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We consider the scattering of a light wave by an atom without assuming that the wave being scattered 
can be treated by perturbation theory. 'The frequency of the scattered light can be close to the fre
quency w21 that corresponds to the energy difference of two levels of the atom. The relaxation of the 
system is neglected and it is assumed that the field strength of the wave being scattered is much 
smaller than characteristic values of the field strength in the atom. It is shown that the deviation from 
the usual perturbation-theory results is determined by a parameter a, Eq. (11). We first treat the--/ 
scattering of light by a two-level system near resonance; we show that besides the spontaneous undis
placed scattering, Eq. (23), which includes a saturation effect, there is a Raman induced scattering at 
the frequency given by Eq. (24), with the cross section given by Eq. (30). Moreover, the two-level sys
tem in an intense field can have an absorption line at the .frequency (25) with the cross section (31). 
These results are generalized to the case of a many-level system. The transition 1 = 2 is examined 
with intermediate levels and nonresonance terms taken into account. It is found that there is an addi
tional coherent spontaneous scattering at twice the frequency with the cross section (38). Besides this 
there is noncoherent induced Raman scattering of two more frequencies, Eqs. (40) and (42), with the 
cross sections (41) and (43). The system will possess absorption at other new frequencies (45) and 
(42'), with the cross sections (46) and (47). The formulas correctly describe the passage to the limit 
of the perturbation-theory formulas. 

LET us consider the scattering of a light wave whose 
frequency w can be close to the frequency w21, 

(1) 

where E2 and E1 are the energies of the excited and 
ground states of the system. We shall describe an in
tense electromagnetic wave incident on the atom by the 
classical vector potential 

A(r, t) = akeexp (ikr- irot) + c.c., (2) 

In what follows we shall assume that the time inter
vals in which we are interested are so short that the re
laxation of the system during the time of the process 
can be neglected. Actually this will mean that the 
characteristic frequency O!E: which appears in our ex
position [see Eqs. (10) and (11)] is much larger than the 
widths of the levels. It is obvious that the spectral width 
of the radiation (2) being scattered must be much 
smaller than the characteristic frequencies. In this case 
we can regard the wave as a monochromatic wave propa
gated in the direction of k = wn/c. 

We begin our treatment with the resonance scatter
ing, when the lack of matching of the frequencies is 
much smaller than w: 

(3) 

We ignore for the time being the interaction of the 
wave with electrons that are in energy levels not in
volved in resonance transitions. In this case our prob
lem reduces to the scattering of light by a two-level 
system. In the first nonvanishing approximation of per
turbation theory (with respect to both the incident and 
the scattered waves) the scattering of the light by the 
unperturbed state of the two-level atom consists only of 
(undisplaced) Rayleigh scattering. This is easily veri-
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fied if one applies the formula derived by Kramers and 
Heisenbergl1 to the two-level system. In this case, 
assuming that the mean dipole moments vanish, d 11 = d22 
= 0, and that the energy levels are nondegenerate, the 
formula can be rewritten in the following form: 

(4) 

where d12 and d21 are the dipole matrix elements [see 
Eqs. (8), (9)], and e and e' are the polarization vectors 
of the incident photon and a photon scattered into the 
solid angle do'. Near resonance the main contribution 
to the scattering is that of the first term. To avoid a 
diverSence at exact resonance, we can follow Weiss
kopfl2 and replace E2 by E2- ir2/2 in the denominator 
in Eq. (4), in order to take into account the finite lifetime 
in the upper level. 

Let us now consider the analogous problem without 
use of perturbation theory for the interaction of the in
tense monochromatic wave described by the potential (2) 
with the two-level system. The interaction between the 
scattered wave and the atom will be dealt with by per
turbation theory as before. The wave function of the 
two-level atom can be put in the form 

(5) 

The coefficients b 1 and b2 are to be determined from the 
SchrOdinger equation 

B<ll ( e e2 •) in-= Ho--Ap+--2 A ¢. 
iJt me 2mc 

(6) 

The action of the field will be expressed in the forma
tion of bound states of the type shown in (14). 

Because it is so intense the field A(r, t) can be trea
ted classically (see below), but the scattered field must 
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be treated on the basis of the quantum theory of radia
tion. 

