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Depolarization of neutrons passing through a ferromagnetic sample in the saturated state is consid
ered. The depolarization is caused by random magnetic fields produced by thermal motion of the 
atomic spins. In the most interesting case, when the neutron polarization is parallel to the external 
field, the depolarization is expressed in terms of the magnetization fluctuation correlator. It is 
shown that the depolarization is determined by fluctuations averaged over the quantum uncertainty 
of the neutron position in the beam; it thus depends strongly on the angular divergence of the beam 
and on its degree of monochromaticity. For a wide and nonmonochromatic beam, the depolarization is 
proportional to the total cross section for inelastic magnetic scattering. Formulas for depolarization 
are derived on basis of spin-wave theory, and it is noted that an experimental study of depolarization 
should permit one to determine the main parameters of the theory. Depolarization in the critical reg
ion is discussed qualitatively. 

1. INTRODUCTION 

AT the present time, the scattering of slow neutrons 
is widely used for the investigation of the dynamics of 
atomic and magnetic lattices in crystals. Usually the 
spectra of the phonons and of the spin waves are deter
mined by investigating the angular and energy distribu
tions of the scattered neutrons (see, for exampler11 ). In 
many cases, however, such a direct method is not ap
plicable. Thus, it is impossible to investigate by this 
method the long-wave part of the magnon spectrum, 
since the change of the neutron energy is negligibler2 J . 
For the same reason, it is impossible to carry out an 
energy analysis of the critical scattering of neutrons 
near the Curie point, where the average transferred en
ergy is also very small (seer31 ). In all such cases, one 
studies only the angular distribution of the scattered 
neutrons 1 which is then compared with the distribution 
calculated on the basis of some model. 

In this paper we discuss a new method of investigat
ing the dynamics of a spin system in magnetic crystals, 
by studying the depolarization of neutrons passing 
through the sample. 

Assume that a beam of polarized neutrons is incident 
on a ferromagnetic crystal situated in an external mag
netic field H. The neutron polarization vector Po is 
parallel to H, and we are interested in the polarization 
of the transmitted beam. 

If the magnetic field is weak, then the ferromagnet 
consists of a large number of domains in which the 
magnetization M is directed to different sides. In each 
such domain, the spin of the neutron is rotated around 
the induction vector B through a certain angle, and in 
the case of a sufficiently long sample, the beam is com
pletely depolarized. This question was investigated in 
1941 by Halpern and Holsteinr4J in detail, and will not 
be discussed further here. 

We now consider the case of a strong external field 
(H > 41TM), such that the sample is magnetized to satur
ation, i.e., there are no domains. At first glance it 
seems that the polarization of the transmitted beam 
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should be the same as that of the incident beam, since 
the neutron is acted upon by a constant field Bo II P 0 • 

In fact, however, this is not so, since the ferromagnet 
still contains random magnetic fields due to the thermal 
motion of the spins. Obviously, the action of these ran
dom fields on the polarized neutrons should lead to a 
certain depolarization of the transmitted beam. As will 
be shown below, a study of this fluctuation depolariza
tion as a function of the external field, the temperature, 
and the neutron energy makes it possible to obtain in a 
number of cases the same information as an investiga
tion of the scattering of neutrons through small angles. 
The advantage of the proposed method is that it is much 
simpler to measure the polarization of the transmitted 
beam than to measure the small-angle neutron scatter
ing. 

We note also that this method obviously is applicable 
not only in the case of ferromagnets, but also for arbi
trary magnetic crystals. 

2. GENERAL FORMULAS FOR DEPOLARIZATION 
The equation of motion for the neutron polarization 

vector P = (a) isrsJ 
dP 
dt=gn[PB], (1)* 

where gn = 21J.n (b = 1), IJ.n is the magnetic moment of 
the neutron, and B(t) is the magnetic induction of the 
sample at the location of the neutron. The vector B 
obviously_ consists of two parts, the constant field Bo 
= (B) and the alternating field b = B- B0, due to the 
fluctuations (obviously, (b) = 0). The field Bo causes 
rotation of the vector P around Bo with frequency w 0 

= 21J.nBo, and the length of P and its projection on Bo 
are conserved. As will be shown below, the action of 
the fluctuation addition b(t) leads to depolarization, i.e., 
to a decrease of the vector P(t). 

