
SOVIET PHYSICS JETP VOLUME 31, NUMBER 1 JULY, 1970 

FLUCTUATIONS IN A JOSEPHSON CONTACT 

Yu. M. IVANCHENKO and L.A. ZIL'BERMAN 

Donets Physico-technical Institute, Ukrainian Academy of Sciences 

Submitted June 12, 1969 

Zh. Eksp. Teor. Fiz. 58, 211-225 (January, 1970) 

The behavior of a superconducting tunnel contact in the presence of thermal fluctuations is investiga­
ted. In contrast with the case considered inlll, the transverse dimensions of the transition are not as­
sumed to be small. One must therefore assume that the fluctuations introduced from the external cir­
cuit and arising within the contact behave differently and in general cannot be taken into account by the 
introduction of some effective temperature. The dependences of the stationary current component on 
the magnetic field and the Josephson radiation spectra are calculated. The dependences may differ 
strongly from those known previously. L1- 31 It is possible that some of the results obtained have been 
observed experimentally. l4 ' 12 • 141 

1. INTRODUCTION 

IN an earlier paper / 11 we considered tunneling in con­
tacts with a small area of transverse cross section, 
with the Josephson coupling energyl21 commensurate 
with the fluctuation energy. The cross section was as­
sumed to be so small that the fluctuation current change 
was the same over the whole junction. In most cases, 
evidently, this condition will not be satisfied. At the 
same time, ana17sis of some experimental results given 
inl11 (see alsol3 ) testifies to the fact that the effect of 
the fluctuations is reflected significantly in the experi­
mental results. Here the fluctuations are expressed 
both in the stationary Josephson currentll' 41 and in the 
radiation spectrum. [31 In this connection, it is of inter­
est to study the fluctuation processes in superconducting 
tunnel contacts without such a strict limitation on the 
smallness of the transverse cross section of the con­
tact. 

In extended contacts, the fluctuations introduced from 
the external circuit and the fluctuations arising directly 
in the junction region act differently. The external fluc­
tuations are fed to the edges of the junction in a layer 
whose dimensions are of the order of the penetration 
depth of the magnetic field in the superconductor. 
Consequently, the external fluctuations can be taken into 
account in the boundary conditions of the differential 
equation that determines the phase difference of the two 
superconductors. [5- 81 The internal fluctuations arise 
through the area of contact and it is natural to consider 
them by the introduction of an inhomogeneous fluctuating 
term in the equation for the phase difference. On con­
tacts of small dimensions, the fluctuations lead to the 
appearance of a finite slope of the volt-ampere charac­
teristic, l11 i.e., to the appearance of a non-zero resis­
tance. Consequently, the weak superconductivity is 
interrupted and a resistive state arises. This state is 
interesting in that it is determined to some extent by the 
parameters of the external circuit, which is at room 
temperature. A similar resistive state will also be ob­
served in extended junctions. However, the very process 
of transition to the resistive state can have qualitative 
and quantitative differences in this case. 

In the present work, we have considered the behavior 

of a superconducting tunnel contact whose characteristic 
dimensions are smaller than the Josephson penetration 
depth but are at the same time so large that it is neces­
sary to take into account the inhomogeneity in the dis­
tribution of the fluctuations over the cross section. 
Here we have considered only the case of sufficiently 
strong fluctuations, in which the contact is definitely in 
the resistive region. The analysis is carried out without 
account of retardation effectsl8 ' 91 and the effect of the 
action of the quasi-particle current on the tunnel current 
of the Cooper pairs. 

2. FUNDAMENTAL CONSIDERATIONS 

For simplicity, we shall consider below a "linear" 
Josephson junction, i.e., a junction in which the phase 
difference cp is a function of time and a single space 
coordinate x. The experimental situation is such that cp 
always depends on two space variables. However, as a 
rule, the dependence on one of these variables is very 
slow. In this connection, theories developed for the 
description of "linear" junctionsl6 ' 71 are excellently 
confirmed by experiments (see, for example, lloJ). 