The solution of the problem of the behavior of a two
level system in the field of a classical electromagnetic 
wave near resonance is well known. £3 ' 41 In this case we 
have from Eqs. (5) and (6) 

ft ob1 • . , 
i lit= -b2V12ak e-", 

in~=- b,V21ake-i•t at 

(7) 

where v 12 = v:l is the matrix element for the transition 
with emission of a photon, 

(8) 

In the derivation of (7) we have dropped terms con
taining rapidly oscillating functions of the time (non
resonance terms). We shall take them into account 
later. In the dipole approximation we must make the 
replacement 

(9) 

in the formulas that follow. The equations (7) have solu
tions of the form exp(iA 1, 2t), where 

(10) 

The characteristic parameter which appears in (1 0), 

a= e~ 1 v,.ak 1. (11) 

and which in the dipole approximation takes the value 

(11') 

will determine the deviation from the well known results 
of perturbation theory. The expression Ek = iwak/c 
denotes the electric field strength that causes the scat
tering of the electromagnetic wave. 

As will be seen in what follows, for values of Ot that 
satisfy the condition 

(12) 

we arrive at the formulas of perturbation theory. If the 
opposite inequality 

(13) 

holds, the cross sections for scattering of the light by 
the two-level system take an essentially different form. 
We shall look for the solution of (7) under initial condi
tions that correspond to an infinitely slow turning on of 
the field at t = - oo. The turning on of the interaction at 
t = 0 has to be specially analyzed, since in the higher 
orders of perturbation theory the instantaneous turning 
on of an interaction leads to spurious effects (cf., 
e.g., lsl). The desired orthonormalized system of wave 
functions of Eq. (7) is 

where 

11>1 = C1exp(iJ..It- iE1t /h)('¢!+ BI'¢2e-i"'1), (14) 

(15) 

(16) 

and the coefficients cl and c2 are determined up to a 
phase factor by the normalization condition 

c~.2 = [1 + IB1.2I 2]-'''· (17) 

Light scattering in which the state ci> 1 (or ci>2) is not 
changed will be coherent; that is, the photons scattered 
by different atoms can interfere with each other. When 
the condition (12) holds the functions (14) and (15) go 
over into the perturbation-theory functions used by 
Kramers and Heisenberg. When the strong field is 
turned off the function cl>1 corresponds to the ground 
state l/J1 of the atom, while ci>2 goes over into the func
tion l/J 2 that describes the excited state of the atom. 
Turning on the strong field causes an admixture of the 
state l/J 2 to appear in the function ci>1, and of lj; 1 in the 
function cl>2• The admixtures of "other states" are de
termined by the coefficients B1 and B2 , and for large Ot 

the electron has equal probabilities for being in the 
upper and lower levels. This is the saturation effect or 
induced transparency of the medium. For small values 
of Ot the coefficients B1 , 2 correspond to perturbation
theory calculations with the condition (3). At first sight 
the functions (14) and (15) look nonstationary, but after 
the electromagnetic field is quantized these functions 
describe stationary states of the closed system made up 
of the two-level atom and the quantized electromagnetic 
field with a single definite propagation vector k and 
polarization e. 

Let us now proceed to the calculation of the scattered 
radiation with the wave vector k' and the polarization 
e' = ~'. For the calculations to be made with perturba
tion theory it is necessary that 

' I Ek'(e'd) I 1 (12') 
a= ' ~. 

h(<MJ.-W) 

We shall assume that there may be quanta present in 
space with the wave vector k'; consequently we shall be 
including both spontaneous and stimulated scattering in 
what follows. It follows from the foregoing arguments 
that the scattering problem reduces to the problem of the 
radiation from atomic electrons whose wave functions 
are given by (14) and (15). The system "atom +class
ical field +quantized field" A' (rt), 

1/ 2nftc2 f (18) 
A'(rt)= r-- ~ -=[Ck,ek,ei[k'r-oo'tl+h.c.], · 

V k'*k fWk' 

is described by the function 

(jl = b1 (t)IIJI + b2(t)IIJ2, (19) 

where b1(t) and b2 (t) describe the quantized electromag
netic field. At t = -oo 

(20) 

The choice of the initial condition in (20) means that we 
are considering the scattering of the intense electro
magnetic wave by an atom which is initially in the state 
ci>l. 