Let us rewrite Eq. (1) in integral form 
t 

P(t)=Po+gnS dt'(P(t')B(t')]. (2) 

*[PB] =P X B. 
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We choose as the time reference the instant of entry of 
the neutron into the sample. We solve this equation by 
successive approximations: 

t t t' 

P =Po+ Kn ~ dt' ([PoB(t')]) + Kn2 ~ dt' s dt" ([[PoB(t")}B(t')]) + ... 
0 0 0 (3) 

In this equation, in order to obtain a physically observa
ble value of the polarization, we averaged over the 
states of the sample. We confine ourselves below only 
to the experimentally most interesting situation, when 
Po II Bo, and consider two cases, when the neutron veloc
ity v is either parallel or perpendicular to B0• The de
polarization is then expressed only in terms of the 
correlator of the transverse fluctuations b 1(t) (those 
perpendicular to Bo): 

p p z t t' 
; 0 =- ~n S dt' ~ dt"(b_!_(t')b.dt")+b_L{t")b.dt')). (4) 

0 0 0 

The macroscopic treatment of the magnetization fluctua
tions implies that the vector b(r, t) is classical. In 
order for formula (4) to be applicable in the quantum 
region, where the vector b is regarded as an operator 
(see the Appendix), the integrand in (4) has been written 
out in symmetrized form. 

Thus, the depolarization of a neutron beam passing 
through a magnet is determined by the spatial and tem
poral correlations of the transverse components of the 
magnetic induction along the neutron trajectory. If the 
time of travel of the neutron through the sample is large 
compared with the characteristic times of these corre
lations of the magnetization, then the degree of the de
polarization of the transmitted beam is proportional to 
the length of the sample L, and can be represented in 
the form 

AP gn2L s"" 
p;=~ dt<b_!_(t)b_j_(O)), 

where vis the neutron velocity. Representing the 
integrand of this formula in the form of a Fourier 
integral, we obtain 

ll.P g,fL 1 s p;=z;;- (2n)• dq[Kxx(q,qv)+Kuy(q,qv)], 

Ka~(q, ro) = ~ dr dt e-i(Qr-o>t)(ba(r, t) b~(O, 0)); 

(5) 

(6) 

The z axis is chosen here along the field B0• In the 
derivation of this formula, we took into account the fact 
that r = vt along the neutron trajectory. · 

So far we have regarded the neutron as a classical 
particle having a definite trajectory. Actually, in ex
periments with thermal neutrons, one uses beams char
acterized by a momentum p, by an energy uncertainty 
(nonmonochromaticity) .6E, and an angle width .9 0• The 
neutrons in such a beam must be described by means of 
a wave packet with a width .6l ~ p-1E/ .6E = ~E/ .6E along 
the beam direction and with transverse dimensions .6p 
"" 1/pJo = X.9o. In other words, the uncertainty of the 
beam-neutron momentum is .6pz ~ paE/E in the longi
tudinal direction and .6p.l ~ pJo in the transverse direc
tion. Obviously, formula ( 6), which is obtained on the 
basis of the classical considerations, can be used only 
when the packet is small compared with the dimensions 
of the magnetiz~tion fluctuations, i.e., the quantities qx, 
qy, and qz which are important in the integral ( 6) are 
small compared with .6pz and .6P.1· We shall call such a 

beam nonmonochromatic and broad. If this condition for 
the classic treatment of the beam is not satisfied, the 
fluctuation field b(r, t) must be averaged over the wave 
packet of the neutron, and consequently it is necessary 
to limit in a definite manner the region of integration 
with respect to q in formula ( 6). This is done by intro
ducing a cutoff factor .6 2 (q), which characterizes the 
shape of the packet in momentum space (see Appendix 
I). 

