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Antiferromagnetic resonance in a CuCl2•2H20 single crystal is investigated at the frequencies 5.2, 3.0, 
1.1, and 0.65 GHz. The temperature dependence of resonant fields corresponding to frequencies 3 and 
0.65 GHz is measured at temperatures between 1.52 and 4.2 °K. The resonant field corresponding to the 
frequency 0.65 GHz and the larger of the resonant fields corresponding to the frequency 3 GHz vary with 
temperature, within the experimental errors, just as the turning field of the sublattice magnetic mo
ments does. The homogeneous oscillation frequencies of the magnetic moment in an antiferromagnet 
separated into domains are calculated. A phase equilibrium diagram is proposed for CuCl2•2H20 in a 
magnetic field parallel to the "easy" axis. The temperature dependence of the lability fields is calcu
lated in the spin-wave-theory approximation. 

1. INTRODUCTION 

THERE have been many experimental and theoretical 
investigations of antiferromagnetic resonances (AFMR} 
in copper chloride dihydrate. The CuC12 • 2H20 crystals 
have rhombic symmetry with lattice parameters a 
= 7.38 A, b = 8.04 A, and c = 3. 72 A, the a axis being 
the "easy" axis, along which the antiferromagnetism 
axis 1 is aligned in the absence of an external mag
netic field. 

The dependence of the AFMR frequencies w 1, 2 on the 
external magnetic field H, which is directed along the 
"easy" axis a, may have for this type of crystal (in 
accordance with the properties of the magnetic-aniso
tropy energy) the form of the curve shown either in 
Fig. 1a or in Fig. 1b (see [l,2l}. The difference in the 
behavior of the AFMR frequencies is connected with 
the difference in the transition from the phase c1> 11 with 
vector 1 parallel to the a axis, to the phase c1>1 with 
vector 1 perpendicular to the a axis. (This transition 
takes place in CuC12 • 2H20 at Htr = 6.5 kOe.) Namely, 
the transition with continuous rotation of the vector 1 
from the direction 1 II a to the direction 1 1 a corre
sponds to the behavior of the resonant frequencies in 
Fig. 1b, while the transition in which the vector 1 
changes the direction abruptly by w/2 at H = Htr cor
responds to the behavior of the resonant frequencies 
in Fig. 1a. 

The data on AFMR in CuC12 • 2H20, previously ob-
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FIG. I. Resonant frequencies: a - for first-order phase transitions, 
b - for two second-order phase transitions (for a sample with infinite 
dimensions). 
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tained at the high frequencies 32 and 9.4 GHz, and also 
at 3.5 MHz (see r2,3-5J) are insufficient for the identifi
cation of this transition. To establish which type of 
transition from the phase cl> 11 to the phase cl> 1 takes 
place in CuC12 • 2H20, investigations of AFMR were 
made at low frequencies 5.2, 3, 11, and 0.65 GHz in 
a field H 11 a. 

If the magnetic anisotropy properties in CuC12 • 2H20 
correspond to continuous rotation of 1 during the tran
sition from the phase c1> 11 to the phase c1> 1• i.e., to a 
transition through a phase c1> <• then, according to the 
theory, four resonant absorption lines should be ob
served at low frequencies and in fields much weaker 
than the exchange field He. 

On the other hand, if they correspond to rotation of 
1 jumpwise by w/2, then, according to the theory, two 
resonance lines should be observed at H « He (see 
Figs. 1a and b). In the present investigation, we did 
not observe four resonant fields at any of the investi
gated frequencies. It was observed that the large res
onent fields at frequencies 0.65 and 3 GHz coincide, 
within the limits of experimental error. 

A similar effect was observed earlier in r2• 6 l in in
vestigations of AFMR in CuC12 • 2H20 at high frequen
cies, and was called "orientational" resonance. These 
data suggest that at temperatures T > 1.5°K the prop
erties of the magnetic anisotropy of CuC12 • 2H20 cor
respond to a phase transition in which the direction of 
the vector 1 changes jumpwise (see Fig. 5 below, which 
shows schematically the phase diagram of a biaxial 
antiferromagnet at H 11 a). 

