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Results are presented of a theoretical investigation of the statistical properties of the second optical 
harmonic produced in a homogeneous nonlinear crystal. Expressions are obtained for the intensity and 
count distribution of the harmonic excited by laser and thermal radiation. Quasistatic and nonstation­
ary excitation conditions are considered. The effect of incomplete spatial coherence of the fundamen­
tal frequency on the statistical properties of the second harmonic is analyzed. It is found, in particu­
lar, that the temporal statistical properties of the harmonic may significantly depend on the spatial 
coherence of the fundamental radiation. In order to characterize the counting distribution, a param­
eter is introduced which is related only to the relative fluctuations of the radiation intensity. 

INTRODUCTION 

ALTHOUGH the nonlinear optical process most 
thoroughly investigated at the present time, both theor­
etically and experimentally, is generation of harmonics, 
the question of the influence of the statistical properties 
of the radiation on the character of the process itself, 
particularly on the maximum conversion coefficient, has 
not yet been sufficiently clarified. In the theoretical in­
vestigations performed to date, using various statistical 
models of the fundamental radiation, they studied either 
the average intensity and the variance of the second­
harmonic intensity fluctuationr1-sJ , or else they calcula­
ted the coherence function in quadratic medial6- 10J. The 
variance of the intensity of the fluctuations of a harmonic 
excited by laser radiation was investigated inl2-3 J, and 
the average intensity of the harmonic of thermal radia­
tion was investigated inlllJ. At the same time, knowl­
edge of the laws governing the distribution of the inten­
sity of the fundamental radiation and of the harmonic 
can yield both definite information concerning the non­
linear process and the properties of the nonlinear med­
ium, and additional information concerning the statistics 
of the fundamental radiation. 

In optics, the laws governing the distribution of the 
radiation intensities are determined by counting the 
number of electrons emitted by the photocathode of the 
detector that records the light beamu2-14J. A similar 
procedure is now being used extensively for the analysis 
of the statistics of laser radiationl1sJ. In experiments 
on nonlinear conversion of optical radiation, particularly 
on the generation of harmonics, this procedure can be 
used not only for the measurement of the statistics of 
the converted radiation1>, but also for an accurate per­
formance of experiments (for example, for an exact 
measurement of the nonlinear susceptibility tensor of a 
medium). Finally, nonlinear conversion of radiation 
with subsequent application of intensity interferometry 
(and in general amplitude interferometry) offers new 
possibilities and is a rather simple procedure for meas­
uring the coherence functions of higher orders of the 
field of the fundamental radiation. 

•>we note that a recent paper [ 16 ) considers the statistical properties 
of parametric luminescence. 

The purpose of the present paper is a theoretical 
analysis of the one-dimensional laws of the distribution 
of the photoelectric counts of the second harmonic ex­
cited in homogeneous nonlinear crystals by gas-laser 
radiation and by non-laser thermal radiation. The analy­
sis is based on a semiclassical description of the proc­
ess of radiation registration. Indeed, by using gas 
lasers and gas-discharge sources it is easy to obtain in 
crystals of the KDP and LiN~ type a second- harmonic 
intensity on the order of 1 x (10-12-10-1~ W, corre­
sponding to a harmonic photon density close to 106-108 , 

and consequently the harmonic radiation can be des­
cribed classically. 

1. FUNDAMENTAL RELATIONS 

In the semiclassical description of the process of 
registration of optical radiation, the distribution func­
tion of the probability of n photocounts is given by the 
expression (seell2' 14r) 

(1) 

where am is the quantum sensitivity of the detector, 
and Urn is the integral intensity during the observation 
timeT: 

I +!I' 

Um = Um (T, t) = ~ Im(t')dt', 
t 

w(Um) is the intensity distribution function. 

(2l 

We shall henceforth assign to the index m the values 
1 and 2, corresponding to quantities pertaining to the 
field of the fundamental radiation and of the second 
harmonic. To calculate the distribution of the photo­
counts of the fundamental radiation P 1(n, T) and of the 
harmonic P2(n, T) it is therefore necessary to know 
respectively the distributions w(U1) and w(U2). The dis­
tribution of the intensity of the harmonic w(U2) can be 
found if information is available concerning the statisti­
cal properties of the fundamental radiation. 

As is well knownl2J, the process of generation of the 
second harmonic by ·a wave having a temporal nonmono­
chromaticity at low transformation coefficients is des­
cribed by abbreviated equations for the complex ampli­
tudes A2 and A1 of the following form: 
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il.;}"2 1 ii.A2 ii.At + _1 ii.At __ 0 -+--=-i2yAt2, 
iiz u2 iit iiz Ut iit 

(3) 

with boundary conditions 

.A2 (t,z=0) =0, At(t,z=O) =A!(t). 

