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We develop a perturbation theory for the case where a transverse electromagnetic field interacts with a 
medium; the interaction is assumed to be weak only as far as the medium is concerned. This theory en­
ables us, on the one hand, to obtain integral equations for the observable microscopic quantities and, on 
the other hand, to write the kernel of these equations in the form of a power series in the coupling con­
stant. We use this method to derive the Maxwell equation and the radiative transfer equation and we con­
sider the coherent generation of harmonics process. 

1. WE shall call a collection of nuclei and electrons for 
which we take the Coulomb interaction between them in­
to account a Coulomb system (subsystem). In many 
cases of interest the following estimate holds for the in­
teraction of a Coulomb system with a transverse mag­
netic field: 

(1) 

This shows that it is not possible to use the traditional 
perturbation theory, but this estimate leads us to ex­
pect that some kind of perturbation theory could be de­
veloped to apply to a Coulomb system. 

Estimates such as (1) are satisfied also in a number 
of other cases, for instance, for the interaction of a 
transverse electromagnetic field, which in turn inter­
acts with a Coulomb subsystem, with the spin degrees 
of freedom of nuclei and unpaired electrons. In those 
cases we shall call the system which plays the role of 
the Coulomb system the heavy system and the system 
which plays the role of the transverse field the light 
system. In the last example the transverse field is a 
heavy subsystem. 

As a rule the above-mentioned fact is taken into ac­
count indirectly when one writes down phenomenological 
equations which contain as unknowns only quantities 
characterizing the light subsystem (Maxwell equations 
in a medium, [ lJ the Bloch equation and its variations 
describing the motion of the spin moment[ 2l). The 
heavy subsystem is then taken into account through the 
phenomenological parameters which enter into the equa­
tions (dielectric constant, chemical shift, spin -spin 
interaction[ 2 - 4 l). 

The phenomenological equations describe the ob­
served phenomena adequately, but sometimes (rather 
often) they turn out to be insufficient and it is very im­
portant (especially when the interaction considered is 
used to study the structure of the heavy system) to make 
manifest the microscopic nature of the phenomenologi­
cal parameters which are introduced. 

As a rule this problem is solved using traditional 
perturbation theory[s-eJ which is incorrect as we noted 
above. All the same, the results obtained in first ap­
proximation are valid. In the following we discuss this 
problem. 

In the present paper we use the example of the inter­
action of a transverse electromagnetic field with a Cou­
lomb system to develop a method which enables us to 
avoid the difficulties of the traditional perturbation the­
ory. Using it we can not only obtain correctly expres­
sions for the dielectric susceptibility but also derive 
the Maxwell equations for the transverse field them­
selves. Moreover, it makes it possible to obtain equa­
tions which describe nonlinear and incoherent proc­
esses (radiative transfer equations in dispersive me­
dia[ g-llJ ). 

The main point of this method consists in expressing 
the averaged perturbation theory series for the quanti­
ties in which we are interested not simply in terms of 
the average values of products of operators but in 
terms of specially selected combinations of them, the 
semi-invariants. The following relation can be used for 
the definition of a semi-invariant: 

(B,B, ... Bn) = (B,B, ... Bn_,) S,(Bn) 

+ 1: (B, ... B,,_,B,,+t ... B,_,) S,(B,,, Bn) 

+ ... +Sn(BtoBz, ... ,Bn). (:l) 

It is clear that 
S, (B,) = (81), 

Sz(B~, 8 2) = (B1B2)- (81)(82). (3) 

The semi-invariants have important' properties. In 
fact, according to the principle of correlation damping, 
formulated by Bogolyubov[ 12 l the averages of operator 
products taken at sufficiently distant points in space 
must be expressible in terms of the products of the cor­
responding averages. The same can probably also be 
said of the averages of operator products taken at points 
which are sufficiently far away from each other in time. 
In fact, the semi-invariants are just such combinations 
of averages that if their arguments are spaced out (in 
space or time) they asymptotically tend to zero. 

The series obtained which can most conveniently be 
described by using diagram methods allow a partial 
summation which leads to integral equations either for 
the quantities of interest to us or for some auxiliary 
quantities. The kernels of these equations turn out to 
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be series with a well-known explicit form in the semi­
invariants of the Coulomb system and in the coupling 
constant. The physical meaning of the kernels is com­
pletely obvious. 