The existence of the "orientational" resonance at 
low frequencies (as well as its observation at high fre
quencies) is attributed by us to singularities in the ab
sorption of the microwave field by the antiferromagnet, 
which breaks up into domains [?J when the field H is 
close to Htr· 

Of great importance is an investigation of the tem
perature dependence of the resonant fields, since it 
yields information on the interaction between the spin 
waves, and also provides additional information con-
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cerning the "orientational" resonance. The tempera
ture dependence of the resonant fields at frequencies 
9.4, 3.5, and 32 GHz has already been investigated. [3 • 5 • 6 l 

The resonant field at the frequency 3.5 MHz (see [5 J, 

Fig. 4) and the smaller of the resonant fields at 9.4 GHz 
increase with increasing temperature. On the other 
hand, the temperature dependence of the larger of the 
resonant fields at the frequency 9.4 GHz has a more 
complicated character (see [4 \ Fig. 3): up to T ~ 2.2°K 
the position of the line does not depend on the tempera
ture, and at higher temperatures its dependence is sim
ilar to the temperature of the critical field Htr (see [3J, 

Fig. 3). 
We have investigated the temperature dependence of 

the resonant fields at the frequencies 3 and 0.65 GHz in 
the interval T = 1.52-4.2°K, The observed temperature 
dependences of the resonant fields coincide, within the 
limits of experimental accuracy, with the temperature 
dependence of the critical field Htr· These temperature 
dependences are compared with the calculated tempera
ture dependences of the resonant fields, and also with 
the Htr(T) dependence calculated in the framework of 
spin-wave theory. 

We have calculated the resonant frequencies of an 
antiferromagnet broken up into domains. 

2. EXPERIMENTAL PROCEDURE 

Single crystals of CuCl2 o 2H20 with TN= 4.33°K, 
used in the present measurements, were grown from 
a saturated aqueous solution of copper chloride at room 
temperature for 15-20 days. They had the form of 
elongated prisms with rhombic cross sections and 
yielded a perfect cleavage along the c plane. The vol
ume of the investigated samples ranged from 1 to 3 
mm 3 • The crystals were selected with the aid of a po
larization microscope, and oriented by using the 
pleochroism of CuCl2 • 2H20. 

To observe the AFMR in the frequency range 0.65-
5.2 GHz, we used a radio spectroscope with a transmis
sion type resonator. Its block diagram is shown in Fig. 
2a. The resonators, [BJ a drawing of which is shown in 
Fig. 2b, were placed vertically in a cryostat, and the 
magnetic field H was produced with the aid of a stan
dard electromagnet. A holder inside the resonator 
made it possible to vary the inclination of the sample 
relative to the vertical plane. By rotating the electro
magnet in the horizontal plane, the field H could be 
oriented along the crystal axes. The microwave power 

b 

a 

FIG. 2. Block diagram of decimeter-band radio spectroscope: a) 
I -generator power supply, 2- generator, 3- attenuator, 4- match
ing device, 5 -resonator, 6 - detector, 7 -amplifier, 8 -synchronous 
detector, 9 -automatic plotter, I 0- electromagnetic power supply, 
II - modulator. b) Drawing of resonator. 

was provided by standard generators, and the external 
magnetic field was modulated at a frequency of 50 Hz. 
The resonant signal was amplified by a narrow-band 
amplifier and observed at the output on an oscilloscope 
or else plotted with an automatic recorder. The reso
nant fields were measured with the aid of proton reso
nance using standard apparatus, and their measurement 
accuracy was ± 10 Oe. The frequency of the generators 
was determined with the aid of a resonant wave meter 
accurate to 0.0001%, and was monitored by measuring 
the field of an absorption signal from a standard free 
radical placed in the resonator. The sample tempera
ture ranged from 1.52 to 4,2°K and was determined 
from the vapor pressure of the helium bath. 

3. EXPERIMENTAL RESULTS 

The resonant properties of antiferromagnetic 
CuC12 o 2H20 were investigated at the frequencies v1 

= 5.2, v2 = 3, v3 = 1.1, and v4 = 0.65 GHz. Two resonant 
lines were observed at each of the frequencies v1, v2 

and v3 , but only one resonant line was observed at v4 • 

The dependence of the position of the resonant fields 
on the temperature in the interval T ~ 1.52-4.2°K was 
investigated at the frequencies v2 and v4 and is shown 
in Fig. 3. Measurement at T = 1.52°K and at the fre
quency v1 yield Hfes = 6.12 kOe and H~es = 6.73 kOe, 
while at v3 we have Hfes = 6.63 kOe and H~es = 6.65 
kOe. To exclude the influence of the shape of the sam
ple, measurements of any one sample were made at 
fixed experimental conditions. As seen from Fig. 3, 
the two resonant lines at v2 and the one resonant line 
at v4 exhibit a systematic shift towards higher resonant 
fields with increasing temperature. 