In the presence of fluctuations in the region of the 
tunnel contact, the phase difference will be determined 
from the equation 

6.2q; 1 ii'q> y ilq; 1 . . . (1) 
---_---------- = -[smq> + J(X, t)/]o], ox2 c2 ilt12 c2 Ot 'A ;2 

where c is the propagation velocity of waves in the tun­
nel structure, Aj the Josephson penetration depth, jo the 
amplitude of the Josephson current, y the effective 
damping inside the contact: 

y = (RC)-1• 

Here R is the resistance of the contact to the normal 
current, l3 ' 81 C = t:S/41Td is the ·capacitance of the con­
tact, S the area of the transverse cross section, d the 
thickness of the dielectric layer, E its dielectric permit­
tivity. Equation (1) differs from that generally usedls-oJ 
only by the presence of the fluctuation current j (x, t) 
produced by the dissipation fluctuations in the junction 
region. It is assumed that this current has the proper­
ties of white noise/111 i.e., 

(j(x, t)> = 0, (j(x, t)j(x', t')>=29f>(x-x')ll(t-t') /Rl, (2) 
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where ® is the temperature of the contact, l its extent, 
( ... ) the mean value over the random variable. 

To determine cp, it is necessary to supplement Eq. (1) 
with boundary conditions. The problem of the choice of 
boundary conditions was discussed inl7J, where it was 
shown that for the description of the electrodynamics of 
the tunnel contact it is convenient to carry out a division 
of the boundary conditions for the stationary component 
and the high-frequency oscillations. Such a division in 
the boundary conditions is essentially connected with the 
fact that the variable component of the Josephson cur­
rent is strongly damped along the output of the junction. 
It is not difficult to see that in such a partition of the 
boundary conditions, it is not possible to take correctly 
into account the fluctuations introduced from the ex­
ternal circuit. In this connection, we again introduce 
the boundary conditions under the assumption that losses 
from radiation are lacking. It is not necessary to make 
this assumption, but it significantly simplifies the final 
results, changing them only slightly quantitatively and 
not at all qualitatively. Formally, the losses by radia­
tion can be taken into account as in l?l by loading the 
boundaries of the junction by some effective complex 
impedance. 

We shall assume that the junction is included in the 
closed circuit formed by the source of emf E and the 
internal resistance R1. In some cases, the principal 
role is played by the inductance of the leads L. At the 
points of connection of the external circuit to the tunnel 
contact, the total current of the source will split in our 
model into the two currents I1 and I2 (I1 + I2 = I) flowing 
to the right and left boundaries of the contact. From the 
branch point of the current to the dielectric, each cur­
rent I1 and I2 travels the distance l1. The specific induc­
tance of such a part of the superconductor L1 = 47TAl 1, 
where A is the penetration depth. We use the induction 
law 

~ Ed! + _! ~ ~ HdS = 0 
c ot · 

for the two loops. The first loop travels along the path 
of the current I and I1 and the second along the path I 
and b Assuming quasistationarity for the external cir­
cuit and the edges of the junction region, we get 

L di L 1 di1 ( l ) 1 dCD 1 

E+V(t)=IR'+--;:2"Tt+27at+U -2 +~dt' (3) 

L di L 1 di, ( l ) 1 d<D, ( 4) 
E+V(t)=IR,+"7'at+27at+U 2 +~dt' 

where U(l/2) and U(-l/2) are the potentials at the ends 
of the junction, <1> 1 and <1>2 the fluxes of the external mag­
netic field through the first and second loops. The pres­
ence of fluctuations in the external circuit is taken into 
account by the introduction of the fluctuating emf V(t), 
which has the properties of white noise: 

(V(t)) = 0, (V(t) V(ti)) = 281R16(t- t,), (5) 

where ® 1 is the temperature of the external circuit. 
For the formulation of the boundary conditions in 

terms of the phase, it is necessary to express the cur­
rents I1, I2 and the potentials U(l/2) and U(-l/2) in the 
relations (3) and (4) in terms of cp. The currents h, I2 
fall off in a distance of the order of A from the edge of 
the superconductor, while the Josephson current jo sin cp 

and the fluctuating current j(x, t) are distributed along 
the junction at the distances A j or l. Integrating the con­
tinuity equation in the region of the junction from -l/2 
to -l/2 + A. and from l/2- A to l/2 and taking into ac­
count the Josephson relations l2J 

iiqJ 4eA. 
-=-H, 
ox ftc 

we obtain 

1~2 l 
lz= ~ dx[josin<r+i(x,t)J+"-/ifiPx(-). 

l/2->. 2 

With accuracy to terms of order A/A.j 

I,= -A.;'jo(jlx(-l/2), I,= 'A;'ia'f!x(l/2). 