We shall assume here that the state of the interact­
ing systems considered by us at finite times can be ob­
tained by the adiabatic switching on of the interaction 
between the systems which are non-interacting at -oo. 
This enables us to average independently operators of 
the Coulomb system and of the electromagnetic field. 
As far as the averaging of the operators of the trans­
verse electromagnetic field is concerned, we must 
make one remark. The phenomenological Maxwell equa­
tions are valid assuming the electromagnetic field to be 
weak. The definition of a weak field does not meet with 
difficulties in the classical case. We generalize it for 
the quanta! case by formally assigning a small param­
eter to each vector potential operator which stands un­
der the average value or normal product sign. We must 
thus first of all expand in terms of normal products and 
neglect terms containing under the normal product sign 
more than a given number of operators. 

We show how to expand any product of field operators 
in terms of normal products. 

If Ua is a unitary operator that adds to the vector 
potential A(j) an arbitrary function a (j) satisfying the 
D' Alembert equation and the transversality condition [ 131 

Ua;+A(j)U"" = A(j) + a(j) (4) 

and 
n n II A(j)= .E P(j~,h, ... ,it)N(A(j!),A(h) ... A(h)), (5) 

j=1 1=0, {j} 

then 

(ua.+ IT A(j)Ua.) = t P(i~oi•, ... ,h)a(it)a(i2) ... a(i1). (6) 
j=1 1=0, {j} 

All other operators encountered in the present paper 
will, like the operator A(j) depend on the space-time 
coordinates (r, t) and on the tensor index a. We shall 
give these arguments a numerical index and to simplify 
the notation we shall write n instead of rn, tn. an. The 
brackets ( )0 indicate averaging over the vacuum state 
of the free electromagnetic field. 

It follows from (6) that P(j11 j2 , ••• , jz) is the same 
as the vacuum average of the product of all operators 
A(j) except A(h), A(j2), ••• , A(jz ). However, 

n n-1 n-1 (II A(j)) = .L, (II A(j)) (A(l)A(n))0. (7) 
j=i l=t j=1 

j,Pl 

In the general case one can show that the expansion 

"' 1 ll ll 
F= (F)o+ \'1--- ... --(U .. +FU"")oJ"-=oN(A(t) ... A(n)) f=t n! lla(i) lla(n) (B) 

is valid for any functional F. 
The method can be generalized to the case when the 

systems at -oo are in a state of thermodynamic equi­
librium and there exists some non-equilibrium addi­
tional term to the electromagnetic field. The switching 
on of this extra term can be performed formally in 
Glauber's P-representation.(l3 ' 14 1 

2. It is convenient for the expansion of the average 
of any operator in terms of the semi-invariants of the 

Coulomb system to start from the equations of quantum 
electrodynamics written down in such a form that the 
operators of the Coulomb system occur in the interac­
tion representation while the operators of the trans­
verse electromagnetic field are in the Heisenberg rep­
resentation. The Heisenberg and interaction represen­
tations are defined, however, in such a way that the 
operators in those representations would be the same 
as the same operators in the Schrodinger representa­
tion, not at time t = 0, as is usually done, but at time 
t = t* which in the following we shall let go to -oo. We 
shall assume that this limiting process has already 
taken place. 

It is clear that 

B"(O) = S+(to)B(O)S(to), (9) 

where B(O) is an arbitrary operator at time t0 in the 
interaction representation and S(t) satisfies the equa­
tion 

iJS(t) =- .!_J'e. 't)S(t) 
At li mt\. 

(10) 

and the boundary condition S( -oo) = 1. 
If c = c(il, t2, ... ' tn)' the following differential re­

lation will hold by virtue of (2): 
i) i 
iJt'(S+(t')CS(t') )=- hS+(t') [C, d'eint(t') ]S(.t'), (11) 

and integrating it from - 00 to t we get the following in­
tegral relation: 

. t 

S+(t)CS(.t) = C- ~ _[ dt' S+(t') [C,.Uint(t') ]S(t'). (12) 

Putting C = B('f) and t = to, we get 
. t, 

BH(O)= B(O)- ~ _[ dtt S+(tt) [B(O), d'eint(tt) ]S(tJ). (13) 

The interaction Hamiltonian is[ 151 

d'eint(t)=-+ J drA(.r,t)j(r,t)++ J drA2 (r,t)'l'(r,t), (14) 

where 

1 .L, e. ( ) j(r,t)=- -(ll(r-ra(t))Pa(t)+p.(.t)ll(r-ra(t))), 15 
2 ma 

.E e 2 
'l'(r,t)= - 0 -/l(r-r.(t)), 

mac2 
(16) 

div A(r, t) = 0, (17) 

A is the vector potential satisfying the commutator re­
lations (11.6) of [ 151 • The summation in (15) and (16) is 
over all particles of the medium. We have intentionally 
not included the spin term in (15). 