In (3), the direction of the z axis coincides with the 
direction of the phase synchronism normal to the separ­
ation boundary of the linear and nonlinear media, Urn is 
the group velocity, and y is the coefficient of nonlinear 
coupling. From (3) it is easy to find that 

.A2 (t, z) =- i·2y S At2 (t' + v~)a~, (4) 
0 

where t' = t- z/u2 and 11 = 1/u2- u/u. characterizes the 
difference between the group velocities. The connection 
between the instantaneous intensities of the fundamental 
radiation I1 = 2IA.I2 and of the harmonic k = 2IA2I2 in 
the so-called quasistatic approximation (11 = 0) is alge­
braic: 

(5) 

In the more general case (in the nonstationary regime 
of harmonic generation, 11 "" 0), the relation between the 
intensities I1 and I2 is integral, and a dependence of I2 

on the fluctuations of the phases of the fundamental 
radiation appears: 

l 2 (t, z) = 2y2 ~ S lt(t' + V~t)lt (t' + '\l~z) · 
0 0 

X exp{i·2[ <Jlt(t' + V~t)- tft(t' + v~z)]} a~t a~z. (6) 

If the fundamental radiation has not only a temporal but 
also a spatial nonmonochromaticity, then allowance for 
the latter in the simplest approximation of geometrical 
optics leads to the relation (seel2 J) 

lz(t,x,y,z) =2y2 ~ S lt(t' + 'V~t.x' + ~bt,Y)lt(t' +v~,x' + ~bz,y) 
0 0 

X exp {i · 2 [QJt (t' + Vbt, x' + ~~t.1J)- Qlt (t' + 'Vbz, x' + P~z, y)]} a~t a~z, (7) 

where x' = x- {3z and {3 = the birefringence angle, the 
angle between the wave vectors of the fundamental radia­
tion and of the harmonic21 • 

We shall consider below, using expressions (1) and 
(4)-(7), the distribution of the intensity and of the photo­
counts of the second harmonic excited by laser radiation 
with statistically independent phases of the modes and 
thermal radiation with Gaussian statistics. Problems 
connected with the statistics of the harmonic from the 
laser radiation have been investigated, for simplicity, 
only in the quasistatic approximation; the influence of 
the nonstationary regime of generation and of the spatial 
coherence on the statistical properties of the harmonic 
is analyzed using as an example its excitation by thermal 
radiation. 

2. DISTRIBUTION OF PHOTOCOUNTS OF THE SECOND 
HARMONIC EXCITED BY LASER RADIATION 

In the general case, the radiation field of a laser 
operating in the free-generation regime has the follow­
ing form31 at z = 0 

2>We emphasize that in the present paper we analyze an interaction 
of the type 00-E. 

3>For the questions considered here, the fact that the laser beams 
are bounded in space is of no fundamental significance. 

K 

Et(t)= ~ Atk(t)exp {iootkt} + c.c., (8) 
k=t 

where K is the total number of modes; AJ.k and WJ.k are 
the amplitude and frequency of the k-th mode, w!k 
= w + (k- (K + 1)/2).6w, w is the average radiation fre­
quency, and .6w is the frequency of the intermode beats. 
For subsequent analysis, expression (8) is conveniently 
written in the form 

Et(t) =AI(t)ei"'t + c.c., 

The integral intensity U 1 of the laser radiation in a time 
T » (.6wf1 is equal to 

K K 

Ut=2T~ I.Aiki 2 =T~ltk(t). (9) 

We also assume here that the period of the mode-inten­
sity modulation is certainly longer than the time T. The 
expression for the intensity of the harmonic I2 , at an 
arbitrary number of modes K, is quite cumbersome even 
in the simplest case (5); we therefore proceed directly 
to a consideration of concrete problems. 

