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Fluctuations of the amplitude and phase associated with spontaneous emission are investigated in a 
laser with nonlinear absorption. The noise intensity in such a laser turns out to be substantially lar­
ger than in an ordinary laser. Near the hysteresis threshold the fluctuations may lead to an instabil­
ity of generation. A statistical description of the laser radiation in the hysteresis region is equivalent 
to the picture of a liquid-gas transition near the critical point. 

1. INTRODUCTION 

I N the present article the general theory of quantum 
fluctuations of laser radiationll-sJ will be applied to the 
laser with nonlinear absorption which was experimen­
tally studied in the articles by Lisitsyn and 
Chebotaev. ls,,J In these articles a He-Ne laser was 
investigated which had inside the resonator, together 
with the active cell, an absorbing cell containing neon. 
A theoretical analysis of the operation of a nonlinear 
laser is carried out in the article by Rautian and the au­
thors, lsJ where in particular the effect of noncoincidence 
of the points of initiation and cessation of generation as­
sociated with a change of the populations in the active 
and passive parts of the laser, which was observed inlsJ, 
is explained. 

Here we consider "quantum noise," i.e., fluctuations 
associated with spontaneous emission of the amplitude 
and phase in a laser with nonlinear absorption. It turns 
out that the intensity of noise in such a laser is gener­
ally higher than in an ordinary laser. In addition, near 
the hysteresis threshold the quantum fluctuations may 
lead to an instability of the radiation. 

If the investigation is limited to the case, character­
istic of a He- Ne laser, when the photon lifetime 1/ v in 
the resonator is large in comparison with the lifetime T 

of the excited atom, 

vt~ 1, (1) 

then the problem reduces to an investigation of the 
Fokker- Planck equation for the photon distribution func­
tion p(z, t) (a bar denotes complex conjugation) 

ap { a ( ar ) 1 a ( D op )} -=2v- Ap+B- +--Co+--iit ii£ ·. ii£ £ iirp ' £ iirp , 
(2) 

The distribution function p(z, t) of a quantum oscilla­
tor in the representation of coherent states is the weight 
function in the expression for the density matrix R of the 
oscillator if it is represented in diagonal form l9J 

R = S d•z p ( z, t) I z) (z I· (3) 

In Eq. (2) the coefficients A(~) and C( ~) are classical 
quantities which determine the active and reactive parts 
of the radiated power, and the coefficients B( ~) and D( ~) 
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are associated with quantum fluctuations and describe 
the diffusion of photons in the z plane in the radial and 
azimuthal directions. The explicit form of these coeffi­
cients was found in the authors' articlelsJ for the sim­
plest model of a laser in which the atoms were as­
sumed to be fixed and their relaxation was described 
by a single relaxation time T. Taking the thermal mo­
tion of the atoms and the difference in relaxation times 
(longitudinal and transverse) into account is not a major 
factor since it only leads to a certain renormalization 
of the coefficients a, b, and c (see Eqs. (9)). 

Expanding the oscillator distribution function in a 
Fourier series 

of«> 
1 "' . p(z,t)=- LJ Pm(£,t)e-,mo, Pm=P-m, 
n m=--oo 

(4) 

it is not difficult to see that in this expansion the zero 
harmonic Po(~, t) determines the distribution of photons. 
The average number of photons n and the dispersion A.n 
are related to Po(~, t) in the following way: 

~ ~ 

n = S d£ £po(£, t). 5 d£p 0 (£,1)= 1, 
0 0 

~ 

(~n)2 = 5 d[; £2p0(£, t)- n2 + n. 

(5) 

(6) 

Near the generation threshold (it is precisely this case 
we consider later) A. n » .fll, and Po(~, t) becomes the 
usual distribution function of the photons. In the course 
of time all harmonics of the distribution function except 
Po(~, t) are damped due to the phase fluctuations. 

In the second section of this article the steady state 
distribution function p ( ~) of the photons is found which, 
in the regime of hysteresis, has two sharp maxima 
corresponding to classically stable states with n = 0 
and n "' 0. Because of quantum fluctuations these states 
are metastable. In the third section the time for a tran­
sition from one metastable state to the other is estima­
ted. 