We write out Eq. (13) for the operator A and evalu­
ating the commutator under the integral sign we "split 
off" the operator A using the fact that s+ (t)CA(t)S(t) 
= s+(t)CS(t)AH(t) for any operator C. We apply there­
lation (12) to s+ (t)CS(t). Extending this transformation 
to infinity we get 

A"(O)=A(O)- _!_Do(O, 1)j(1)+D0(0, 1) .t (.1, 2, ... , n)AH(n) ... AH(2), 

c - (~ 
where 

i 
(1,2)=- c•h [j(1),j(.2)]8(tt-t2)+ 'l'(1)/l(1,2), (19) 



302 A. A. KORSUNSKII 

i i 
(1, 2, 3) = -.-[ ( 1, 2), j (3)] 8 (tz- tal+ -[j (1), '¥(2)] 8(tt - t,) ll(2, 3), 

en i 2en (20) 
(1, 2, ... , n)=-[ (1, 2, ... , n -1),j(n)]8(tn~t- tn) 

ell 

i 
- 2y[ (1, 2, ... , n- 2), 'l'(n -1) ]8(tn-2 - tn~t)ll(n -1, n), (21) 

i 
Do(O, 1)= --8(to--t1) [A(O),A(1)]. (22) 

,t; 

We note that taking the AH operators to the right or to 
the left one can put Eq. (18) into different forms, one of 
which is such that each term of the sum would be a 
Hermitian operator. 

In exactly the same way we have for any operator 
u(O) of the medium 

~ 

aH(O)=a(O)+ L, (0,1, ... ,n)uAH(n) ... AH(1), (23) 

where 

n=i 

i 
( 0, 1) u = -;;f; 8 (to - t,) [ u ( 0) , j ( 1) ] , 

i 
(0,1,2)u= en 8(t,-t,)[(0,1)u,j(2)] 

i 
- 2ft 8(to-tt)ll(1,2) [u(O), '¥(1)], 

i 
(0, 1, ... , n)u = -8(tn~t- tn) [ (0, ... , n -1) u,j(n)] 

en 

(24) 

(25) 

i 
- 2n 8(tn-2- tn-t)ll(n -1, n) [ (0, ... , n- 2) u, 'I'(n -1) ]. (26) 

Equation (18) has a simple physical meaning: if we 
forget about the quantum-mechanical nature of the 
quantities occurring in it, the right-hand side is the 
sum of the unperturbed field, the field induced by free 
currents, and the field induced by induced currents. 

The convenience of writing the equations of motion 
in the form (18), (23) is connected with the peculiarities 
of the operators (1, 2, ... , n) and (1, 2, ... , nlu· The 
structure of these operators is such that when expand­
ing the averages of their products in terms of semi­
invariants only those terms remain which contain under 
the semi-invariant sign exactly one of the terms of each 
such operator. This, in turn, means that when expand­
ing in terms of semi-invariants the above-mentioned 
operators can be considered as being primary ones on 
par with the local operators j and IJ!. For instance, the 
quantity 

S2( (1, 2, ... , n,), (1, 2, ... , n2)) 
= ((1, 2, ... , nt) (1, 2, ... , n2))- ((1, 2, ... , nt))((1, 2, ... , n2)) 

also tends to zero when the distance between any of its 
arguments increases. 

3. The equations of motion (18) and (23) can now be 
used to expand the averages of any operators of interest 
to us in a series. These series are essentially series 
in the coupling constant. They differ from similar se­
ries which are obtained by iterating the equations of mo­
tion written in the traditional form in the grouping of 
the terms. In the new form the series can very easily 
be expressed in terms of the semi-invariants of the 
Coulomb system and expanded in terms of normal prod­
ucts of the operators of the free electromagnetic field. 
It is then convenient to use diagram techniques. The 
retarded Green function of the free electromagnetic 
field is represented by a solid line. Each term of this 
series obtained through iterating Eq. (18), except the 

-4:y 
x a 

~X 
X b -B c 

FIG. I 

first one, starts with a solid line which "ends up" in 
the operator (1, 2, ... , n) or -c- 1j{l) depicted by a 
thick dot. The diagram can be broken off in this point 
and in that case the point corresponds to the operator 
-c-1j(1), or n- 1 lines may start from it to the right 
and the point then corresponds to the operator (1, 2, 
. .. , n). To each end of a solid line abutting in the 
point we assign an argument 1, 2, 3, ... , n in counter­
clockwise order. If the operator A ends in the point we 
depict it by a wavy line with a cross at the other end. In 
Fig. 1a we have shown in diagram language the term 

Do(O, 1) (1, 2, 3, 4)Do(4, 5) (5, 6, 7)D0 (7, 8) (-+ j (8)) 

>< Do(3, 9) (9, 10)A (6) A ( 10) A (2). 