Single-mode radiation. We begin the analysis with the 
case K = 1. We assume the fluctuations a of the ampli­
tude A1 to be small (in real notation) 

At = Ao +a, l'a2 I Ao = 11 ~ 1, (10) 

and to have a Gaussian distribution. For the distribution 
of the intensities of the fundamental radiation 11 and of 
the harmonic k, generated in the quasistatic regime (5) 
(and consequently for u. and U2), determined accurate 
to J1 2 , we obviously again have a Gaussian distribution 41 

1 { (/m-lmo) 2 } w(Im)= -=--exp - , 
· 1'2n am 2a.; 

(11) 

where I10 = A~/2 and I2o = 2ri~o are constant intensities 
and a~ = 2a21~o and a~ = 32!l2'r2:do are the variances of 
the fluctuations of the corresponding intensities. Thus, 
in the approximation under consideration, the intensities 
I. and k have the same distribution. However, the rela­
tive fluctuations of the intensity ~m = am/Imo are twice 
as large in the second harmonic as in the fundamental 
radiation. 

The photocount distribution corresponding to the in-
tensity distribution (11) is given by the expression 

P () (y2amomT)nH r amamT-Imo/Gm] { lmo"} 
m n = -(i+n) exn - --

l'n l'2 2am• (12) 
Hn(x) are Hermite polynomials. 

For small relative intensity fluctuations, the average 
number and the mean square of the number of photo­
counts are equal to 

iim= a,.Tlmo, 

flm2 = iim + iim2[1 + (Om/ lmo) 2]. 
(13) 

From (13) at am- 0 we obtain the variance of the num­
ber of photocounts for a Poisson distribution. The ex­
cess of the fluctuations of the photocounts over the 

4>Usually (see, for sample [ 17 ]), in theoretical calculations of the 
distribution of photocounts from a single-mode laser radiation one uses 
as a radiation model a random-phase harmonic signal plus noise. Then 
the intensity distribution is determined by the generalized Rayleigh 
distribution, but at low-intensity fluctuations (as is the situation with 
radiation from gas lasers) it goes over into a Gaussian distribution. 
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Poisson statistics is connected with the fluctuations of 
the intensity. It is possible to introduce a parameter d 
characterizing the difference between the distribution 
of the photocounts and the Poisson distribution: 

(14) 

for the case (11) it is equal to 

d = (crm f lmo) = Sm· 

Expressions (12)- (14) are the general characteristics 
of the distribution of the photocounts for a Gaussian in­
tensity distribution. 

Thus, in the considered case of single-mode radia­
tion, the distribution of the photocounts of both the fun 
fundamental radiation and of the second harmonic can 
be regarded as a Poisson distribution5 >, accurate to 11· 

Averaging of expression (5) makes it possible to de­
termine the value of the nonlinear coefficient y in terms 
of the number of photocounts 

{ a,'ii2 }'f, 
y = 2a,z2 (n,2 - ii,2) • 

The distribution of the photocounts (12), accurate to 11 2 , 

is valid for multimode radiation of a gas laser and for 
the harmonic, when the number of modes in the funda­
mental radiation does not exceed two (K !'0 2). On the 
other hand, if the number of modes is K;::: 3, then the 
statistics of the photocounts of the harmonic differs 
noticeably from the photostatistics of the fundamental 
radiation. 

Three- mode emission. When K = 3, the integral in­
tensity of the second harmonic is equal to (seeltJ) 

U2 = C + B cos(2'PI2- <pu- Qlla), 

1 { a a } 
C=-Ty'z2 ::8A1;•+4 ~ A1;'A1;1 , 

2 i=i (, j=! 
(i>j) 

B = 2Tv2z2A1 22AuA1a, 

(15) 

<Pi' is the phase of the mode. It follows therefore that 
th~ main source of the fluctuations in U2 is due to fluc­
tuations of the phases of the fundamental radiation, 
whereby the depth of the random modulation of U2 can 
reach almost 90%, which greatly exceeds the fluctuations 
of U2 directly connected with the fluctuations of the am­
plitudes A1 .• The phases <Ptj in the free-generation 
regime cad be regarded as statistically independent and 
as having a uniform distributionl181 • Then, assuming the 
amplitudes A . to be constant, we obtain for the distri-

lJ 
bution of the intensity u2 (lg) 

(16) 
C- B ~ U2 ~ C +B. 