2. DISTRIBUTION FUNCTION OF THE PHOTONS 

For maximum simplification of the formulas we will 
assume that in the active cell in the absence of radiation 
all atoms are in the upper level and their number is N1 , 

but in the passive cell N2 atoms are in the lower level, 
and generation takes place in the center of the line. The 
relaxation time in the active cell is T1, and in the pass-
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ive cell it is 7 2• As is well known, l8 J for the appearance 
of hysteresis it is necessary that 7 2 be much larger than 
71• 

In a rigorously stationary state, when no probability 
current is present, from Eq. (2) we obtain 

A (6)p(6) + B(s)dp(£) IdS= 0. (7) 

Near the generation threshold we approximately have 
the following expressions lsl for the coefficients A and B: 

A(s)=-6(a62 -bs+c), B(s)=£11,; (8) 

a= 1]1~12 -112~22, b = -112~2 + 111~1, c = 1]1 -1]2 -1, 
'l]i = ~;N; /4v·r;, ~~ = 2-r;wd2 I liV, i = 1, 2. (9) 

Here d is the dipole moment of the operating transition 
at the frequency w, V denotes the volume of the system, 
and fli has the meaning of the saturation parameter in 
the i-th cell. Since the phenomena under consideration 
are more noticeable at small radiation power, here we 
have confined our attention to precisely such a case. 
Formulas (8) and (9) are obtained under the assumption 
of a weak saturation effect in both cells, 

(10) 

As we see later, this is the condition for nearness to the 
generation threshold 

(11) 

We note that /31 < {32 since 7 1 < 7 2. 
The quantity- A(n)/n is the classical coefficient of 

gain. In order to describe hysteresis phenomena in 
A(n)/n it is necessarl to retain the quadratic term in 
the radiated power. l8 From Eq. (7) we obtain 

p (6) = Z-1ef«l, /(6) = (1lsa£3 -

-'I2W + c6) /1']1, (12) 

"' z = ~ d£ eflsl. 
0 

In the region of classical generation f( ~) is large be­
cause f( ~) ~ ~. Therefore in this region it is important 
to know the extremal points of the function p(~), which 
are determined from the condition 

df b+d 
ds"=a£2 -b£+c=0, 61,2=;;,;;, (13) 

d = jb2-4ac. 

In order for hysteresis to exist, it is necessary that 
~ 1 2': 0 and ~ 2 > 0; hence follows the condition which de­
termines the region of existence of hysteresis: l8J 

a < 0, -21ac ~ b < 0, c ~ 0. (14) 

Only the point ~ 2 = (b- .6)/2a corresponds to a stable 
state, but the point ~ 1 = (b + .6)/2a is unstable (from 
this state the system goes into one of the states with 
~ ~ ~ 2 or ~ ~ 0). 

In the classical domain the average number of pho­
tons is determined from the condition A(n) = 0. The de­
pendence of n on 1) 1 is shown in Fig. 1, i.e., the depen­
dence on the number of atoms in the active cell, for 
certain characteristic values of the parameter 1J2 which 
denotes the number of atoms in the passive cell. Curve 
1 corresponds to 1) 2 = 0, i.e., to ordinary generation. 
Curve 3 corresponds to the value 1) 2 = 1Jg at which the 

coefficients b and c simultaneously vanish at the thres­
hold of generation, and is the boundary between the 
curves of type 2 without hysteresis and the curves of 
type 4 with hysteresis. From the condition b = c = 0 
we find the hysteresis threshold 

11to=-~-2-, 112o=-~-'-. (15) 
~2- ~1 ~2- ~1 

Later it will be convenient to introduce the notation 
1J1 = 1 + 1)2 + 1) and 1) 2 = 7Jg(1 + 8). In this connection, in 
virtue of condition (11) the generation parameter 1) must 
be rather small: I7J I« f31/fl2· Condition (10) for the 
weakness of saturation means that we consider the case 
of small hysteresis when the distance between the points 
of triggering (7J 3 ) and cutoff (1J c) of generation are 
small, and the condition -1 ~ e ~ Bo > 0, 8 0 ~ 1 must be 
imposed on the parameter e. In terms of this notation 
the coefficients a, b, and c take the following form in 
the region of the hysteresis threshold: 

a=-~~~2, b=-~1 (8-tJ) C=t]. (9') 

After these preliminary remarks, it is not difficult 
to appreciably simplify the distribution function (12) in 
the following three characteristic ranges of the param­
eter e. 