We shall call such a diagram an operator diagram. 
When writing down products of Heisenberg operators 

the order from top to bottom corresponds to the order 
from left to right in the analytical form. 

Performing the average using the density matrix of 
the medium we express the averages of operator prod­
ucts in terms of semi-invariants in accordance with the 
rules defined by Eq. (2). In Fig. 1b we give the diagram 
corresponding to the term 

Do(0,1)S2 ( (1,2,3,4),--+j(S) )Do(4,5)Sz((;'i,6,7). (9,10)) 

X Do(7, 8)Do(3, 9)A (6)A (10)A (2). 

We shall call such a diagram an operator diagram with 
respect to the electromagnetic field. The dotted line 
connects operators combined in the semi-invariant 
sign. The number of operators connected by it shows 
the order of the semi-invariant. 

When expanding in a series in normal products of the 
operators of the electromagnetic field we must be led 
by the rules defined by Eqs. (5) and (7). A wavy line 
ending at both ends in operators of the medium corre­
sponds to the quantity ( A(1)A(2)) 0 • The operators of the 
electromagnetic field which in this case correspond to 
wavy lines with a cross at the end are taken under the 
normal product sign. In Fig. 1c we have given the dia­
gram for 

Do(0,1)S2 ( (1, 2, 3, 4),-~ j (8)) Do(4, 5)S2 ( (5. 6, 7), (9, 10)) 

XDo(7, 8)Do (3, 9) (A (6)A (2) )o (A ( 10) ). 

4. We now apply the technique developed here to de­
rive the linear Maxwell equations. We assume that 
there is no coherent radiation of the medium and that 
therefore the sum of all terms which do not contain the 
vector potential operators under the normal product 
sign vanish. 

We must sum only those terms in the expansion of 
( AH(O)) which contain under the normal product sign up 
to one A operator. We can write this sum in the form of 
Fig. 2 in which a block depicted by a circle is the sum 

A/V'-X + ~X + ~X 

FIG. 2 
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- = - + -o- + -D-o-+ ... 
FIG. 3 

of all diagrams which have one incoming and one outgo­
ing end which cannot be divided into a block of the same 
structure by cutting one D0 line. This block we shall 
denote by a(1, 2). It is clear that in that case 

(Ar(Q)) = (A(O)) +Do(O, 1)a(1, 2)(Ar(2)). (27) 

Equation (27) is just the linear Maxwell equation for 
the transverse electromagnetic field. Its Green func­
tion which we shall represent by a thick line (Fig. 3) 
and which we shall denote by D(O, 1) satisfies the equa­
tion 

D(O, 1) = D0 (0, 1) + Do(O, 2)a(2, 3)D(3, 1) = 
= D0 (0, 1) +D(O, 2)a(2, 3)Do(3, 1). (28) 

The block a(1, 2) is defined by the series, the low­
est terms of which are given in Fig. 4. 

FIG.4 

It is now clear why the expressions for the trans­
verse dielectric susceptibility evaluated in the first ap­
proximation of the usual perturbation theory are valid. 
Indeed, the correction to the average of the current, 
evaluated in first approximation, corresponds to the 
second term in Fig. 2 without the D0 line. We can thus 
in this way obtain the first term in the expansion of 
Fig. 4 but it is impossible to obtain the other terms. 

We note also that Eq. (27) turns out to be valid for 
any Fourier components of the transverse electromag­
netic field and not only for the long-wavelength ones as 
in the case for the Maxwell equations for the total 
(transverse and longitudinal) field. 

5. The coherent generation of harmonics is in lowest 
order described by those terms in the expansion for 
(AH(O)) which contain two A operators under the nor-

FIG. 5 

FIG. 6 

FIG. 7 

FIG. 8 

-<Q= B= "t 
: + ... 