At T ~ 1.52-2.5°K, the two resonant fields at the 
frequency v2 = 3 GHz change, practically remaining at 
the same distance from each other. Their variation 
with temperature duplicates the variation of the mag
netic field Htr at which the phase <I> 11 (l 11 a) and the 
phase <I> 1 (1 1 a) are in equilibrium. 

In the interval T ~ 2.5-4.2°K, the larger resonant 
fields shifts with increasing temperature, duplicating 
the variation of Htr(T), whereas the shift of the weaker 
resonated field slows down and its distance from the 
larger field increases. 

The only resonant field obtained at the frequency v 4 

= 0.65 GHz duplicates in the entire temperature inter
val T ~ 1.52-4.2°K the shift of the larger resonant field 
at the frequency v2 with increasing frequency, and coin
cides with it within the limits of experimental accuracy. 
The agreement between the resonant field at the fre-
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field Atr· I y·y' ·· 
I . 

651 
L__ _______ . 

t 2 J 



266 V. G. BAR'YAKHTAR et al. 

quency v4 with the value of the larger resonant field at 
112 and with the value of Htr in the entire temperature 
interval indicates that both resonant lines correspond 
to the so-called "orientational" resonance. From the 
fact that in the temperature interval from 1.52 to 2.5°K 
both resonant fields shift parallel to each other at the 
frequency v2, we can conclude that the temperature de
pendences of the critical field Htr{T) and of the lability 
field, which limits the region of stability of the phase 
with 1 11 a, are the same. 

4. THEORY 

A. Resonant Frequencies 

As seen from Fig. 1, in the case of a transition from 
the phase iP 11 {1 11 a) to the phase iP 1 (1 l a) through an 
intermediate phase iP<, there exists a narrow magnetic
field interval H2 < H < H1 in which the larger of the 
resonant frequencies changes strongly with changing 
magnetic field H. Therefore the independence of the 
large resonant field of the frequency at high frequencies 
(v"" 32 GHz at temperatures T ~ 1.5°K) could be inter
preted, at first glance, as a result of absorption of mi
crowave power in the phase iP <and, consequently, as 
evidence that the transition from the phase iP 11 to the 
phase iP 1 goes via the phase iP<. 

The agreement of the values of the larger resonant 
field at low frequencies (112 = 3 GHz and 114 = 0.65 GHz 
at T > 1.52°K, see Sec. 3), observed in the present in
vestigation, contradicts such an interpretation. We 
shall show that the agreement between the values of 
the larger of the resonant fields at high and at low fre
quencies can be attributed to absorption of microwave 
power in a sample broken up into domains. 

It can be assumed that the absorption of the energy 
of the high-frequency field at H = Htr is connected with 
heterophase fluctuations and is manifest in the form of 
resonant absorption only because the magnetic field H 
determines simultaneously the AFMR frequencies and 
the phase transition. This assumption, however, is con
tradicted by the data of [4 J, where absorption at T 
< 2.2°K and at a frequency 11 = 9 GHz was observed at 
Hfes < Htr and Hies < Htr• and no noticeable absorp
tion was observed at H = Htr. When the temperature 
was larger than 2.2°K, absorption was observed at 
Hfes < Htr and Hies "" Htr at the same frequency. This 
indicates that the transition from the phase iP 11 into the 
phase iP 1 behaves like a first-order phase transition, 
at least at T > 1SK. 