In particular, for a narrow nonmonochromatic beam 
with angular divergence .9o it is necessary to make the 
following substitution in (6): 

~ dqF(q, qv)-+ ~ /l2(x)dx S dqzF(qz, qzv) r:::: n(pt)o) 2 S dqzF(qz, q1v), 
(7) 

where /C is the part of the vector q perpendicular to the 
beam. The physical cause of the dependence of the de
polarization on the form of the beam is connected with 
the fact that the spin of the neutron in the magnet is 
acted upon by the fluctuation magnetic field smoothed 
over its wave packet. For a narrow beam the uncer
tainty of the position of the neutron in a plane perpen
dicular to the beam is large, and therefore it is acted 
upon by fluctuations averaged over the dimensions of 
this uncertainty. On the other hand, if the beam is 
broad, then the uncertainty of the position is small, and 
the depolarization is due to the non-averaged fluctua
tions, so that naturally the depolarization is much lar
ger in this case than for a narrow beam. 

We have thus expressed the depolarization of neu
trons in a ferromagnet in terms of the correlation func
tion of the transverse components of the magnetic induc
tion b1(t). On the other hand, as is well knownuJ, the 
cross section for the magnetic scattering of neutrons is 
expressed in terms of the correlator of the atomic 
spins. Using the usual formulalll and recognizing that 
the Fourier component of the induction bq is connected 
with the corresponding component of the magnetization 
vector mq by the formula (6J 

(8) 

we can represent the total cross section of the magnetic 
inelastic scattering of unpolarized neutrons through 
small angles (qa << 1, .9max < :1./a, where a is the 
lattice constant) in the form r6 l 

Kn7'o 1 s 11=~(2n)• dqKaa(q,Ep-Ep-q). (9) 

Here ro is the volume of the unit cell, and Ep and Ep-q 
are the energies of the incident and scattered neutrons. 

The integrals in (6) and (9) differ in two respects: 
first, because of the additional term in (9) with the 
longitudinal correlator Kzz, and second, because the 
energy arguments q · v and EP - E p- q = q · v- q2 /2m 
are not equal. However, if the neutron energy is suffi
ciently high, so that the main contribution in the integral 
of (10) is made by q « p, the second difference is of no 
importance. Further, if we consider the paramagnetic 
phase (a ferromagnet or an antiferromagnet above the 
Curie point, or else a paramagnet), then obviously 
Kxx = Kyy- Kzz• and by comparing (6) with (9) we obtain 

ll.P 4 Lapar (10) 
P. = 3---,.;-' 
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where a par is the cross section for scattering in the 
paramagnet. In the ferromagnetic phase there is no 
such a simple connection between the depolarization and 
cross section. We <;an only state that 

D.P /Po~ Lcr /Yo. (11) 

3. CALCULATION OF DEPOLARIZATION IN ACCORD
ANCE WITH SPIN WAVE THEORY 

Taking (8) into account, we can express the depolar
ization in terms of the correlation functions of the mag
netic-moment density fluctuations 

D.P g 2L 1 -=-n-.l dqD.'(q) {(1+e,4)[G+_(q,qv)+G-+(q,qv)] 
Po 4nv 

- (1+e,')[e-'G++(q, qv) +e+'G- (q, qv)] +4e,2 (1-e,2)G,(q, qv)}, 

Ga~(q,w)= ~ drdte-;(qr-rot)(ma(r,t)m~(O,O)), {12) 

where e = q/q and a.:t =ax± iay· We have introduced 
into this formula the factor ~2 {q), which takes into ac
count the form of the wave packet of the incident neu
trons (see Appendix I). At the present time, the corre
lators Ga{3 can be reliably calculated in a wide interval 
of temperatures only with the aid of spin-wave theory, 
in a form recently proposed by Vaks, Larkin, and 
Pikin [7J. Since the polarization is due to the long-wave 
spin waves, we use an improved variant of this theory, 
which takes into account not only the exchange interac
tion of the spins but also the dipole-dipole interaction 
(see[aJ andl9 l). As a result, we obtain after simple 
calculations 

