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By the methods of the microscopic theory of a Fermi fluid, it is shown that in ferromagnetic metals, 
in addition to the low-frequency branch of spin waves, there is a family of high-frequency spin waves, 
with a quadratic dispersion law in the long-wavelength region and with a relative damping ~ .f®1EF 
(® is the Curie temperature, EF the Fermi energy of the conduction electrons). 

1. The usual low-frequency branch of spin waves in 
ferromagnets, in the long-wave limit, corresponds to 
oscillations of the density of resultant magnetic moment 
of the system. A characteristic property of its spec
trum, with neglect of relativistic interactions, is the ab
sence of a gap; this is due to the property of conserva
tion of total magnetic moment. 

But in ferromagnetic metals the total moment, as is 
well-known, consists of the moment of the electronic 
groups with a large density of states, or the d-electrons, 
and the moment of the conduction electrons (s-elec
trons). The latter corresponds to the fact that as a re
sult of exchange interaction, the s-electrons are magne
tized; the effective field determining the size of their 
moment, under the condition that the s-d interaction is 
not anomalously small, has the order of magnitude 
)®EF/2J1o [ll (® is the Curie temperature, EF the 
Fermi energy of the conduction electrons, and Jlo the 
Bohr magneton). If the subsystem of conduction elec
trons were isolated, then in an external magnetic field 
of such magnitude it could possess characteristic fre
quencies of magnetic oscillations of order .../® EF £zl. On 
the other hand, the characteristic frequencies of the os
cillations of the magnetic moment of the d-electrons do 
not exce.ed ®; that is, they are smaller by a factor 
..fEF/® than the frequencies of the s-electrons. It will be 
shown below, within the framework of the microscopic 
theory of a Fermi fluid, that because of the circumstance 
mentioned, a ferromagnetic metal has an additional 
family of spin-wave branches, whose frequencies in the 
long-wave limit approach a finite value ~.J®EF· For 
small wave vectors, their relative damping is small, 
and the function w (k) is quadratic. 

The calculations will be carried out for the case of 
zero temperature. We shall use the isotropic model of 
the s-electrons; this has no fundamental significance as 
regards existence of the phenomena considered. 

2. We consider the properties of the component per
pendicular to the spin of the two-particle vertex part of 
the s-electrons r(p,, Pz; k) (we have in mind the com
ponent r a{3yo with spin structure r 1111 ) in the region of 

small transmitted momenta k = (w, k): ® « w « EF, 
lkl «Po, where Po is the Fermi momentum). As is well
known, its singularities with respect to k determine the 
spin-wave spectrum. We shall use the fact that in the 
range of transmitted frequencies indicated, the loops of 
the Green functions of the d-electrons are not singular; 
and we shall introduce a function r (l)' determining the 
set of graphs for r which it is impossible to cut along 

the two lines of s- electrons carrying transmitted mo
mentum k. Then the vertex part r can be expressed, 
obviously, in terms of r<'>(p,, p2 ; k) by means of the 
following equation: 

f(p,,p2;k)= f(')(p,,p2;k) 
d'p' - . -if (Zn)• I'">(p,,p'; k)G_ (p' + k)Go-(p')f(p',p2 ; k). 

(1) 

Here G.(p) are the Green functions of the s-electrons, 
corresponding to the two possible values of the projec
tion of the electron spin on the direction of the total 
angular momentum of the system. Because of the rela
tive proximity of the poles of G_(p' + k) and of G.(p') 
when® « w « EF, the product G_(p' + k)G.(p') depends 
strongly on k. In connection with this, we shall make the 
transformation of equation (1) that is usual in the theory 
of a Fermi fluid[3 J. Namely, we separate from 
G_(p' + k)G.(p') in explicit form the product of the polar 
parts of the Green function: 

G_(p'+k)G+(P')= a 
E' + w- v(IP' + kl- P-)+ i6sign(e' + w) 

X , (I 'I a)+ .6 . , +G-(p'+k)G+(P'). (2) 
e - v p - P+ ! s1gn e 

Here G_(p' + k)G+(p 1) is a regular term, p+ and p_ are the 
Fermi momenta of s- electrons with opposite values of 
the spin projection, v is the Fermi velocity, a is the 
residue of the Green function at the pole, and 6 - +0. 
We neglect the difference in speeds of excitations on 
the Fermi surfaces of electrons with opposite values of 
the spin projection. Allowance for this difference in the 
energy interval ~ v(p+ - p_) that is important in the inte
gration of the polar term in (1) would give a correction 
to the one-particle energies of the excitations of ord~r 
v(p+- p_)v'e} EF· This, however, is devoid of meaning, 
because, as was shown in£4l, the damping of the Fermi 
excitations is of the same order of magnitude when 
E ~ v(p+- p_). 