To calculate the resonant frequency, we start from 
the following expression for the Hamiltonian of the 
antifer romagnet: 

:16 = L, (ltgStSg + ~StSg + PtgStSg) + --+ L, (~t.t,St,x8~,x + Pt,th"8t.") 
flJ id2 

+ ~ L, (~g,g,8g,x8g,X + flg,g,Sg,YSg,Y)- ~Ill ( L, 81• + L, 8g'), {1} 
glg2 j g 

where lfg is the exchange integral, the quantities f3 and 
p describe the magnetic anisotropy, Sf is the spin of the 
atom in the f-th site of the lattice, and summation over 
f is carried out over the sites of the first magnetic sub
lattice, and over g over the sites of the second magnetic 
sublattice, and J.l. is double the Bohr magneton. The z 

axis is oriented along the a axis, and the x axis along 
the c axis in the crystallographic cell. 

It is convenient to represent Sf and Sg in the form 

St = e,,(f)8n + e,"(f)8t" + e,'i.(/)8;;, 

(2) 

where e 1t; and e 2t; are unit vectors along the quantization 
axis of the first and second sublattice, respectively, and 
the unit vectors e 177 and e 277 are directed along the x 
axis, and finally, the spin operators are connected with 
the Holstein-Primakoff operators by the relations 

81+=8t<+iS1" ~ y2Sa1+, 8g+=8g<+i8g" ~ y28ag+, 

8F=8t<-i8t" ~ y28at, Sg-=8gs-i88,, ~ }28ag, {3) 

8n=8-a;atr 8 8t=8-;;ng. 

Using formulas (2) and {3), we can represent the 
Hamiltonian ?18 in the form 

:!6=R(82) +J'e,(8'•) +~2(8). 

where E and d'e 1 are respectively equal to 

E = 82 L, [/fgCos(8t- 8g) + P!B sin 81 sin 8g] 
jg 

+ -} 82 L,rJ.t, sin 81, sin 81, + + 82 L, pg,g, sin 8g, sin 8g 
/Jh 81~ 

-· 118H[ L, cos Bt + L, cos 8g] , 
f g 

(4) 

{5) 

:Yet= L,F181" + L,F1S 8" = L, { fJ.ll sine,+ cos a,[ L, Spt8 sin 8g 
I g f g 

+ L,8rwsin81·]+s.L,I1gsin(08 -B1) }81" 
r , 

+ L, { flll sin 88 +cos 68 [ L,8p1g sin 01 + L,8pgg' sin Og•] 
g J g' 

+ 8L, I,8 sin(6t- 88 ) }88". (6) 
f 

In these expressions Of and Og are the angles between 
the z axis and the unit vectors e 1t;{f) and e2~;{g), respec
tively, and 

81" ~ i(aJ-at+)(8/2)'", 81" ~ i(ag-a8+)(8/2)'". {7) 

We note that 

Therefore the equations Ff = 0 and F g = 0 determine 
the angles Of and Og as functions of the field H in the 
ground state. 

The expression for .16 2{4) is 

:162= L, [ At,t,aJ,+a,, + ~Bt.t.(a,,a,, + a;,+aJ,+)] 
fd2 

+ L,[ Ag,g,a8 ,+a1, + ~ Bg,g,(ag,ag, + ag,+a8,+)] 
glg2 

{8) 

+ L, [A1g(a1+ag+a8+a1)+B18 (a1a8 +a1-+ai'-)], {9) 
jg 

where 

AM= ~ 8 (~M, + flu, cos 81, cos 81J + 861,,[ L, (Jt.g cos (81, -· 8g) 
g 
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+PM sin Ot, sin Og) + 1: Pf.f, sin Ot, sin 81,- l,lll cos Ot,], (10) 
h 

Ag,g, = ~S(~g,g, + pg,g, sin Og, sin Sg,)+ S.Sg,g, [ 1: (ltg, cos(e1 - Og,) 

f 

+ Ptg, sin 81 sin Og,) + l:pg,g, sin Og, sin Og,- l,lll cos Og,], (11) 
g, 

B g,g, = 1/ 28 ( ~g,g, - pg,g, sin Sg, sin Og,), ( 12) 
Bt,t, = 1/zS (~t.i>- Pf,f, sin Ot. sin Ot,), (13) 

Atg=Sltgcos2 (Ot-Og) + 1/zS(~tg+fltgCosOtcosOg), (14) 
Btg =Sltgsin2 (Ot-Og) +'/zS(Btg-pfgCOS8tcos0g), (15) 

.s - { 1, f,=f2 
f.f,- 0, fi'i= /2 . 