2g,2[1ML s dq /'J.'(q)~ (nq + ~) 6(Eq- qv) 
V Eq 2 

D.P 
>-----, 

Po 

X [ 1 + cos• fiq - 4:~M sin4 fiq ( 1 + cos2 fiq) ], (13) 

Aq = Aq' + 2[1H + q4flM sin2 fiq, 

eq = [ (Aq' + 2flH) (Aq2 + 2flH + 8n11M sin2 frq)] '!., 

Here nq = (exp{t:q/T)- 1f\ Eq is the energy of the spin 
wave, M{T) is the saturation magnetization at the tem
perature T, A(T) is a temperature-dependent renormal
ized exchange-interaction constant, connected with the 
effective mass of the spin wave calculated in[7-sJ by the 
equation A-1(T) = 2meff(T), Jq is the angle between q 
and B0• We have left out from (13) the term with Gzz, 
which enters in (12). It is shown in Appendix II that this 
term is small and can be neglected. 

The fact that (13) contains a 0-function of Eq- q · v 
admits of a simple physical interpretation. Namely, the 
depolarization is due only to those spin waves for which 
the component of the phase velocity in the direction of 
motion of the neutron coincides with the neutron veloc
ity. It follows from the condition Eq_ = q · v that for suffi
ciently slow neutrons expression (13) vanishes, since 
Eo ;o< 0. Thus, there should exist a certain threshold 
value of the neutron energy E, below which there is no 
depolarization in order of the calculation. 

In the cases considered by us, when (i) the velocity v 
of the neutrons is parallel to Bo and (ii) the velocity v is 
perpendicular to Bo, simple calculations similar to those 

contained in a paper by one of the authors[zll) lead to 
the following values of the threshold energy: 

En= 2f1Ha, (vII H) 

I 2nM 1/. 4nM) 
Ej_= ftHa 1 +----e-+ V!1 +--r;:- , (v ...LH), 

(14) 

where a = 2mA(T) and m is the neutron mass. We note 
that these values of the threshold energies for the de
polarization coincide in the limit as a » 1 with the ex
pressions for the thresholds for scattering with emis
sion or absorption of one spin wave[2 J. Actually the 
spin-wave theory contains two parameters: M{T, H)
the saturation magnetization and A(T)-the renormaliza
tion constants of exchange interaction. The quantity M 
is determined experimentally, for example, from ordin
ary magnetic measurements, and it can be regarded as 
known. Therefore real interest attaches to a deter
mination of A(T); in particular, a study of its tempera
ture dependence and the comparison with the results of 
modern theory[7-sJ 

We shall now calculate the depolarization in a num
ber of limiting cases. To this end, it is convenient to 
rewrite (13) in the following form: 

D.P = Cl(a, b), C = 4ngn'Lp"( flM:) ""'0.2 roo L(cm)M(kG), 
Po v aE aE r 

1 J (y2 +a+ 1/zb sin2 fi)~u2 (y11 )D.j_'(h) 
I(a,b)=Tn dy (y'+a)(y'+a+bsin~fi) 

(15) 

X {j {2y cos lj: -l' (y2 +a) (y2 +a+ b sin2 fi) }, 

where a= 2 j.i.Ha/E, b = 81Tj.i.Ma/E, y = aq/p, and lJ! is 
the angle between q(y) and v; the factor ~2 {y) introduced 
above has been broken up here into two factors ~ j1 (y 11 ) 

and ~J.(y 1), describing the formula of the packet in a 
direction parallel and perpendicular to the neutron 
velocity, respectively. In addition, in the derivation of 
(15) we have replaced 11a + 1/2 by T/ Eq, which is per
missible at sufficiently nigh temperatures (T » E/ a). 
It follows already from (15) that the depolarization is 
small, since a - 10-100 and I - 1, and even under 
favorable conditions ~P/Po is of the order of several 
per cent. 