We introduce the function f(p,, p2 ; k) in the following 
form: 

(3) 

Using this equation, we can exclude from the integral 
equation (1) the region of integration far from the Fermi 
surface, going over from the kernel r(l) tor: 
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X n+(P~)-n-(pl+k) f( I ·k) 
w-u(t-.+kn)+i8signc,, p,pz,' 

I P1 {i,IPI<P± 
1'-.=p+-P-, n=-JP'T' n±(P)= O,IPI>P±. 

(4) 

Having in mind the regularity of :f as a function of the 
transmitted momentum (which follows from its defini
tion), we shall neglect in it the dependence on k, since 
for investigation of the singularities of the vertex part 
r (Pl> P2; k) we are actually interested in a relatively 
narrow region of variation of the variables w and k 
(wand vlkl « t:F)· In addition, the electron energies 
are assumed to be small in comparison with the Fermi 
energy, and the absolute values of the three-dimensional 
electron momenta are assumed to be close to their 
Fermi values. 

A method of solution of equations analogous to Eq. (4) 
was described in a paper by Blank and the author l51 • 

We shall therefore present here without derivation its 
solution for k = 0: 

f(p,p 1;k)= ~f,(w) · Ytm(n)Ylm•(n 1 ), 

l,m 

r,(w)=-1- IJ,(w-u/1) 
a2v ''' - u 1'-. ( 1 + !11) 

(5) 

(6) 

Here Bz = a2rzv/(2l + 1),fz is the l-th spherical 
harmonic of the function r(p, p1

) lc. = t:' = 0' Yzm(n) is a 
normalized spherical function, and v = p~21T2v is the 
density of states of electrons of one spin direction on 
the Fermi surface, Po~ p., P-· 

As is evident from equation (6), the vertex part at 
k = 0 has poles at frequency values w = wz, 

(7) 

These frequencies correspond to uniform modes of 
magnetic excitations. The existence of a family of mag
netic excitations in addition to the low-frequency spin 
waves, with limiting frequencies w z, is a consequence of 
the two-component nature of a metallic ferromagnet 
(s- and d- bands), and therefore the excitations under 
consideration may be called optical spin waves. 

A characteristic peculiarity of the resonance fre
quencies w z is that their magnitude is practically inde
pendent of the intensity of the external field. Actually 
such a dependence, as is clear from the equations for r, 
should occur because of a change in separation of the 
Fermi surface on application of the external field. But 
because the frequency v D. corresponds to magnetic fields 
Of or<.fer V@ EF/2J.Lo - 108 0e, at any fields at present 
experimentally attainable D., and hence also the fre
quencies wz, may be considered constant. 

For the same reason, the optical magnons are prac
tically uninfluenced by the orbital motion of the elec
trons in a magnetic field. This justifies the fact that in 
the equations for the vertex part, we neglected the inter
action of the electronic charge with the magnetic field, 
in consequence of which there was a degeneracy of the 
resonance frequencies wz with respect to the quantum 
number m. 

It should be mentioned that, in contrast to the low
frequency spin-wave branch, the optical magnons 
possess damping even at zero wave vector and with 
neglect of inte-ractions that do not conserve the magnetic 
moment. The damping is caused principally by decay 
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processes whose ultimate product is a low-frequency 
spin wave and a pair of Fermi excitations. An estimate 
of its order of magnitude can be obtained if, in the 
derivation of formula (6), allowance is made for the 
damping of Fermi excitations; this, as has already been 
mentioned above, at energies of order wz ~ vt:. has a 
value ~ v(e I EF). e EF. This leads to the result that the 
imaginary part of the pole of the vertex part also has a 
value ~vejc:Fwz; that is, the relative damping of the 
optical spin waves has the order ve I EF· 

3. We shall not present here the general formulas 
for the spectrum with k"' 0. In the approximation quad
ratic ink, for lkl « D., their derivation is quite analog
ous to that given inl 51 • We mention only that the degen
eracy with respect to the quantum number m that occurs 
in the case of uniform resonance is removed when k"' 0. 