The equations of motion for the operators af and ag 
are 

dt. =- i b:J6 =- i 1: [ A1,1,ai> + BM,a1,+]- i 1: [ A1,gag + Bt,gai; ] , 
6a1, 

" g 

ag, =- i o:J6. =- i '\1 [Ag,gpg, + Bg,g,ag,+]- i ~ [Atg,af + Btg,a,+]. oa. ..::..... . ..__. 
g, g, f (16) 

It is also necessary to add to these equations two 
Hermitian-adjoint equations for the operators a{ and ag. 

We are interested in the frequency of the homogene
ous oscillations. Accordingly, we assume that the quan
tities af and ag do not depend on f and g, and denote 
them respectively by a 1 and a 2 • Then the equations of 
motion can be represented in the form 

(17) 

The quantities A and B, which enter in these equations, 
are equal to 

A~ All~+ AJ-(1- s), B ~Ells+ B_L(1- ~), (18) 

where All and Bll are obtained from formulas (10)-(15) 
by putting 8f = 0 and eg = rr. A 1 and B 1 are obtained 
from (10)-(15) by putting ef = e and eg =- e (cos e 
= JJ.H(210 + p~ - p 0f\ and ~ is the amount of matter in 
the phase <I> 11 • In deriving (17), we have neglected the 
influence of the domain walls' in which the angles 8f 
and eg change strongly. Therefore Eq. (17) and the fre
quencies corresponding to them are the more accurate, 
the better the condition d » x0 is satisfied (d-domain 
thickness, x0-thickness of domain wall) 1>. 

Assuming that the quantities a have a time variation 
a 11 a 2 c-- e-iwt we can obtain from (17) the following ex
pressions for the frequencies: 

w2 = +{A112+ A 22'+ 2A 122- B112- B222 - 2B122 

'>In the case of small deviations of the magnetic moments from 
their equilibrium values at H"" Htr. it can be readily seen that these 
deviations, which correspond to the homogeneous natural oscillations 
in the phases <1> 11 or <I> 1, are not homogeneous for a sample broken up 
into domains. Homogeneous oscillations in a sample broken up into 
domains correspond to a certain superposition of the oscillations of the 
magnetic moments in the phases <I> II and <I> 1 ; we have considered this 
superposition above. Our averaging is analogous to the well known 
averaging of the microscopic equations in the derivation of the macro
scopic equations of electrodynamics. 

± [4(A 12 (A 11 + A22)- B12 (B11 + B22 ) )' 

- 4(B,,(A,- Au)- A,,(B,- Bu) )2 + (Au2 - A,,,- Bu' + B,,')] ''•} 

(19) 
Using formulas (10)-(15) and (18), we obtain 

A= S[h + 1/2((:\o + po) ]S + S[Io + p'o- 1/zpo sin2 0 + 1h~o- 'hro] (1- s), 

A,, = 1/zS([>o' - po') ~ + S[Io cos2 8 + 1/z~o' -- 1/zpo' eos2 8] ( 1 - ;) , 

B11 = B,, = '/,S(f:lo- po)s + 1/zS[f:lo- Po cos' 0] (1- £), 

B12 = Sllo + 1/z (f:l'o- p'o) ]£ + S[Io sin2 0 + 1/z (f:l'o- p'ocu'' 0)] (1- 0, 

The upper sign in (19) and (20) corresponds to w 1 and 
the lower sign to w2 • 

If the antiferromagnet is in the form of a plate per
pendicular to the orientation of the external magnetic 
field, then when H > Ill Htr (JJ. 1 is the transverse mag
netic permeability) it is necessary to put in formula 
(20) ~ = 0, l71 and we arrive at the resonant frequencies 
in the phase <I> 1 : l 1 J 

H2 II' 
(w 1.L (If) ) 2= S[f:lo- f:\o'- Po+ po']IIe( 1-He'~ = (p1la) 2 \ 1-H,') , 

(w • .L(/J) )'= (2/o- po + po' + ~o + f:\o') (2lo +Po+ ro') [ (rtli)' -(rtll,)']. 
- (2To- ro +flo')' 

Here 
(21) 

If H < JJ. 11 Htr (JJ. 11 is the longitudinal magnetic permea
bility), then we must put ~ = 1 in formula (20)[71 and 
we arrive at the resonant frequencies in the phase <I> 11 : l 11 

( w/~)" = !l"{I1 2 + 1/z(Hat2+ Haz2) ± [ (H'+ 1/z (Hat2+ Haz2) ) 2 

- (H12 - H2) (Ji12'- ll') ]'h}. 