Combining (3) and (4) with account of (6) and (7), 
after elementary transformations, we get 

~ [+ ii(<D,a;<D2> +E+ v(t) 1 =~[ IPt( + )+'ft( -f)) 
+:~I (1+ ~2 :t )[!px(~)-!fx( -~)]. 

(6) 

(7) 

(8) 

We shall make some explanation in connection with 
(8). If there are no fluctuations (V(t) = 0, f(x, t) = 0) and 
we are in the region of the existence of a stationary 
regime, then it follows from (8) that 

(9) 

Integrating Eq. (1) over x and substituting in (9), we 
get 

1/2 

; = io ~ dx sin <p, 
-l/2 

a stationary Josephson current is possible, i.e., if E/R 
< j0 l. Here the voltage at the junction is equal to zero. 

Subtracting (3) and (4), we get 

:t{z,['fx(+)+<rx(-+)J+<r(+)-q;(-+)}=2n :t <D1
; 0 <D2 , 

,10) 

where y 1 = (R1Cr\ Y2 = c2RJ(L + L1) and <Po= JTfJ.c/e is 
the flux quantum. 

For a constant external magnetic field H, the term 
with the derivative with respect to the time of the sum 
of the fluxes <1> 1 and <1>2 in Eq. (8) is equal to zero. 
Integrating (10) with respect to time and assuming the 
integration constant to be zero, inasmuch as in the ab­
sence of the external fields the open-circuit phase dif­
ference is equal to zero, we have, finally, 

Here <I> is the flux through the cross section of both 
superconductors: 

<D = 2'AH(l + 21,). 

Strictly speaking, the integration constant in (11) can 
be different from zero, since the possibility of trapping 
of the flux by the Josephson contact is not excluded in 
principle. In this case, the integration constant will 
simply be proportional to the trapped flux. 
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3. STATIONARY JOSEPHSON CURRENT IN THE 
INERTIA-FREE CAST 

We shall first consider the case in which one can 
neglect the inductance of the leads, and the self induc­
tance and capacitance of the tunnel contact. Experimen­
tally, this case can be realized only in an ideal junction. 
For real contacts, however, there is always a region of 
small voltages, in which the characteristic frequencies 
are small and therefore one can neglect the reactive 
terms in the relations (1) and (8). This region is the 
narrower the more the measurement circuit differs 
from the ideal. Owing to the absence of inertia in the 
phase change, the solution for cp will consist of two 
terms, one of which will depend only on the space coor­
dinate while the second will depend essentially on the 
time and very weakly on x. Inasmuch as we shall also 
limit ourselves to the case l < A., it follows from (11) 
that cp has the form J 

q> = kx + q>1 (x, t), 

where k = 4eHA/flc, and cp 1(x, t) is a slowly changing 
function of x. 

Integrating Eq. (I) over the coordinate x from -Z/2 
to Z/2 and discarding the small inertial term with the 
second time derivative, inasmuch as it is proportional 
to C, we get 

1/2 

q>1x (;)- <p1x (-}) = lJ ~1 + 1-.~; (si~;y) sin lP1 + AJ~io ~ dxj (x, t), 
-1/2 (12) 

where cp1 is the value of cp1 at some point inside the con­
tact, y is the current arising in the junction in the vicin­
ity of the barrier, expressed in units of the flux quantum 
(y = kZ/21f). 

Substituting the relation (12) in Eq. (8), after neglect 
of small reactive corrections, we arrive at the equation 

2e illfi ( R1 ) 2e ( sin ny ) 2e ;,s. 
/j[E+V(t)l=ar i+R +hR1lio -n- sin<pt+TR1 dxj(x,t). 

y -l/2 
(13) 

As is seen from (13), the spatial dependence of the 
internal fluctuations in the inertia-free case is negligi­
ble. In this case, one can introduce the "effective tem­
perature'' 

and the "effective resistance" of the contact R2 

= RRJ(R + R1). 
The difference from the point contact considered inr 1 J 

lies in the fact that the magnetic field enters through 
the boundary condition (11), and the internal fluctua­
tions enter through Eq. (1). Equation (13) differs from 
the equation considered in [lJ only by certain coefficients 
and by the form of the fluctuation term. Therefore the 
solution of the problem in the given case is easily ob­
tained by use of the method developed in [lJ . The station­
ary component of the Josephson current through the 
junction has the form 

where 
lo = iol, 

_ 2e loR sin ny 
z-- .--li Dny ' 

( 2e)2 
D= 7i e.R •• 

(14) 

IO! is the Bessel function of imaginary argument of 
order a. 