A. The region below the hysteresis threshold 
(-1 ~ 8 < 0). Curves 1 and 2 in Fig. 1 refer to this 
region. In this case the nonlinear term a~ 2 in the gain 
coefficient is small, and one can neglect it. Thus, we 
have to deal with ordinary laser emission near the 
threshold for generation. Below the threshold for classi­
cal generation (1J < 0, ffr « I1J I « 1) the distribution 
function has the usual Planck form 

p (6) = n-1e-61n, 

n = 1111-', dn = n. 

(16) 

(17) 

At the threshold for classical generation (1J = 0) the 
distribution function has a Gaussian form: 

2 { £2 } p(s)=-exp -- , 
nn nn2 

n= ,/2 /181, dn=nlf n -1. 
V~1 V 2 

(18) 

(19) 

Finally, above the generation threshold (1J » -{ff;) we 
have 

1 { (6-n)2) 
p (S) = -12_n_d_n_ exp - ...:..2=-( 11-n--') 2-r' (20) 

n = 62 =_!!_I I, iln = y 1llt I = 11 1lt n. (21) ~1 8 ~1 e V 11 

For e = -1 formulas (18)- (21) agree with the corre­
sponding well-known formulas for an ordinary laser. 
We note that in these three cases the width of the transi­
tion region with respect to 1) amounts to a quantity of 
the order of ..fi3;. 

FIG. I. Dependence of the number of 
photons on the number of active atoms for a 
fixed value of the number of absorbing atoms: 
curve I corresponds to 172 = 0, curve 2 corre­
sponds to 0 < 172 < 17~, curve 3 corresponds to 
17 2 = 11~, and curve 4 corresponds to 172 > 11~-

"' 
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B. At the hysteresis threshold (8 = 0). In this case 
we have the Planck distribution (16) below the threshold 
for classical generation (TI < 0, ..[{3; « ITI I « 1). 

At the threshold for classical generation (TI = 0) 

p(£)= ~exp{-nJ}. £o'=~d~:-~i)' (22) 

n=r(z/,)£o 11n= yr(lj,)-fZ(Zf,) n~068n. (23) 
f(lj,) , f(Z/,) , 

Here r(x) denotes Euler's gamma function. As is clear 
from here, the fluctuations in the number of photons are 
on the order of An ~ {31.113 . In a He- Ne laser a typical 
value of the parameter /31 is ~ 10-6 so that the level of 
fluctuations at the generation threshold in case B is ap­
proximately an order of magnitude higher than in case A. 

Above the generation threshold ( ({31 {32 ) 113 « Tj « 1) 
we have the Gaussian distribution (20), where 

n = v PI~z, 11n = v 2(~z~ ~I)TJ . (24) 

If {32 » {31 then the fluctuations (An)2 /n are two times 
smaller than in the usual case. For very similar values 
of the saturation parameters the quantity (An)2/n may 
be large, which is associated with an increase in the 
total number of atoms (N1 + N2 » N1- N2). We note 
that the width of the transition region with respect to the 
parameter Tl now is of the order of (/31{32)113 , which is 
approximately an order of magnitude smaller than in 
case A. 

C. The hysteresis region (0 < 8 « 1). Hysteresis 
corresponds to the curve of type 4 shown in Fig. 1. 
Generation appears at Tj = Tj 3 = 0 and ceases at Tj = Tic 
= -{3182/4{32, i.e., at the point where the discriminant 
A vanishes. Thus, in the hysteresis region the param­
eter Tj varies within the limits Tic ::s Tj ::s 0. 

The dependence of the coefficient of gain, -A(~)/~, 
on ~ is shown in Fig. 2 for different values of Tj. The 
approximate shape of the distribution function p( 0 for 
Tic < 1J < 0 is shown in Fig. 3. This function has two 
maxima, at ~ = 0 and at ~ = ~ 2, and a minimum at the 
point ~ = ~ 1· As 1J approaches Tic the value of p(O) in­
creases but p ( ~ z) decreases, and for Tj ~ 1J c the in­
equality p (0) » p ( ~ 2) is satisfied. In this connection the 
points ~ 1 and ~ 2 come together and coincide when 
Tl = Tj c. The function p ( ~) has an inflection at the point 
~ = ~ 1 = ~ 2. When Tj - 0 the value of p(O) decreases, 
but p ( ~ 2) increases and at sufficiently small values of Tj 

piC' 
·AW/C 

m 

FIG. 2 FIG. 3 

FIG. 2. The dependence of the coefficient of gain on~ in the hyste­
resis region. Curve I corresponds to 17 > 0; curve II corresponds to 17 = 0; 
curve III corresponds to 17c < 17 < 0; curve IV corresponds to 17 = 11c· 