Here 

llat2 = S2 {2/o + f:lo + f:lo') (po- po'), Haz2 = S'(2Io +Po+ Po') (f:lo- f:lo'), 

H 122 = S2 (2/0 + f:lo + f:lo') (f:lo- f:lo'), llt2 = S2 (2lo +Po+ po') (p- po'), 

H1( = H 1H2• (22) 

We note that we consider the case when p 0 > 0, {:30 - {:3~ 
> 0, Po - p~ > 0, {:30 - {:3~ > Po - p~, corresponding to a 
jumpwise rotation of 1 through an angle rr /2 on going 
from phase <I> 11 to phase <I> 1. 

Finally, the change of the AFMR frequencies in the 
field interval Ill I Htr < H < Ill Htr is described by for
mula (20), in which we put formally H = Htr' and the 
dependence of the AFMR frequencies on the external 
field H is taken into account with the aid of the quantity 

£ = (l,lJlltr- JJ) ([l_L- i'!l)-'lltr-'· 

We see therefore that expression (20), derived with 
allowance for the subdivision of the antiferromagnet 
into domains, describes the continuous variation of 
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FIG. 4. Dependence of the 
resonant frequencies w on the 
field H in a first-order phase 
transition in a sample of finite 
dimensions (X - schematic posi
tion of the experimental points). 

the resonant frequencies with changing magnetic field 
(compare Figs. 1a and 4). This means that formula (20) 
explains the nature of the resonant absorption of the 
microwave field energies at H =' Htr at both high and 
low frequencies. 

We present finally an expression for the frequencies 
w 1 and w2 in two limiting, cases. If ~ << 1, then 

,,,,, = ( .. ,,- (lf1,))' + ~S"sfu(!'o- po'), 

"''' = ('''!' (l/1,)) 2 + 2S'slo(po -· po'). 

If 11 - ~ I « 1, then 

(23) 

ro,'=(<•>i (Jlt ))'- (J __ :0)~\'/.,(po~!l':"-_~f~u- pu')+ 14([lo- ~~1L 
r ·' 3(pu- Pu')+(Bo- ~o') 

"'''=(<•l2'i(I/tr))'-f- :?(t -- s) S'lo(~,o--::_~1_\~o- ~o'- P:+ Po') (24) 
v (Po - f'u ) + ( ~o - ~o } 

The AFMR frequencies have a similar form also for 
an arbitrary ellipsoidal sample, and the field interval in 
which ~ changes from 1 to 0 depends on the demagnetiz
ing coefficients. Since x « 1, the field interval from 
J.L 11 Htr to J.Lrr Htr is very small. Therefore the tempera
ture dependence of the resonant fields corresponding to 
the intersection of the line w = const with the resonance 
curves w = w 1, 2(H) in the interval J.LrrHtr < H < ill Htr 
will duplicate the temperature dependence of the field 
Htr(T), as was indeed observed in our experiments. 

B. Phase Transitions 

Let us consider the phase diagram of an antiferro
magnet in a magnetic field parallel to the "easy" axis. 
As already noted, the AFMR data point to the existence 
of a first-order phase transition between the phases 
ct> 11 and ct> 1 at T > 1.5°K. On the phase diagram of Fig. 5, 
this transition corresponds to the curve AK. The curves 
AHe and ATN separate the phases ct> 1 and ct> 11 respec
tively from the phase with l = 0 (paramagnetic phase). 

It is of interest to consider the question of the con
tinuation of the equilibrium curve AK to the region of 
lower temperatures. Two variants of the phase diagram 
are possible: either the first-order phase transition 
curve extends continuously down to T = 0°K, terminating 
at H = Htr (Fig. 5b ), or at some point K it branches into 
two second-order phase transition lines KH2 and KH 1 

(Fig. 5a). The variant of the phase diagram of Fig. 5a 
takes place if H2 < Hl' On the other hand, if H2 > H11 

then the variant of the phase diagram of Fig. 5a takes 
place. The differencf' between H2 and H1 can be deter
mined from data on tiw resonant frequencies. Using 
formulas (21) and (22), we find that 

11.,'(11, -- 11,)11,-l =11,,2 - 11,2 - Iiti. (25) 

It follows therefore that H2 > H1 if Htr > v'Hi2 - Hi. 