The relation (14) connects the stationary current with 
the emf of the source. However, the dependence of the 
stationary current on the voltage at the contact is meas­
ured experimentally. In this connection, for comparison 
with the experimental curves, it is necessary to know 
the dependence of the voltage at the content of the emf 
of the source, which is obtained by averaging of Eq. (13) 

U E ltd Rz 
(y, )=2e"dt(cp) =R;"E-Rz](y). (15) 

The dependence of the current on the magnetic field 
has a rather complicated form. In a large magnetic 
field, or for sufficiently strong fluctuations, Eq. (14) is 
materially simplified, since z << 1 here: 

1 = lo!J.Z sinny 
2(1 + 112) Dny • 

(16) 

In this approximation, the potential at the junction coin­
cides with the emf of the source. 

As is seen from relations (14) and (15), the depen­
dence of the current on the voltage for a given magnetic 
field is similar to the analogous dependence observed 
in[lJ. The dependence of the stationary component of 
the current on the magnetic field for a fixed voltage will 
be oscillating with the same period as in the absence of 
fluctuations; however, with increase in the magnetic 
field, the current falls off more rapidly than usual, and 
for large fields we have I ~ (sin 1ry / 1ry)2 in place of 
I ~sin ey/1ry. 

4. GENERAL CASE 

In the general case, it is necessary to solve Eq. (1) 
with the boundary conditions (8) and (11). The exact 
solution has not been obtained here, and therefore we 
consider different approximate solutions. We shall use 
the method of successive approximations, which in the 
given case is applicable if one of the following conditions 
is satisfied. 

1. Strong fluctuations. This condition corresponds to 
the approximation in which the relation (16) is obtained. 

2. Relatively large emf of the source, for which 
Io « E/R:!. This case is very important for the study 
of the spectral characteristics of the radiation. 

3. The current induced by the external magnetic field 
is large in comparison with the amplitude of the Joseph­
son current Io. 

In all these three cases, one can develop the pertur­
bation theory for the nonlinear term in (1). We shall 
seek a solution of the zeroth approximation in the form 

cp=cpo+kx+Qt+ yO x2+'1'(x,t) (17) 
2C2 ' 

where n = J1D. 
The equation for '1£ and the boundary conditions are 

obtained directly from the relations (1), (8), and (11) if 
we substitute Eq. (17) in them and discard the nonlinear 
term in cp in Eq. (1). The linear equation thus obtained 
is conveniently solved with the help of the Laplace trans­
form 

'l'(x,p)= S dte-Pt'l'(x,t). 
0 

(18) 



120 Yu. M. IVANCHENKO and L. A. ZIL'BERMAN 

In the presence of fluctuations, the result of the cal­
culation, after averaging over the random variables for 
sufficiently long times, will not depend on the initial 
conditions at the instant of connection. Therefore, for 
simplicity, we shall take zero initial conditions. Here, 
it is easy to obtain the following expression for ..Y(x, p): 

'l'(x,p)= 2e V(p)f(x,p)++ S dx1j(x~>Plft(X,Xt,p). 
/j /.; Jo -1/2 

In this case, 

f(x,p) = [pch q~+ 2C2 ( 1 +~) qsh q~]-1 chqx, 
. 2 ly! '\'2 2 (19) 

/1 (x,x~op)=- f(~~p) [ pshq( +-x1 ) + ~~ ( 1+ ~J qchq( +-x1)] 

sh qx [ p ( l ) 1 ( l )] [ l 1 l J-1 -J;j Tchq 2 -xt +z;-shq 2 -x1 qchq:f+z;-shq:f 

+a(x-xt) shq(x-xt)' (20) 
q 

where q2 = p(p + y 2 )/c2 • 

To determine the stationary component of the cur­
rent, it is necessary to know the correction of the first 
approximation ..Y1(x, t), which we shall obtain in similar 
fashion in the form 

+ Qt+ 'l'(x,t)]. 