FIG. 3. Approximate shape of the distribution function p(~) of the 
photons in the hysteresis region corresponding to the coefficient of gain 
given by curve III in· Fig. 2. 

the opposite inequality holds, p ( ~ 2) » p (0). Finally, 
for Tj > 0 the function p ( ~) has only one maximum at 
the point ~ = ~ 2· 

In the hysteresis region, not too close to its boun­
daries, p(~1) is exponentially small relative to p(O) and 
p ( ~ 2), and thus the distribution function p ( ~) has two 
very sharp maxima which correspond to classical 
stationary states. The time for establishment of 
equilibrium inside the boundaries of each maximum is 
of the order of 1/v whereas the time for a transition 
from one state to the other is exponentially large (see 
formulas (31) and (32) below). Therefore one can regard 
each state as metastable with a long lifetime. For time 
intervals which are small in comparison with the life­
time of the state, it makes sense to talk about the sta­
tistical properties of this state (fluctuations in the num­
ber of photons, width of the emission line, etc.) Here 
only the region of classical generation ( ~ ~ ~ z) is of 
interest; the region below the generation threshold 
differs only slightly from case (17). 

Since ITI I ::s I Tic I - 82 « 8 in the hysteresis region, 
then the coefficient b =- {318. The following formulas 
hold for nand An: 

n = (l'ITJcl + 11 + l'ITJol)!l'~~Pz, (25) 
( ~n) 2 = 112[~2/PI (~z- ~1) 2 ( ITJc I + TJ) J'i' 

(T)c ~ T) ~ 0). (26) 

In contrast to an ordinary laser, near the generation 
threshold (at which, according to Eq. (21), we have 
(An)2 = 1/ {31 for 8 = -1 and Tj 1 ~ 1) the dispersion An of 
the distribution function now depends on the generation 
parameter 1J, i.e., on the radiated power. Upon ap­
proach to the cutoff point ( Tj = Tj c) the fluctuations in­
crease markedly; however, formula (26) is obtained 
under the assumption that the fluctuations are suffi­
ciently small (An« ~2- ~1 ~ [(ITI I+ 17~/31/32] 112 ). 
Hence the restriction I Tic I + Tj » &1{32 ) 1 follows. A 
small neighborhood of the cutoff point, where the con­
cept of a metastable state is violated, is thereby ex­
cluded. Substituting ITI c I + Tj - ({31 {32)113 into formula 
(26), let us estimate the level of fluctuations near the 
cutoff point itself; it is not difficult to see that in this 
case (An)2 exceeds the level of fluctuations in an ordin­
ary laser by roughly (f31f32r 116 times. Thus, for small 8 
the fluctuations in the hysteresis region are substan­
tially larger than in an ordinary laser. 

The increase of fluctuations in a nonlinear laser is 
due to two causes. In the first place it is associated 
with the increase of the coefficient of diffusion, which 
is proportional to the number N1 of excited atoms. This 
effect is described by the factor /32/ (f3z- {31) in formulas 
(24) and (26). The other cause consists in the fact that 
the slope of the coefficient of gain- A(~)/~ is decreased 
at the point ~ = ~ 2, especially in the hysteresis region. 

As to the distribution function at ~ ~ 0, in this reg­
ion P(O has the Planck form (16) and 

(27) 

For very small 117 I ~ ..[{3; formula (27) is violated since 
An is comparable with ~ 1· 

Now let us consider the system during a time inter­
val which is large in comparison with the lifetimes of 
the metastable states ~ ~ 0 and ~ 2 ~ 0. Then obviously 
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the probability of the state with generation is propor­
tional to exp {f( ~ 2)}, and the probability of the state 
without generation ""'exp{f(O)}. A transition between 
these states occurs at that value TJ = 'ij at which f( ~ 2 ) 

= f(O). From here we find 

(28) 

This means that for a very slow variation of the param­
eter TJ the hysteresis disappears-generation appears 
and stops at the point TJ = fj. This transition is repre­
sented in Fig. 4 by the solid vertical line. 