The change of the wave function (19) under the influ
ence of the perturbation 

V' = __ e_A'p (21) 
me 

is found by perturbation theory. To calculate the emis
sion or absorption it is necessary to calculate matrix 
elements of the following form: 

S ~ (O ... nk± 1. .. 1 sIll;'(- :c A'p )<I>;dx•l O ... nk···O). (22) 

We take j = 1, which will correspond to the scattering of 
the light by an atom which is in the state cl>1. 
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Let us first examine processes in which the state of 
the system ''atom + intense classical field'' does not 
change. Here it is necessary to take i = 1. Obviously 
the frequency w' of the scattered light is exactly equal 
to the frequency w. In this case the cross section for 
Rayleigh spontaneous scattering is of the form (here
after we shall write the formulas in the dipole approxi
mation) 

I (e'"d12) (ed2!) I' w 4do' 
doo = ~--:---'-'----:c'-'-

E2(1+a') c41l2 
(23) 

For large a » 1 the characteristic effect of saturation 
appears in the cross section (23). The number of scat
tered photons ceases to depend on the density of the 
incident radiation. This effect is physically identical to 
the effect considered by Schwinger and Karplus inl4J and 
developed in other papers, for example inleJ. The cross 
sections for ''stimulated scattering'' will have the addi
tional factor (nk' + 1) for the emission of a quantum with 
wave vector k' and polarization e', and a factor nk' for 
the cross section for absorption of this same quantum. 

Consequently, at the frequency w' = w and in direc
tions different from the direction of k there appears 
only spontaneous scattering, since the processes of 
stimulated scattering with emission and with absorption 
cancel each other. But the process of spontaneous scat
tering is coherent. 

Let us now proceed to the calculation of scattering 
in which the system "atom + intense field" makes a 
transition from the state j = 1 to the state i = 2 (Raman 
scattering). It is easy to see that the processes of 
Raman stimulated scattering with absorption and with 
emission of a quantum k', e' occur at different frequen
cies. Accordingly, in contrast with the case of coherent 
scattering, in Raman scattering there is stimulated ap
pearance of an additional quantum k' whose frequency is 
given by 

(24) 

Along wi!h this the scattering process can lead to the 
absorption from a beam of quanta k" of a quantum k 11 

whose frequency is given by 

(25) 

It must be pointed out that the characteristic fre
quency A. 1, 2 of the atomic electron in the strong field 
must be much smaller than the atomic frequencies. 
Otherwise it is necessary to take into account the shifts 
of the levels and the changes of the functions 1/! 1 and 1/J, 
in the field of the intense wave. These questions, and 
also th~ associated problems of finding the wave func
tions and estimating the corresponding approximations, 
have been treated in a number of papers. l7- 11l For small 
intensities of the radiation scattered by the atom [cf. the 
condition (12)] we have 

w' ,:::;: 2·w - W21 - ea2 I 2, 

w" <=::: W21 + ea2 I 2; 

(26) 
(27) 

and for large intensities, i.e., when the condition (13) 
holds, we have 

w' <=::: ·w- ejaj, 

w" <=::: w+ ejaj. 

The cross section for Raman scattering is 

(28) 

(29) 

_ 1 (e"d12) (ed21 ) I' I 1- ·v'T+(t2 j(sn•c• I • + 1) ww'" do' (30) 
dcr1 - e2 ( i I+ a2 ) 1 + y 1 + a• w'• k e c•n• · 

The analogous quantity with stimulated absorption of a 
quantum k" is 

d _j(e'*d12)(ed21 )1'11 + V1-t-a'l8n"w"' I ··do'. 
a,- e'(i+a') 1-Vi-t-a• c•n• ke (31) 

The quantity Ike is connected with the number of quanta 
in the volume v by the formula 

(32) 

For large intensities or for exact resonance, when 
the condition (13) is satisfied, the saturation effect, de
termined by the coefficient 1/ a 2 , appears in the cross 
sections (30) and (31). Consequently, for a » 1 the 
cross section for Raman scattering is inversely propor
tional to the intensity of the radiation causing the scat
tering. In the opposite case of small intensities [ cf. the 
condition (12)], the cross section for Raman scattering, 
Eq. (30), is proportional to a' I 4, and consequently the 
number of scattered Raman quanta is proportional to 
the square of the intensity of the radiation incident on 
the atom. This result was to be expected, since, as was 
noted above, the two-level system has no Raman scat
tering in first-order perturbation theory. In the cross 
section (30) all orders of perturbation theory with 
respect to the parameter a' are effectively summed up. 