If fluctuations are absent, then ..Y(x, p) = 0 and the 
solution of the problem of the determination of the form 
of the volt-ampere characteristic of the contact is given 
by Eq. (21), in which it is necessary to set ..Y = 0. From 
Eq. (21), with account of the fact that the stationary 
component of the current is equal to the mean value of 
jo sin cp over time and the coordinate x, it is not difficult 
to see that the current will reach maxima for three 
values of the voltage at the junction, for which n is 
close to the imaginary part of the poles of f1(x, x1, p). 
For lp I ~ y this leads to a series of maxima in the 
vicinities of the voltages determined by the conditions 
n - rmc/l, where n is an integer. The experimental 
procedure for the measurement usually leads not to 
maxima but to steps which have been studied both theor­
etically and experimentally in a number of resear-
ches. l6 ' 7' 10 l In addition to bursts of stationary current 
at high voltages, another burst is possible when 
n ~ (n~- y~) 112 , where n~ = Y2(y + y 1), Y3 = (y + Y2)/2. 

The de component of the Josephson current in the 
presenee of flucutations is equal to 

l/2. l/2 lj2 3J 

l=jolm S dxlim(exp(iq;(x,t)])= ;• _2 1m} dx S dx1 S dt!t(x,xt.t)· 
-112 1~ 'A, -1/2 -U2 o 

>< F(x, x, t)exp {i[k(x- x1)+ yQ(x'- x~2)/2C2 + Qt]}, (22) 
where 

F(x, x1, t)= lim (exp {i('l'(x, t + t1)- 'l'(x~, t1)]}). (23) 
tr·+oo 

The spectrum of Josephson radiation Rw is very 
easily connected with the function F determined by the 
relation (23): 

j~ .. 112 1/2 

R., =-;:;- Re S dt cos wt S dx S dx1 F (x, Xt, t) · (24) 
0 --1/2 --1/2 

)( exp {i(k(x- Xt)+ yQ(xl- x12)/2C' + Qt]}. 

Using relations (2) and (5), we carry out averaging in 
(23). As a result, we get for F 

F(x,x1,t)=exp{- [(~)' 8 1Rtl(x,xt,t)+ E\_ 2 /,(x,x~,t)J}. 
li Rl('i.;J0 ), 

- . ' (25) 

Equation (24) contains the quantities 
t+t, t, tl 

l(x,x1,t)=lim [Sd,;f(x,,;)+ S dtf2(x1,,;)-2 S d,;f(x,,;+t)j(Xt.'t)]. 
tr+» o .0 0 

1/2 t+t, 
(26) 

lt(x,x~,t)=lim S dx2[ S d,;N(x,x2,,;)+ 
t1-.oo_l/2 0 

tl t, 

+ S d't/12 (x1,xz,,;)-2 S d,;ft(x,x2,'t+t)ft(x~,x,,,;)]. (27) 
0 0 

To calculate (26) and (27), it is necessary to take the 
inverse Laplace transforms of the functions f(x, p) and 
f1(x, x1, p) determined by the expressions (19) and (20). 
It is not difficult to see that all the singularities of these 
functions are simple poles. These all lie in the left 
half-plane with the exception of p = 0. In this connection, 
it is convenient, in carrying out the inverse Laplace 
transform, to expand f(x, p) and f1(x, x1, p) in partial 
fractions. We denote the poles of (19) by Pk and the 
residues at these poles by G(pk, x). In the same way we 
introduce the notation Pi and N(pi, x, x1) for the relation 
(20). Then, after elementary calculations for f(x, t) and 
f1(x, x1, t), we find 

f(x,t)= +y, + ~ G(p,,x)eP>1, 
y '\'1 k 

(28) 

(j2 
jt(x,t)=- + ~ N(p~,x,xt)eP; 1 • (29) 

l(v+vtl 1 

The pole at the point p = 0 is extracted in Eqs. (28) 
and (29) for the sake of convenience. Substituting the 
resultant f(x, t) and f1(x, x1, t) in Eqs. (26) and (27), we 
get, after carrying out the necessary transformations: 

( '\'1 )' '\"''t' X 2 - Xt2 
/(x,x1,t)=t -+ + ( + )' 2., + ~ [G(p,,x)f(x,-pk) 

' Y '\'! Y Yt C P• 

+ G(p k' x1)f(x~o- P,)- 2G(p,,x)f(x~,- P,)eP•1], (30) 