Let us again consider the damping of the average 
field due to quantum fluctuations of the phase and the 
width of the generation line corresponding to this damp­
ing. The average field is determined by the harmonic 
P1(~, t) in the expansion (4). Solving Eq. (2) in the quasi­
static approximation, we find the following width t:.v of 
the generation line: 

11v = v~./2s•<~· -·~t). 

In contrast to the dispersion of the photons' distribution 
function, the width of the generation line does not have 
any singularities associated with the approach to the 
cutoff point TJ = TJ c, in the same way as it does not have 
singularities upon approach to the region of classical 
instability. r51 

3. LIFETIME OF A METASTABLE STATE 

Now let us determine the time for a transition due to 
fluctuations from one metastable state to another. 
Formally this is equivalent to a determination of the 
time for passage of a Brownian particle through a po­
tential barrier. uoJ For this purpose let us consider an 
approximate solution of the diffusion equation (2) with 
nonvanishing probability current 

i = -2v (Ap + Bdp I~) (29) 

In the initial stage of the transition one can regard j 
as a constant quantity equal to T-1 , where T denotes the 
transition time. In order to be definite, let us consider 
a transition from the state ~ Rj 0 to the state ~ Rj ~ 2 

(spontaneous initiation of generation). Integrating (29) 
with respect to ~ from no up to ~ 2 (no denotes the aver­
age number of photons in the state ~ Rj 0) and setting 
P( ~ z) = 0, we obtain 

no ~ e-tm 
T(0--+2)=-Sas-s . (30) 

2v no (S) 

The region ~ Rj ~ 1 introduces the major contribution 
to the integral (30). Evaluating the integral by the 
method of steepest descent we obtain (x = TJ I I TJ c I) 

- s, '! 
T(!42) = l'n~2 • ~~· 

v(~2- ~t) ITJcl'1•x2 

X exp { ITJcl''', (.1 + 2l'1 + x) (1-)'1 + x) 2 }. (31) 
3(p.~.) ,, 

The exponential in this expression is assumed to be 
large. It is also not difficult to exactly find the time for 
a transition from the state ~ Rj ~ 2 to the state ~ Rj 0 
(spontaneous cutoff of generation): 

- 3/ 1/ 

T(2--+0}= )':n:~2 ·p,-• (i+l'+x)ex { 4 
v(p2-~t)ITJcl'1•x P 3 

111•1'1•(1 + x)'" } 
(p,p.)''• . 

(32) 

FIG. 4. Picture of the hysteresis region. De­
pendence of the generated power E on the gen­
eration parameter 11· The dashed line with arrows 
indicates the region of classical hysteresis. The 
solid 71 = 1i' corresponds to the pulsed regime of 
the laser. 

At the point TJ = 1i the arguments of the exponentials 
in (31) and (32) coincide and here, of course T(O- 2) 
Rj T(2 - 0). Thus, at TJ = 1j generation takes place in the 
pulsed regime, and the generation time approximately 
coincides with the time in the absence of generation. 
Such pulsations bear, of course, a random statistical 
character. 

Now let us estimate the order of magnitude of the 
quantity T. According to formula (31) the triggering 
time is of the order of one second for the following 
values of the parameters: 11 = 106 Hz, I TJ c I = 10-2 , 

x = 1/3, {31 = (1/2) {32 = 10-6 • From here it follows that 
in order to observe the spontaneous appearance (or dis­
appearance) of generation it is necessary to get into the 
region of parameters very close to the hysteresis 
threshold (I TJ c I ~ 10-2). Such a task is apparently ac­
tually feasible. Thus, in articleruJ the generation 
parameter of an ordinary laser was fixed near the 
generation threshold with an accuracy of the order of 
10-2. 

4. CONCLUSION 

The investigation carried out indicates that the fluc­
tuations of the intensity of the radiation in a nonlinear 
laser in the hysteresis region are substantially larger 
than in an ordinary laser. This effect, which is associa­
ted with a decrease in the slope of the coefficient of 
gain, is especially noticeable at the point of cutoff of 
classical generation. 

The statistical description of laser radiation in the 
hysteresis region is equivalent to the picture of a 
liquid- gas phase transition near the critical point. uzJ 
Here the generation parameter plays the role of the 
pressure, and the radiation energy plays the role of the 
volume of the system (see Fig. 4). The metastable 
states in the hysteresis regime are analogous to super­
heated and supercooled phases. Thus, in the present 
article the fluctuations are calculated within the frame­
work of the single-mode model of a phase transition. 
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