As an example we consider a simple model in which 
the function r (p, p1

) IE= e' = 0 is isotropic (Bo = 0, Bz = 0 
for l 2: 1). In this case the solution of equation (4) for 
arbitrary values of the wave vector takes the form 

f(p~,p,;k)= ~· [1+Ea-Eo--w-Inv(l1-lkl)-r,,r (8) 
a-v 2ulkl c(1+lkl)-wJ 

The spectrum of the optical spin waves is determined 
by the equation 

1 +Eo -Eo-w-ln u(/1- lkl)- w = 0 
2vlkl v(L'-.-1-Ikl)-w · (9) 

The general form of this solution depends signifi
cantly on the sign of B0 • When Bo < 0 (case a in the fig
ure), the frequency decreases with increase of lkl. In 
the range lkl S D. the curve of the spectrum has an 
abrupt drop with a slope ow/o lkl ~ -v and reaches a 
minimum 1 > wmin- vt:./ln(eF/e). For lkl >D., the 
imaginary part of the solution (9) is comparable with 
the real; that is, in this k-range optical spin waves are 
absent when Bo < 0. 

If Bo > 0 (case b in the figure), w (k) increases with 
increase of lkl and asymptotically approaches a linear 
law of dispersion. In fact, in this case when lkl > 0 the 
optical magnons correspond to spin waves of zero
sound type, which occur in the absence of a magnetic 
field in nonferromagnetic metals. 

4. In the preceding treatment, it was assumed for 
definiteness that p. > p_; that is, that the resultant 
magnetic moment of the conduction electrons is direc
ted along the total moment of the ferromagnet. Then the 
polarizations of the optical and acoustic spin waves are 

1>From Eq. (9) it follows that Wmin = 0. Allowance for damping of 
the Fermi excitations, however, leads to the indicated estimate of the 
value of Wmin· 
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the same. It is easy to see that in the case p+ < p_, 
~ < 0 the singularities of the vertex part r H H lie in the 
negative frequency range. This means that in the case 
of antiparallel orientation of the magnetic moment of the 
s-electrons and of the total moment, the polarization 
systems of the optical and acoustic spin waves are oppo
site. 

5. A specific peculiarity of the optical branches of 
the spin waves is the fact that in consequence of the 
large value of the separation of the Fermi surface of 
the conduction electrons, they are well separated in fre
quency from the low-frequency branch of the spin waves. 
Therefore it is chiefly the conduction electrons that 
participate in the spin-density fluctuations that corre
spond to optical magnons. 

Because of this last circumstance, there is a signifi
cant formal analogy between the excitations that we have 
considered and spin waves in nonmagnetic metals in the 
presence of an external magnetic field, first investiga
ted by Silinl2 J. In both phenomena, Fermi-fluid interac
tion plays a determining role. The effective Landau 
function in the case of optical spin waves is our function 
a2r(p, p') IE= E',. 0. At the same time, there is an impor
tant difference between optical magnons and spin waves 
in nonferromagnetic metals. Not only is an external 
magnetic ~ield not necessary for existence of the optical 
modes, but their spectrum is practically independent of 
the value of the field intensity. In addition, the d- elec-

trons, which provide the effective exchange field for the 
conduction electrons, lead also to a "viscosity" that ac
companies the oscillations of the spin density of the 
s- electrons, and as a consequence the optical spin waves 
have damping over the whole spectral range. 

We note that the isotropic branch of the optical spin 
waves was studied earlier, on particular models of 
ferromagnets, by various authors (see, for example, l6l ). 

There, however, there was no consideration of Fermi
fluid effects and of damping of the spin waves. 

In closing, I express my deep thanks to I. E. 
Dzyaloshinskit for discussion of the results of the 
research. 
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