II e I '/ll 

Hz 

I 
L___L_ __ ~L__~---·· 

~ r, r2 TN 

a 

FIG. 5. Phase diagrams. 

According to [aJ 2>, Htr• Ha2 , and H for CuCl2 • 2H20 
have the following values at T = OoK: Htr = 6.5 ± 0.05 
kOe, Ha2 = 11.2 ± 0.05 kOe, and Ha = 9.2 ± 0.05 kOe. 
Using these values, we can verify that H2 - H1 > 0. 
Thus, according to these data, the crystal CuC12 • 2H20 
corresponds to the phase diagram of Fig. 5a. The tran
sition from the curves H2K and H1K to the first-order 
phase transition curve AK is connected with the fact 
that with increasing temperature the values of the 
fields H1 and H2 increase and decrease, respectively. 
To illustrate this circumstance, we present the result 
of the calculation of the corrections to H1 and H2 , ne
cessitated by the interaction of the spin waves with one 
another (in the calculation of the dependences of H1 and 
H2 on T we have assumed for simplicity that the crystal 
is uniaxial, i.e., we put p = j3):[9 J 

Although these results are valid formally in the temper
ature region fl.Htr « T « TN (which in fact does not 
hold for CuCl2 • 2H20, inasmuch as fl.Htr f:::< 0.9°K and TN 
= 4.33°K), th~ still ,gescribe correctly the character of 
variation of H1 and H2 with changing temperature. 

If it is assumed that the formulas in (26) describe 
correctly the monotonic variation of H1 and H2 with in
creasing temperature, then at a certain temperature T1 

the fields H1 and H2 are equal, and when T > T2 the field 
H1 becomes larger than the field H2 and the transition 
from the phase ct> 11 into the phase ct> 1 will be of first 
order. 

We have investigated experimentally the first-order 
phase transition (curve AK of the diagrams of Fig. 5a). 
We note that the data concerning the curve AK, i.e., 
the dependence of Htr on T, given in [2' 5 J agree with 
our data. The dependence of the field Htr on the tem
perature can be calculated from spin-wave theory. 
This dependence is given by the formula 

lltr(T)=IIt,[i +_2__(_!__)'] (27) 
3S S/0 

at J.LHtr « T « TN. 
The phase diagram in Fig. 5a, strictly speaking, 

holds in a field H 11 a. At an arbitrarily small inclina
tion of the field H to the "easy" magnetization axis, 
the points H1 and H2 , being points at which the symme
try of the magnetic field changes jumpwise, vanish. In 
the entire interval 0 < H < He(l/l), where He(l/l) is the 
field in which the vector 1 vanishes and 1/J is the angle 
between the easy-magnetization axis and the field H, 

2)The symbols used in [2 ] for the quantities Htr. Ha2 , and Ha are 
respectively He, Hb, and Ha. 



LOW FREQUENCY ANTIFERROMAGNETIC RESONANCE 269 

the stable phase is <P<. H the angle l/J is sufficiently 
small, it is possible to separate, as before, a relatively 
narrow interval of values of the field H, of the order of 
H2 - HH in which a continuous rotation of the vector 1 
takes place from a direction almost parallel to the 
"easy" axis to a direction almost perpendicular to it. 

Taking into account the foregoing remarks, we can 
conclude that at an angle l/J * 0 the sections H1K and 
H2K of the phase diagram of Fig. 5 become meaning
less as phase equilibrium curves, and the section AK
the first-order phase transition curve-terminates at 
the point K, which can be regarded as the critical point. 
On the curve AK, the phase transition itself is now ac
companied by a jump of the angle fJ between the vector 
1 and the "easy" axis, but not from 0 to 7r/2, but from 
a value fJ 1 in the phase <P<, which exists in the region 
below the curve AK, to the value fJ2 in the phase <P < ex
isting in the region above this curve. 