Let us consider the first case, when v II H. Then 
cos lJ! = cos J; the integral in the expression for I can 
be readily evaluated, and we obtain 

V+ 3 2 1 • 2 ._. 
l(a,b)=2('dy 2 y 2 y +a+ /,bsm fi-

u'~ 4y +b(y +a) (y'+a)(Y'+a+bsin'fi) 

{ b sin4 tt(1+cos2 ti)} - -
X 1+C034 fi--2 .. _ D.{(ysinfi)D..L2 (ycostl'), 

y'+a+ 1! 2 bsm2 fi 

y =1-+-V!-a cos'S'=(Y'+a)(y'+a+b) 
± ~ ' 4y'+b(y'+a) · 

In these formulas a:::: 1, corresponding to expression 
(14) for the threshold. 

Near the threshold, when (1 - a) « 1, or, which is 
the same, E- E 11 << Eu, we have cos J :::::< 1 and it is 

!)We take the opportunity to note certain errors in [ 2 ]. Formulas 
(2) and (4) should include terms containing the product u*q~q and 
uq~* q. Allowance for these terms does not change the conclusions, 
which are based only on conservation laws, but at energies close to the 
threshold these terms affect the polarization and the cross section. 
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easy to find the conditions under which the factors Ai1 

and A}_ can be disregarded in the integrand. Namely, 
the factor Ai1 is negligible when 

I':J.E I E~1 I a, (17) 

and the factor A~ when 

11/E-En (18) 
tlo~~v-E-n-. 

The inequalities (17) and (18) are the conditions for 
a nonmonochromatic broad beam near the threshold, for 
which we have 

H 1/ E-En 
I~ v--~ H + 2nM E11 • 

(19) 

In this case the depolarization is very small. If even 
one of the conditions, (17) or (18), is violated, then the 
depolarization is even smaller, and the corresponding 
expressions will therefore not be given here. For a 
narrow nonmonochromatic beam we shall derive below 
a formula that is valid both near and far from the thres
hold. 

Far from the threshold, when E >> E 11 , we have 
a« 1, and accordingly b « 1, since Hand 41TM are 
quantities of the same order. Since now y ,_ 1 and 
sin2'J- cos2 'J...., 1, the criterion for the nonmonochroma
ticity of the beam (17) remains the same, and the condi
tion for the broadness of the beam takes the form 

tlo~ 11 a. (20) 

In this case the depolarization can also be readily cal
culated by taking into account the fact that when a « 1 
and b « 1 the values of y that are of importance in the 
integral I lie in the interval 2 » y » ..fi. As a result 
we obtain 

I ;::;; ~ (In ~ + ~) = .!:_ (In 4E + .!:_) · 
4 a 2 4 En 2 

(21) 

As expected, the depolarization far from the threshold 
is much larger than near the threshold, and increases 
with increasing distance from the threshold. 

If the beam width is decreased, then the factor 
A}_{y 1), which cuts off the integration region in (16), 
comes into play at _,o - 1/ a. This leads at first mainly 
to a slight decrease of the number in formula (21) under 
the logarithm sign, namely 4 is replaced by (a.,o)2 • How
ever' when O!Jo becomes - ra, the logarithm vanishes 
completely, and when Jo « ..fi/ a it is necessary to use 
in place of formula (21) the expression 

I (atto) 2 = (atto) 2 ~V-E___ (22) 
2ay1-a 2 En E-En 

The latter is obtained from (13) for a narrow beam by 
using (7). We note that the same expression (22) is 
valid for a narrow beam also near the threshold, and 
in the entire region it is small compared with the value 
of I for a broad beam. 