The first experimental data on three-photon proces
ses of the type of Eq. (30) in gaseous media were pub
lished inl 12 ' 13 J. These papers also made a detailed 
theoretical analysis of the experiment on the basis of 
the equations of quasi- classical theory, which take into 
account effects of accumulation in the propagation of 
light in the medium. 

For a - 0 the cross section (31) increases without 
bound in proportion to 4/ a 2 • It is easy to explain this 
result by noting that the cross section (31) essentially 
characterizes the absorption of the two-level system in 
the field of the intense wave. Therefore, if we let the 
intensity of the wave go to zero, a - 0, the product of 
the cross section (31) and the flux density 1w of quanta 
incident on the atom must give the usual expression for 
the probability of absorption in the perturbation-theory 
approximation. Accordingly, the cross section (31) 
characterizes the probability of absorption per unit time 
at the frequency (25). 

All of the results given above are for the case of 
scattering of intense light by an atom which was 
"originally" in the lower level, i.e., for ak- 0, 
<I> 1 - 1/J 1 • Analogous results can be derived for scatter
ing of the light by an atom which was in the state <I>,. 
Furthermore, as can be seen easily from (22), the use 
of the function <1> 2 instead of <1> 1 to determine the Rayleigh 
(unshifted) scattering does not change the final result, 
and the cross section for scattering by the state <I>, is 
again given by Eq. (23). As for the Raman scattering, 
the pattern is changed symmetrically, i.e., absorption 
is replaced by emission, and conversely. 

Let us transfer these results to a many-level system. 
The radiation incident on the atom is in resonance with 
the transition 1 :;:::! 2. 

We note again that in finding the complete system of 
wave functions of the two-level system we dropped the 
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"nonresonance" terms, and also did not take into ac
count the possibility of the transition 1 ;= 2 through 
other intermediate levels. The corrections to the func
tions (14) and (15) from the nonresonance terms, which 
were omitted in (7), and also from transitions with other 
intermediate states, are easily calculated by using the 
standard technique of perturbation theory. 

The result for <I>1 is 

The coefficients ai that appear in (33) are given by 

Eh(d1ze) AI Eh(de')m! 
a,=- E."(d12e') (2(J}-)q)' a4 =1i(ffimJ+AJ+ffi) 

[Ek(d1ze')J2 Ek (de)m! A! 
a2 =-hAi{ffizt+w+Ai)' 45 =E,/ (de)tz (Wmt+A-2w) 

Ek(de)m! (de')m! A! 
a3 = 1i(wm1 +At+w) (de*)t2{ffimt+Ai) 

In the dipole approximation the coefficients B1,2 are 
given by 

(33) 

(34) 

(35) 

The function <l>2 with correction terms included is ob
tained from (33) and (34) if we replace C1, "-1, Bl> and ai 
by C2, "-2; Bz, and ai. In our subsequent equations 
a~, a~, ... , a~ will denote the coefficients of the corre
sponding time factors in the function <I>2. 

By using Eqs. (33)-(35) and (22) it is easy to calcu
late the corrections to the Rayleigh scattering cross 
section (23) owing to nonresonance transitions and tran
sitions through intermediate states. The Rayleigh scat
tering cross section for scattering at frequency w' = w 
into the solid angle do' is of the form 

das= dao IB1(d12e")+B,'(d,,e")(a!+az') 
IB1 (d12e") I' 

+ ~ [ ac( d1me") + a,' ( dm1e") + a,B 1' ( dzme") 
m=F1;2 

(36) 

As can be seen from the formulas (34) (if there is no 
accidental two-photon resonance with one of the inter
mediate levels, wm1 = 2 w, and also no accidental reson
ance wm1 = w) the coefficients ai are of the orders of 
magnitude 