C. Dependence of the Fields H~es and Htr on the 
Temperature 

We have seen (see Fig. 4) that the resonant fields 
H~es corresponding to the frequencies of the "orienta
tiona!" resonance are quite close to the field Htr· 
Therefore, measurement of the temperature depen
dence of H~es should yield information concerning the 
temperature dependence of Htr· The closer the reso
nance frequencies to the points A and B (see Fig. 4), 

0 ~ 

the closer the temperature dependence of Hres to Htr 
= Htr(T). The frequency intervals BD and AC, at which 
the "orientational" resonance takes place, are of the 
order of 

~w1 = w1li(Htr)- w1_j_(Htr) >:::; f![(2Htr2 + Hal2 +H •• 2)'h- (H.r- Ha12)'/•], 

(28) 
where Ha and Htr are certain functions of the tempera
ture, corresponding to the section AK of the diagram; 
w~(Htr>, wf{Htr), wU(Htr), and wi{Htr> are the values 
of the resonant frequencies at H = Htr in the phases 
<P 11 and <P 1 , respectively. 

Let us estimate the position of the point C of the 
frequency interval AC. According to (21), the frequency 
wi(H) at H = Htr is given by . 

w2_j_(Htr)= ft(Htr2 -H22)''•= fl [ntr2 -H22 +~Htr2 ( TN )
2(.!...) 2

]''·, 
3S Slo TN 

(29) 
where Htr and H2 are defined by formulas (27) and (26). 
Using (25) and the formula 

(30) 

we find that at Ha2 = 11.2 kOe, Ha = 9.2 kOe, and Htr 
= 6.5 kOe we get Htr - H~ = - i k0e 2• Putting 2810 

~ IJ.He and using He ~ 1.2 x 105 Oe, [lOl we get 810 ~ 8°K. 
Assuming TN= 4.33°K and S = i, we get 

( ( T )• 2 ]'!. W2_!_(Htr)= fl 67 TN -3 (31) 

From this we find that at T = 1.5°K, we have vl(Htr) 
~ 1 GHz. This value, obtained by an approximate cal-

culation, is in good agreement with the values of the 
frequencies of the "orientational" resonance, obtained 
both in the .g:esent paper and in papers by others. [4J 

Putting wi(Htr) = O, we get from (31) T1 ~ (TN /10) 
~ 0.4°K. This value of T1 can be regarded as a rough 
estimate of the position of the point TK (see Fig. 5a). 
Since T1 = 0.4°K < IJ.Htr ~ 0.9°K, it can be assumed 
that TK ~ IJ.Htr· It is of interest to investigate experi
mentally the temperature dependence of the position of 
the point C and to determine the temperature T at 
which wtdltr> vanishes. ~ 

Let us compare the temperature dependence of Htr• 
given by formula (27), with the experimental data for 
the larger resonant field at the frequencies 112 = 3 GHz 
and 11 4 = 0.65 GHz. Using Htr = 6.5 kOe, we rewrite 
(27) in the form 

Htr= 6.5 +aT' [kOe ]. (32) 

The value of a can be determined by using Htr = 6.66 
kOe at T = 1.52°K, which yields a = 0.07 k0e/deg2• At 
this value of a, formula (32) agrees well with the ex
perimental data for the larger values of the resonant 
field at frequencies v 1 and v 4 and T < 2°K. The same 
value for a is obtained by putting in (27) S = i and 
810 = 11 °K. The value 810 = 11 °K constitute!' 1').8 of the 
value of Sl0 determined from the data on the exchange 
field (He = 200 k0e[11J). 

5. CONCLUSION 

The results obtained in the study of the temperature 
dependence of the resonant fields, and the calculation 
of the dependence of the AFMR frequencies on the mag
netic field, lead to the conclusion that: 

a) the transition from the phase <1> 11 to the phase <P 1 
in copper chloride dihydrate at T > 1.52°K is of first 
order; 

b) in such a transition the antiferromagnet breaks 
up into domains of the phases <P 11 and <P 1 , as shown 
theoretically in [?J; 

c) the transition from the phase <P 11 into the phase <P 1 
at T < 1 °K is apparently a result of two second-order 
phase transitions. 

The authors thank A. S. Borovik-Romanov for a dis
cussion of the work and for a valuable remark. 
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