Let us consider now the second case, v 1 H. In this 
case cos <J! = sin J cos cp, and after integrating with 
respect to cp in I we can represent it in the form 

1 1 1 y,2 +a+ 1/z b sin2 tl 
I = - J y2 dy J d cos tl · 

n' (y2+a)(y2+a+bsin2 tl) 
I':J.n2 (y, cos tl) I':J..l.2 (y, sin tl) 

X 1 cos4 tl . [ + bsin'tl(1 +cos2 tl) J 
2(yF+a+ 1/,bsin2tl) 

(23) 

In this integral, the region of integration is determined 
by the requirement that the radicand be positive: 

Y-~Y~y.,., 
b ~-:~:-;;--;-

Y±2= 2- a - 2 ± f'(2- bl2)2- 4a, 

1>sin2tl> (y2+a)2 
4y2 -b(y2 +a) (24) 

From the fact that y! is real and y::_ is positive we get 
expression (14) for the threshold energy E1 . It is easy 
to show that the criteria for the nonmonochromatic and 
broad beam remain the same in the entire region as in 
the case when v 1 H. 

For a broad nonmonochromatic beam near the thres
hold (E- E 1) « E 1 , where y2 ~ 2- a- b/2 and sin2 'J 
..... 1, we get from (23) 

y2- bl2 ~ (1 + 2nMIH)'I, 1/ E- E.1. 
I;::;; 4 b214 j(2-bl2)2-4a=2(1+4nMIH)'I•V -E.l. (2.5) 

Analogously, just as when v II H, we can calculate I far 
from the threshold, where E » E1 , a« 1, and b « 1; 
as a result we get for a broad non-monochromatic beam 
the formula 

I;::;;~In~-~=~In~-~' (26) 
32 a 64 32 11Ha 64 

which differs little from (21). 
In exactly the same manner as in the case of v II H, 

when the beam becomes very narrow (Jo << ..Ja + b/a), it 
is necessary to use in place of (26) the expression 

I= a2tlo2 (2 +b) 
-;4--;( a._+-;-;-b~) y:0(~2 =_=;b=;l~2 )::::;:2 =_=;4;=-a 

(27) 

the latter being valid both far and near the threshold. 

4. DEPOLARIZATION CONNECTED WITH SCATTERING 

We have considered the depolarization of the trans
mitted neutrons, due to the influence exerted on the neu
trons by the fluctuating magnetic fields. In particular, 
it has turned out that this depolarization is largest if the 
incident neutron beam is sufficiently broad, i.e., its 
aperture angle J 0 is large compared with 1/ a . On the 
other hand, it is well known[2 J that inelastic magnetic 
scattering occurs in a narrow corner of angles with an 
aperture not exceeding 2/ a. Thus, if Jo » 1/ a, there 
will be present in the transmitted beam also neutrons 
that experience scattering. The change of the neutron 
energy upon scattering is AE ~ E/ a, and therefore, in 
the case of a broad nonmonochromatic beam, it is im
possible to separate the scattered neutrons from the 
transmitted ones. However, as shown inl2 J, scattering 
is accompanied by a rotation of the neutron spin, and 
should obviously cause a change in the observed polar
ization of the transmitted beam. 

We are interested in that part of the polarization 
which is parallel to the field Bo. It is easy to show, 
using standard methods, that its form is 

(P>scat = (5 dqKaa(q, Wq) f'{5 dq[2K,(q, Wq)- Kaa(q, Wq)] 
Po 

+~ 5 dq[K+-(q,wq)-K-+(q,wq)J}, 

wq = Ep -Ep-q;::;; qv. 
(28) 
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Knowing (P)scab we can readily determine the depolar
ization due to scattering 

(~) = [Po-(P)scatl aL. 
Po scat Po r'o 

(29) 

The term in (28) containing the difference (K._- K_.) 
can be neglected, since it vanishes in the classical limit 
and consequently is small at high temperatures, and 
only in this case is the depolarization noticeable at all. 
Then, taking (9) into account, we obtain 

(30) 

Thus, the depolarization due to scattering practically 
coincides with the depolarization (6) for a broad beam. 
Therefore the actually observed depolarization of a 
broad beam is twice as large as that calculated in the 
preceding section. The same result is valid also for a 
narrow beam. Indeed, when measuring the depolariza
tion of a narrow beam one registers simultaneously 
only the neutrons scattered through an angle not exceed
ing J- 0• The limitation imposed thereby on the region of 
integration in (30) is similar to the limitation imposed 
by the factor ~2(q) in (12). 