1' , 
: + : + ... 
.. .«: 

-<( + ••• 

FIG. 9 

mal product sign. These terms can be most convenient­
ly summed by splitting off beforehand the block of dia­
grams whose lines are not connected by a single dotted 
line (Fig. 5). After this the contribution of all diagrams 
considered can be described as shown in Fig. 6, where 
the V1 block has two incoming ends and one outgoing one 
and it is impossible to separate from it a block of the 
same structure by cutting one or two D lines. The a 2 

block has two incoming and two outgoing ends and it is 
impossible to split off from it a block of the same 
structure by cutting two D lines or a block of the 
structure of v1 by cutting one D line. The first terms 
of the expansions of V1 and a2 are given in Fig. 9. 

We must note especially that the coherent generation 
of harmonics is described by additional terms in the 
average of the potential and not by non-linear Maxwell 
equations. 

6. We now derive the radiative transfer equations 
which describe the propagation of incoherent radiation 
in a medium. If we drop in the expansion for 
(AH(o)AH(O')) the terms which do not contain the A op­
erators under the normal product sign (it is easy to 
take them into account) and assume that the coherent 
component vanishes we need only sum terms containing 
under the normal product sign two A operators. The 
sum of these terms can conveniently be written in the 
form of Fig. 10. We can express the Y2 block in terms 
of v2 (Fig. 11), where the v2 block has two outgoing and 
one incoming ends and it is impossible to separate from 
it a block of the same structure by cutting one or two D 
lines. 

If the original radiation contained a coherent compo­
nent we should include in the sum of Fig. 10 the term of 
Fig. 12 which describes the scattering of coherent radi­
ation. The last term in Fig. 10 clearly describes the 
same process but after the coherent generation of har­
monics. If we neglect these terms we note easily that 
the sum of Fig. 10 satisfies the equation of Fig. 13. 
This is a linear Bethe-Salpeter type integral equation 
and it describes the radiative transfer processes and 
takes into account all possible light scattering effects. 
If the scattering is small and can be neglected there re­
mains in the sum of Fig. 10 only the first term. It is 
clear that to evaluate it it is sufficient to know the 
Green function of Eq. (27) or, what amounts to the same, 
we can first of all solve Eq. (27) and afterwards average 

I w II I + J3>---<8D 
FIG.IO 

I;> 
FIG. II 

~+~~ 
FIG. 12 

FIG. 13 
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the result obtained. In other words, under such condi­
tions we can consider the equation 

A"(O) =A (0) + D0 (0, 1}a(1, 2)A"(2) (29) 

as the equation for the operator of the dressed trans­
verse electromagnetic field. 

We note that we can obtain from the radiative trans­
fer equations in the form of Fig. 13 equations for the 
Stokes vector parameter. It has four independent com­
ponents which are functions of the wave vector, the co­
ordinate and the frequency. This parameter is directly 
connected with the left-hand side of the equation of 
Fig. 13. The latter is symmetric under a permutation 
of the ends as follows from the symmetry under the 
same permutation of the first term on the right-hand 
side and the symmetry of the 0'2 block under a simul­
taneous permutation of incoming and outgoing ends. By 
virtue of this symmetry and of the transversality condi­
tion the left-hand side of the equation of Fig. 13 has only 
four independent components which are functions of 
rh t1 and r2, t2. If we change to the variables r = r1 - r2, 
R = 1 ~(r 1 + r 2 ), and t = t 1 - ~ (stationary process) and 
perform a Fourier transformation with respect to r 
and t the corresponding independent components which 
h1.ve the same number as the number of components of 
the Stokes parameter turn out to be functions of the 
same variables as the Stokes parameter. Further trans­
formations of the equations are performed assuming 
that the properties of the medium and of the parameters 
we are looking for depend only weakly on R. We feel, 
however, that the equation of Fig. 13 and the quantities 
occurring in it have a more direct physical meaning 
than the Stokes parameters and the corresponding equa­
tions. 

7. One can consider in similar fashion also other 
processes connected with the interaction of a trans­
verse radiation with a medium. We have considered 
only the simplest ones. Probably one can consider the 
procedure proposed here as that form of perturbation 
theory which might be expected from the strong inequal­
ity sign in Eq. {1). It differs from the traditional per­
turbation theory in that series in the coupling constant 

can be constructed not for any quantity, but for some 
selected quantities. This procedure shows up those se­
lected quantities and establishes their connection with 
other quantities. 

The author expresses his gratitude to V. M. Andreev, 
L. V. Keldysh, and A. V. Lazarev for discussions of the 
results of this paper. 
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