1/2 

+ ~ dx1~ [N(p;,x,xz)/t(x,x,,-p;)+N(p;,Xt.X2)ft(xt.X2,-Pi)-
-l/2 Pt 

-2N(p1,x,x2)f1 (xt.x2,- p;)eP•']. (31) 
We shall carry out further calculations of the station­

ary component of the current and the radiation spectrum 
for several more characteristic special cases. As a 
rule, the inequalities yl/C« 1, Y1l/C« 1, Y2l/c« 1 
are very well satisfied experimentally. This means 
simply that the delay in the external circuit is much 
greater than the time of passage of the electromagnetic 
wave from one side of the junction to the other in the 
waveguide formed by the tunnel structure. In satisfying 
these inequalities, all the poles of the functions )19) and 
(20) are divided into two characteristic groups p. k and 

p~Ik. To the first group belong those for which ;k• and p. 
1' 1 

are small in absolute value. They are identical for both 
functions f and f1: 

(32) 
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To the second group belong the Pi and Pk of larger 
absolute value. In order of magnitude, they are equal to 
2nc/l, where n is an integer. The principal contribution 
to the function F is made by the poles of the first group. 
The contribution due to the poles of the second group 
has the order (y 1l/C)2 • 

We note that the small contribution due to the poles 
of the second group is obtained only in the calculation of 
the function F. The contribution made by these poles to 
the stationary component of the current is of the same 
order as from the poles (32) under the condition that the 
voltage at the junction is such that the imaginary part 

of pp is close ton. However, we shall be interested in 
the stationary component of the current for small volt­
ages and we shall not approach the region in which the 
step structure of the volt-ampere characteristic begins 
to appear, i.e., the region where n ~ Im pp. The volt­
ampere characteristic and the spectrum of Josephson 
radiation can experience appreciable quantitative and 
qualitative changes with increase in the temperatures ® 
and 81, the parameters of the external circuit and the 
junction. We shall first consider the case of very strong 
fluctuations, when the inequalities D >> y h y 2 , y 3 are 
satisfied. In this case, integration over time in (22) can 
be carried out by the Laplace method. The coordinate 
dependence of J(x, x1, t) and J 1(x, xh t) here can have an 
important effect on the change in the stationary current 
with the field. Using the relations (22), (23), (30) and 
(31), and the approximations mentioned above, we get 
for the current the expression 

where 

- I 

irr Cl!Q S S I(y Q)=-lo--e-a'I•B' dx dx,exp[i1ty(x-x1) 
' 32 'A·2B3 

l -1 -1 

£W 
"t = 41:2 ay3(Y• + a)-1, 

9 
'V=v+Yh a=-v, e. 

(33) 

The shape of the radiation line here will be Gaussian, 
with a width l:!..w "'4B. 

Figure 1 shows the results of the numerical calcula-

Zf! 

FIG. 1. Dependence of the stationary Josephson current compo­
nent on the magnetic field: curve l - fluctuations are absent, 2 -
inertia-free case in the limit of strong fluctuations; curves of the same 
type are obtained in cases considered in Sec. 4 if D is not very large. 
Curves 3-6 correspond to the case of very strong fluctuations: 3-
{l = 0, T = 7r/8; 4- {l = 0, T = 7r/4; 5- {l = 1.25, T = 0; 6- {l = 2.5, T = 0. 

:::~ 0.5 

0.# 

0~2~ 
I ! I I 

o.8 1.5 z.q J.z f,O Q,8 
.r 

FIG. 2. Dependence of the stationary current component on the 
voltage for 'Y~ > 05. Curves l - 11 = 0.5, 2 - 11 = l. 

((:r:1 )/R10) 
1.0 

0,8 

J.5 

/1.2 

0 '--'-~'-:-'- -'-;"-;:-'--...:::;::s;;;;;;;~,_,--.J..~~ 
0.8 J.Z Q.O . .r, 

FIG. 3. Spectral intensity of radiation for 'Y~ > 0~. Curve l - 11 = 
0.5; 2- II= 1. 

tion of the relation (33) for some values of the param­
eters f3 and T. As is seen from the figure, with increase 
in T at fixed {3, the ratio I(y)/I(O) goes higher, smoothing 
the oscillatory part considerably. The change in the 
parameter f3 for fixed T acts somewhat differently. With 
increase in f3 the current is rapidly damped with the 
magnetic field and for sufficiently large {3 only one 
maximum in the vicinity of y = 0 will be significant. If 
T « 1 and f3 « 1, then I~ (sin 7Ty/7ry)2 , just as in (16). 