5. CONCLUSION 

As we have already noted, the depolarization is 
small. According to (15), it is proportional to 
TM(T)/a(T). But in the roughest approximation 
a (T) oo M(T), and therefore the depolarization is mainly 
proportional to the temperature. Our formulas can be 
used only at those temperatures when the theory of spin 
waves is applicable, i.e., not very close to the Curie 
point. In this region, its measurement makes it possible 
to determine the quantity A(T), which is the main 
parameter of the theory, and in this respect depolar
ization experiments yield the same information as scat
tering experiments. We note also that the depolariza
tion is due mainly to spin waves with q ~ p/a. This 
circumstance must be taken into account when our 
formulas are used near Tc, with the region of applica
bility of the spin-wave theory depends essentially on 
q [71 • We now discuss qualitatively the question of the 
depolarization near the Curie point T c, when the spin
wave theory is known not to be applicable. 

In the critical region, the long wave fluctuations in
crease strongly, reaching a maximum at T = T c, and 
the short-waves remain practically unchanged. There
fore, as T- Tc, the depolarization should have a maxi
mum due to the long-wave excitations, and the polariza
tion behaves in the manner shown in the figure. To ob
serve the left side (T < T c) of this curve, the sample 
should be in a saturating magnetic field. This condition 

p 

Po --· -------------

\/ 
I 
I 
I 
I 
I 
I 
I 

was not satisfied in[3 ' 101 , where depolarization near Tc 
was investigated. 

Apparently, the most interesting would be an experi
mental study, in this temperature region, of the depen
dence of the polarization on the beam width. This would 
make it possible to determine directly the dimensions 
of the critical fluctuations, since a sharp decrease of 
the depolarization with decreasing width of the beam 
should be observed at angles J- 0 connected with the 
dimension of the fluctuations r c by the relation 

rc -1/ptio = "1./tio. (31) 

The meaning of the quantity rc which enters in this 
formula depends on the relation between the lifetime of 
the fluctuation T c and the time tc within which the neu
tron passes through it. If tc « T c, then r c coincides 
with the static correlation radius, and in the opposite 
limiting case the connection between r c and the param
eters of the ferromagnet cannot be established so far 
reliably. In both cases, the question calls for further 
experimental and theoretical investigation. 

We note also that if the system contains nuclei with a 
spin, then nuclear depolarization occurs. It is easy to 
show that its form is 

(AP/Po)nucr>:: tio2 o~spinh) L/r'o. (32) 
mco 

where a ~spinh) is that part of the incoherent nuclear scat-
mco 

tering which is due to spins. This depolarization is very 
small and does not depend on the temperature, and is 
therefore of no interest. 

The authors are grateful to G. M. Drabkin, v. A. 
Trunov, A. A. Klochikhin, and I. Ya. Korenblit for a 
discussion. 

APPENDIX I 

We present a consistent quantum-mechanical deriva
tion of the formula for the depolarization. 

We describe the neutron by means of a wave packet 
1\lp (r, t) = ei (pr-Ept) Xp (r- vt), 

~driXp(r)l'= 1, 
(AI.l) 

where the function Xp(r) differs from zero in the region 

llx$."1.Epfl!Ep, llp~"'.tt0• (AI.2) 

Here x is the coordinate in the. direction of motion of a 
neutron and p is the radius vector in the perpendicular 
direction. The effective Hamiltonian of the interaction 
between the neutrons and the medium is obtained by 
averaging the energy of the magnetic interaction V(r) 
over the state (AI.1): 