Consequently, if the field causing the scattering is much 
smaller than the atomic fields and is in resonance with 
only one of the levels of the atom, there will indeed be 
little change owing to the coefficients ai which we have 
calculated above. For small values of Ql it is necessary 
to keep the coefficients a3 ;::; a 4 and a2, if we want to get 
the correct transition to the Kramers- Heisenberg 
formula for Raman scattering in the case when the con
dition (3) is not satisfied, i.e., when the scattering is 
not necessarily of the resonant type. In this case the 
coefficients a1, as, and as are smaller by a factor Ql 

than the coefficients B1, a2, a3 , and a 4• For Ql >> 1 all 
of the correction coefficients are of the order of QIE/W 

;::; Ek/Eat « 1, while B ;::; 1. 
In the perturbation-theory approximation with respect 

to the strong field, i.e., for Ql << 1, the scattering cross 
section (36) agrees with the well known Kramers
Heisenberg formula for Rayleigh scattering. 

Besides the scattering (36) without change of fre
quency, there is the possibility of scattering in which 
the frequency of the scattered photon is w' = 2 w. The 
cross section for this process is given by the expres-
sion 

As can be seen, da 4 is of the order of (QIE/w)2dao. The 
scattering given by the cross sections (36) and (38) is 
coherent. 

Let us proceed to the calculation of formulas which 
improve our results (30) and (31) for Raman scattering. 
In this case, because the phases of the wave functions 
<I> 1 and <l>2 of different atoms are arbitrary, the scatter
ing is incoherent. The results of the calculations are as 
follows. 

There are three combination frequencies which can 
appear in the scattering. One of them is given by the 
expression (24); its cross section is of the following 
form: 

das = da1 IB, (d12~,.) 1
,1 B1(d1ze") + B,' (a 1 +a/') (d21e") 

+ ~ [aa(d,me")+a•"(dm!e")+B2a,(d2me")+ Bas"(dmze")] lt(39) 
m=F1.2 

Over the entire range of variation of Ql the corrections 
to the cross section da1 are of the order of magnitude of 

Another combination frequency is given by 

(J}/ = 2(J}- (AI -Az)o (40) 

Its intensity is determined by the cross section 

das=da1 1 ,. \ ~ a,(d,me'')+a.''BI(dm,e")\ 2
0 (41) 

IB,(d!,e ) I' m*1;2 

Over the entire range of variation of Ql the cross sec
tion (41) is of the order of magnitude of da1(w/w)2. 

Finally, scattering is possible at the combination 
frequency (for E < 0) 

(42) 

The cross section for this process is given by the ex-
pression 

da7 = da1 I ~ Bz'a3 (d2me")+ aa"B(dmze") 
IB(d12e") I' o "'*'' 2 

+ a 6(d 1me") + as" (de") m! I' o 

(43) 

It is easy to see that for Ql « 1 the cross section (43) 
goes over into the usual Kramers- Heisenberg formula 
for the Stokes component. We :x:eadily note that for 
values of Ql that satisfy the condition Ql « E/w the cross 
section da 7 is large, da 7 >> da1. For Ql > E/w three
photon scattering becomes predominant. For Ql » 1 
all of the cross sections considered above show satura
tion. 

Analogous results can be obtained for the cross sec
tions for stimulated absorption of an atom which is in 
the field of an electromagnetic wave. For absorption at 
the frequency w" given by (25) we have 
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dcrs IB2 (:,~~") 12[ B2(d21e")+(a.'' + a2)B(d12e") 

+ L; a,'' ( dm,e") +a,( d,me") + a5" B( dm2e") 

+ a.S2" (d2me") r ( 44) 

The absorption at the frequency 

(45) 

is determined by the cross section 

da•= IB(~cr2e')l 2 1 ~ as"(dmte')+a,B,'(d2me'".JI~ (46) 
2 2i m*1:2 

Finally, for E > 0 there is absorption at the frequency 

(42') 

In this case the absorption cross section is given by 

1f010 = do 2 I ~. a3B2(d2me")+aa"B,(dm2e", 
IB2(d21e') 12 m#1;2 

+ a6 (d,me") +as" (dm,e") ( (47) 

An analysis of these formulas can be carried out in 
analogy with that given above, and therefore we omit it 
here. 

The calculations we have given can be easily gener
alized to a many-level system for which the incident 
radiation is in resonance with one of the "intermediate" 
levels. 

Effects of the spectral width of the incident radia
tion, and also of the widths of the levels of the system, 
will be considered in a separate paper. 
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