If there are no strong fluctuations, i.e., when Dis not 
very large, it is of interest to consider the following 
four possibilities: 

1) y~ » n~ » yi. In this case, a result is obtained 
which was found earlier by Larkin and Ovchinnikovl3 J 

(see alsol1J ). 

2) y~ » n~. Here, we get from the relations (22) and 
(24) 

l(y, x) = lo' r dtsinxt(1- e->')exp {- [ t-~ (1- e->1)]}' (34) 

R(xt)~ r dtcosxtcosx1texp{-[t- ~ (1-e->t)]}. (35) 

The dependence of the current on the voltage and the 
spectral intensity are shown in Figs. 2 and 3 in reduced 
units 

8yys2 40ys2 4roys' 
v = Dav ' x = Dav ' x1 = Dav ' 

, loyaZ sinny 
lo =-----. 

a rry 
The dependences obtained here are qualitatively of the 
same type as in the first case. 

3) y~ ...., 0~. For definiteness, we set y~ = 0~. Here .. 
l(y, 11) = Io'' S dtsin 11-t[i- e-t1 (1 +tat)]· 

0 
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Xexp{-[t- 3 -2~/v2 (1-e-~t>+T(1- ~Je-tt]}, (36) 

R(J!t)- S dt cos J!t cos J!tl· 
0 

Xexp{-(t- 3 ~tr2 (1-e-t1)+-H 1- ~Je-~1]}. (37) 

These dependences are illustrated in Figs. 4 and 5. 
Here we have introduced the notation 

1'1 = wID, ~ = va I D, a = 1 - y Iva •. 

Io" = Ioz sin ny . 
2 ny 

As is seen from Figs. 2, 3, 4, and 5, the general 
character of the dependences in the second and third 
cases is very similar. However, a significant difference 
in the path of the curves is possible. 

4) y~ « Q~. Here, 

l(y, TJ) =I~" S dt [1 + lsin.!__- cos.!_] sin TJ .!.._ 
0 g, s ~ s 

Xcxp{-[t+2; (t-e-ttcosf-)-23 ~-~tsinf-]}, (38) 

~5 t t 
R(TJ!)- dtcosT)-COSTJ1 -

0 s s 

xexp{-[t+ 2~ (t-e-~1 cos-f)-: ~-~tsin ~]}. (39) 

The curves I/1~ and the spectral intensity are plotted in 

Ilp)/1:' 
I, 2 

q 

1.0 

0.8 

0.5 

FIG. 4. Dependence of the stationary current component on the 
voltage for 'Y~ = n5. Curve I -a= 0.2, ~ = 0.5, od2'Y2 = 0; 2- a= 0.2, 
~ = 5, ai2'Y2 = 0; 3 -a= 0.2, ~ = 0.5, CI.!2'Y2 = I; 4- a= -0.2, ~ = 0.5, 
w2'Y2 = 0. 

f!Jp,JIIlfOJ 
1.0 

0.8 

0,5 

0.11 

0,2 

FIG. 5. Spectral intensity of radiation for 'Y~ = 05. Curve I - a = 
0.2, ~ = 0.5, w2-y2 = 0; 2 - a= 0.2, ~ = 5, ai2'Y2 = 0; 3 - a= 0.2, ~ = 
0.5, a/2'Y2 = I. 

(/,8 

0,6 

0,8 1,2 f.6 

FIG. 6. Dependence of the stationary current component on the 
voltage for 'Y~ ~ il5. Curve I - cosh 21r~ = 2, ~ = 0.5; 2 - cosh 21r~ = 4, 
~ = 0.2; 3- cosh 21T~ = 9, ~ = 0.2. 

R('?,)/R(O) 

D.Z 

Q,! 

o 0.# 0. 6 !.2 f.5 2.0 2,4 2.8 J Z J 6' 4,0 ¥.4 ~ 

FIG. 7. Spectral intensity of radiation for 'Y~ ~ il5. Curve I - cosh 
21T~ = 2, ~ = 0.5; 2 - cosh 21T~ = 4, ~ = 0.2; 3 - cosh 21T~ = 9, ~ = 0.2. 