Veff (t)= S driXp(r-vt) 12 V(r) = - 1-S drdqiXp(r) 12e-lq(r-vt> V(q), 
· (2n) 3 

V(q) = -8:rtlllln ~ {Sz- (eSz)e} ae1qR,F(q) = aD(q), 

<z> (AI.3) 

where Sz and Rz are the spin and coordinates of the 
l-th atom, F(q) is the magnetic form factor, e = q/q, 
V(q) is the energy matrix element of the magnetic inter
action of the neutron, and is well known from the theory 
of magnetic scattering[lJ. Using the customary methods 
(see[111 ), it is easy to find the time dependence of the 
spin of a neutron moving in a medium 
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<J (t) = ei:teo! u-• (t) <J (0) u (t) ,;:te,t, 
t f t• 

U (t) = 1 - i ~ dt'Veff (t') + (- i)2 ~ dt' ~ dt"Veff (t') Veff {t") + ... , 
o o " (AI.4) 

where Jfeo describes the interaction between the neutron 
and the external magnetic field. From this expression, 
in second order of perturbation theory, we obtain in the 
case when Po l B0 and the velocity v is parallel or per
pendicular to Bo, 

I I' 

A.P = _z_ ~ dt' ~ dt" ~ dr' dr" dq' dq''jXp(r')Xp(r") 12 

Po (2n) 6 
0 0 

X { (D.L(q' t')D.L(q", t") + D.L(q", t") D.L(q', t')) 
(AI.5) 

+ isz"~ ([Da(q', t'), D~(q", t")])}. 

The mean value in this equation differs from zero only 
when q' + q" = 27TT, where Tis the reciprocal-lattice 
vector. The terms with T i" 0 are small, since they con
tain the factor exp(iT · vt"), as a result of which the 
integral with respect to tN converges and its order of 
magnitude is 1/TV ~ r512/v, whereas the term with 
T = 0 is proportional to the large quantity l = L/v. 

The last term in (AI.5) corresponds fully to the dis
carded term in (28), and we neglect it. The first two 
terms in (AI.5) at q' + q" = 0 can be readily reduced to 
the expression used in the main text of the article, if it 
is recognized that 

2f.l 
m(R1)= "'l"o S(~)i 

it turns out here that 

flZ(q)= ~ drelq•jXp(r) j2• 

APPENDIX II 

We now calculate the contribution made to the de
polarization by the last term of formula (12). In this 
term, the principal role is played by spin waves with 
energy on the order of T, and it is possible to neglect 
from the very beginning the dipole-dipole interaction. 
As a result we obtain 

(AP) = gn2LLSdqdq'82 (q)ez2(1-el) 
Po " nv (2n) 5 (AII.1) 

X nq(i + nq-q•)ll(eq- eq-q•- qv). 

In this expression, the integral with respect to q' can be 
readily evaluated, and we have 

( A.P ) = 2gn2L lifT% /(A) 
Po zz (2n)' Aa ' 

J(A)= _t S y dy S dQ e~2(1- ei) 8•(2pyifT;;J;:) 
2n • exp (xyfl' A)- 1 

I 1-exp[-(y+x/l'A)f] 
X n , x = coslj:. 

1- exp[-(y -x/l'A)2] 

(AII.2) 

Here lJI is the angle between y and v, A = aT/E » 1. In 
the integral J, the principal role is played by y ~ 1, 
therefore the conditions under which the beam is broad 
and nonmonochromatic take the form 

(AII.3) 

i.e., they are much more stringent than (17), (18), and 
(20). 

When these conditions are satisfied, J can be readily 
calculated, if it is recognized that xy/..fA « 1, and if we 
integrate first with respect to y and then with respect 
to the angles. As a result we obtain 

1 = { 8/ts (In A + 31/ts) 

8/ts(lnA+51/t5) 

(vii H), 

(v...LH). 
AII.4) 

We see that J is of the order of unity; the factor pre
ceding J in (AII.2) is small compared with the corre
sponding factor in (12), so that the quantity (~P/Po)zz 
can be neglected. This conclusion is in full agreement 
with the conclusion of smallness of two- magnon scatter
ing[12J . We note also that inasmuch as the difference 
Eq..:... Eq-q' can vanish, it follows that (~P/Po)zz has no 
threshold. 
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