws, the terms con
taining the averaged collision integral drop out. As a 
result we obtain the system of three equations 

where 

aN 
-+3roord2 divP=0, 
at 

aP1 + ani;= o, 
at ax; 

aT -+-divQ=O, 
at · 

is the momentum flux density tensor, 

Q = 3ro0rd•~QkkNkd3k 

(29) 

(30) 

(31) 

is the kinetic- energy flux density, and P = JkNkd3k is 
the plasmon momentum density. 

Second sound can exist in the frequency region 

(32) 

Therefore at each instant of time there exists a quasi
stationary distribution 

N,(r, t) = N,•- (kV + 11 + Qhe)aNh0 I aQ., (33) 

which causes the integral of the plasmon-plasmon colli
sions to vanish. The non-equilibrium addition to the 
distribution function (33), due to delay effects in these 
collisions, leads to an additional damping of the second 
sound, on the order of w/y4. The parameters V, 1-1, and 
® are small quantities and depend on the coordinates 
and on the time. V(r, t) is the average velocity of the 
plasmon gas as a whole, 1-L(r, t) is their chemical poten
tial, and ®(r, t) is the dimensionless average energy. 
Nk: represents the stationary turbulence spectrum (16) 
or (17). Small additions to N, P, and T, and also to IIij 
and Q, can be expressed in terms of the distribution 
parameters (33) as follows: 

2 
t'IN=Af.L+B8, 6Pi=--BVi, 6T=f.LB+EIC, (34) 

9word2 

II1; = 2/ai'J1; (B!l + ce), Q, = 2/a v,c, 

where the constants A, B, and C are given by 

S aN, s iJN" s 2 oN, . A=- -_-d•k, B=- Qk-_ -d3k, C=- Qk--;:n-d3k. (35) 
oQ" oQk <l••k 

Substituting (34) in (29)- (31), we can easily verify 
that in the case of second-sound oscillations the chem
ical potential remains unchanged, i.e., 1-L(r, t) = 0. 
Therefore the equations for the determination of the 
second- sound spectrum are of the form 

av c ae2. 
-+3roord2 -V8=0, -+-divV=O. m B m 3 

Eliminating the velocity V from these two equations, we 
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obtain the wave equation 

f 1 828 c ormu a --2ooora2-~8=0. 
8t2 B 

It follows therefore that the spectrum of the second
sound oscillations is linear: 

oo{q)= qs, (36) 

and the velocity of second sound is determined by the 
formula 

(37) 

The presence of two stationary distributions of plas
mons leads to the existence of two branches of second 
sound- fast and slow. The fast second sound is realized 
in region (16) with a constant plasmon kinetic energy 
flux. Its velocity can be readily obtained with the aid of 
formulas (37) and (35). The main contribution to B is 
made by the energy- containing region (k ~ k0), and in C 
the principal role is played by large k ~ ks· As are
sult of the calculations we get 

s1 ::::~ 2ve(kord)''•(k,rd)'l•, Ve =(3T./2m)'l•. 

The velocity of the slow second sound is determined 
by the distribution (17), for which the plasmon flux is 
constant. In this case the quantity C is determined by 
the energy-containing region, and in B the main contri
bution is made by small k ~ k 1• The expression for the 
velocity is given by 

The velocity of the second sound is approximately 
(ks/k1) 113 larger than the velocity of the slow sound. 

(38) 

The damping of the second sound is determined both 
by dissipative mechanisms and by the fact that the plas
mon distribution "lags" the quasistationary distribution 
(33). The relative damping decrement of the fast sound 
is of the order of 

(39) 

and is small in the frequency interval Yk < w < /'4• For 
slow sound, the relative damping is given by the same 
formula (39), in which, Yk must be replaced by "e· By 
the same token, it can be stated that the distributions 
(16) and (17) are stable against similar low-frequency 
perturbations. 

It follows from the foregoing analysis that second 
sound constitutes oscillations of the average number 
and of the energy of the plasmons. These oscillations 
can be excited by periodic variation of the external 
parameters, for example, by changing the number or 
energy of the plasma oscillations in the region of their 
generation. 

Let us consider now the evolution of low-frequency 
perturbations in the case when the turbulence spectrum 
(28) is determined by the competition between the mu
tual plasmon scattering and their scattering by ions. 
Owing to the non-conservation of the energy and momen
tum of the plasma waves there appear in Eqs. (30) and 
(31) additional terms fk~dNk}d3k and JnkvdNk}d3k, 
describing the transfer of momentum and energy to the 
ions. Now the derivative with respect to time in (30), as 
well as the derivatives with respect to time and the co-

ordinates in (31) must be neglected compared with these 
additional dissipative terms. Relation (29) remains un
changed, since the total number of plasmons is con
served upon collision with the ions [Eq. (23)]. As a 
result we obtain the following system of equations: 

A.!!.!:_+B~ + !__BdivV = 0, 
8t 8t 3 

BV 11 + CV8 +"hJ k~;{Nk}d3k=0, 

J !Jk~;{Nk}d3k=0. 

(40) 

(41) 

(42) 

Linearized expressions for the change of the summary 
momentum and energy of the plasmons can be represen
ted in the form 

Jk~{Nk}d3k= 1/3Va, a ::::1 (v;k2), 

Jgk;;{Nk}d"k=bJl+ce, b::::~(v;!Jk),c=(v;!Jk2). (43) 

Here "i is given by (24), the angle brackets denote aver
aging over the turbulence spectrum (28) with the func
tion -aNk:/ank. Changing over to Fourier components, 
we can easily obtain the solution of the dispersion equa
tions of the system (40)- (42) in the form 

w =- i~q2 B Be- bC ::::~- iq2_!!!_. (44) 
3 a Ac- bB aA 

It follows therefore that the stability of the spectrum 
(28) has an aperiodic character, and the initial low
frequency perturbation spreads out diffusely with a 
diffusion coefficient D :::e B2/aA. 

In conclusion, we take the opportunity to thank Ya. B. 
Fal'nberg and the participants of the seminar under his 
direction for a discussion of the results of the work. 
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