Figs. 6 and 7 as functions of 11 1 = w/D for several 
values of the parameter ~ = D/Oo. 

fll ( sin ny ) va - • 
/ 0 = / 0z -- -l'rr~cthn~, 

ny v2 
The frequency is reckoned from Q in Figs. 3, 5, and 

7. Here the curves are constructed only on one side, 
since, for n >> D, the spectral intensity will be symme­
tric relative tow = n. 

The case D » n does not present any special inter­
est, since the width of the radiation line here will be 
such that its contribution will be scarcely observed ex­
perimentally (t.w/0 < 1). 

5. CONCLUSION 

At the present time, two experimental researches 
are known to us in which the effect of the fluctuations 
on the stationary Josephson current component was es­
tablished in clear fashion. These are the works of 
Vant-Hull and Mercereau[41 and of Galkin et al. [121 

Before these researches there was the communication 
of Shigi et al. [l3J on the anomalous behavior of the 
Josephson current, which is possibly connected with the 
effect of fluctuations. However, the authors of[131 did 
not connect the observed anomalies with fluctuations. 
The appearance of a finite resistance in the supercon­
ducting tunnel contact in the presence of fluctuations 
was first noted in the work of Vant-Hull and Mercereau. 
Here a contribution similar in form to that shown in 
Fig. 6 was obtained to the quasiparticle current, assoc­
iated with the Josephson current. The oscillating change 
in the current with the magnetic field is also convincing 



FLUCTUATIONS IN A JOSEPHSON CONTACT 123 

proof of this. The maxima on the curve of Fig. 6 appear 
at points where n Rj nno. In the experiment ofl4l, no is 
close to the resonant frequency of the long line which 
the tunnel contact terminates. It would also be interest­
ing to investigate the radiation spectrum in this system 
which, in accord with (39), ought to contain a series of 
maxima, located in symmetric fashion relative to the 
fundamental frequency (see Fig. 7). The distance be­
tween the nearest maxima will be Rj no. A report on the 
observation of a similar spectrum was made by 
Dmitrenko et al. at the 14th All- Union Conference on 
Low Temperature Physics. l14J However, the results of 
a detailed study of such a spectrum are not present in 
the literature available to us. 

In the work of Galkin et al., l12 J high-resistance junc­
tions with l < Aj were studied, on which it was discov­
ered that for certain magnetic fields, the stationary 
current flowed for finite voltages at the barrier, pre­
serving a periodic dependence on the field. The mag­
netic field in the given case decreases the effective 
binding energy of the contact and in this connection, for 
some value of the magnetic field, the fluctuations des­
troy the coherent state of two superconductors with a 
fixed phase difference. Moreover, it was also discov­
ered inl12 J that the Josephson current at very high­
ohmic contacts does not show an oscillating dependence 
on the magnetic field. The latter correlates well with 
the proposed theory, since the case of very strong fluc­
tuations can be realized at high-ohmic contacts, when 
(see, for example, curve 4 in Fig. 1) the dependence on 
the field can be practically monotonic. 

The authors are sincerely grateful to A. I. Larkin, 
Yu. 'N. Ovchinnikov and I. M. Dmitrenko for interesting 
discussions of the research. 

Note added in proof(December 10, 1969). In a recently published 
paper of Am begaokar and Halperin, [ 15 ] a dependence was observed of 
the potential at a small junction, connected to a source of constant cur­
rent, on the current in the circuit. In spite of another method of solu­
tion, the results of Ambegaokar and Halperin agree analytically with the 
results obtained by us earlier in [ 1 ] and with Eq. (I 5). For comparison, 
it is convenient to write the voltage as a function of the mean current 
in the circuit I" using (14) and (15): 

V =liD sh nzo I 2ne\l;'?",(z) \', 

where z0 = 2eR2(1 1R1 + V)/hR 1D. 
~n the limit y = 0, E-+ =, R 1 -+ oo for E/R1 = I, this relation is 

identical with the result of Ambegaokar and Halperin, which is easily 
proved by expansion of both solutions in series in z. 

The experimental proof of this relation, undertaken by Anderson 

and Goldman, [ 16 ] showed a qualitative agreement between theory and 
experiment. Evidently the agreement can be improved if we take into 
account the finite capacity of the junction and the difference in the 
external circuit from an ideal current source (the rather high effective 
temperature 6 2 ~ 10°K, which significantly exceeds the temperature of 
the junction, indicates this). 
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