The distribution of the photocounts, corresponding to the 
distribution (16), can be found with the aid of a generat­
ing functionl 14J, which for the present case is of the 
form 

Q(l.) = e-Mt.,CJ0(l-azB). 
(17) 

Here I0(x) is the modified Bessel function and 0 ::s A !'0 1. 
The average number of counts and the variance of the 

s) A similar conclusion follows from [ 17 ], where a rigorous analysis 
has been carried out of the statistics of the photocounts of single-laser 
emission. 

number of counts are equal to 

iiz=azC, Yii'- (iiz) 2 =nz+ 1/z(azB) 2, (18) 

and the parameter d introduced above (14) is equal to 

d = _1 !!__ (19) 
)''2 c 

and assumes a valued = 0.19 for different mode ampli­
tudes A1j" 

Multimode radiation. With increasing number of 
modes of the fundamental radiation, the number of 
terms that depend on the phases of the modes in the ex­
pression for the integral intensity of the harmonic u2 
increases l2J. Then the problem of finding the distribu­
tion of the intensity U2 reduces essentially to the prob­
lem of determining the distribution of a field (or an os­
cillation) with statistically independent modes. The re­
sultant distribution of such a field tends rapidly to a 
Gaussian distribution, and the distribution of the photo­
counts consequently will satisfy expression (12). For 
the case of constant and equal a~litudes A1j, the aver­
age intensity of the harmonic is U20 = 2(2- 1/K)y 2z2Tii0 , 

and the relative fluctuations of the intensity U2 are de­
termined by the expression (seel2J) 
62 = 2(K- 1) (4K'- 11K + 3) I K 2(2K- 1)2, 
{;2 = 2(K- 2) (4K- 7) I K(2K- 1)2, 

K-even, 
K-odd 

' (20) 
(K 2: 3). The dependence of the value of ~ on K is quite 
weak, ~ = (1.5Kf112 , and therefore the model of laser 
radiation with equal amplitudes is physically perfectly 
justified for the problem under consideration, especially 
at large K. 

3. DISTRIBUTION OF THE PHOTOCOUNTS OF THE 
SECOND HARMONIC EXCITED BY THERMAL 
RADIATION 

The distribution of the intensity due to thermal 
sources has an exponential form u 2 ' 141 

w(/1) =[0- 1 exp{-/1 /lo}, (21) 

where I0 is the average intensity. The photocounts of 
the thermal radiation are described by Bose-Einstein 
statistics: 

P1 (n, T) = (1 + ii1)-1 (1 + ii1-1) -n = (ni)-1 exp { -n I ii1}. (22) 

The last equation in (22) holds when n1 » 1, n1 = O!tTio. 
For the case in question, we have d = 1 (Eq. (14)). 

Quasistatic excitation regime. We disregard for the 
time being the partial spatial coherence of the thermal 
radiation, and consider first the generation of the 
harmonic by plane waves in the quasistationary regime 
(5). Then the distributions of the intensity and of the 
photocounts of the harmonic are given respectively by 
the expressions 

1 exp {~ l'lz/flo'\ 
w(/z)= 

2 f'ri02J2 (23) 

( 2n) ! { 1 } ( 1 ) 
Pz(n)= n!2n(n,)'l,exp 4ii, D-ct+zn> n,'h ' 

where Dn(x) is the parabolic-cylin~er function2. The 
average number of photocounts is n2 = 20!2Trio com­
pared with the monochromatic fundamental radiation of 
the same intensity I0 turns out to be twice as large. In 
this case d = 15. The distribution of the photocounts 
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(23) differs significantly from both the Poisson distribu­
tion (d = 0) and from the Bose- Einstein distribution 
(d = 1). 

Nonstationary excitation regime. In such a harmonic­
generation process, the distribution of the photocounts 
of the harmonic tends to a Bose- Einstein distribution. 
Indeed, in a nonstationary regime (at distances 
z ~ lcoh(t) = Tcoh/lvl, where Tcoh is the coherence 
time of the fundamental radiation) the statistics of the 
complex amplitude A2 (4) is Gaussian, in accordance 
with the central limit theorem. On the other hand, the 
distribution of the intensity of the harmonic (6) is ex­
ponential, with a mean value (seel41 ) 

~ 

/2o = l2 = 8y2z ~ R~(v~)d~, 
0 

where R(r) is the coherence function of the complex 
amplitudes of the fundamental radiation. 

The distribution of the photocounts of the harmonic 
can be noticeably influenced also by incomplete spatial 
coherence of the fundamental radiation. The statistics of 
the harmonic field becomes Gaussian as a result of the 
influence of the partial spatial coherence even in the 
quasistatic regime of generation, if the crystal length 
is z ~ t(sph) = r h/ {3 (r h is the radius of the spatial 

co co co 
coherence of the fundamental radiation) (compare (16) 
with (7) at 11 = 0). In the general case, with incomplete 
space-time coherence of the fundamental radiation, the 
change of the statistics of the harmonic field, and conse­
quently also of the photocount distribution, occurs over 
distances z > {(z(t) r 2 + (l(sp)r2 }-112 • 

coh cob 

CONCLUSION 

An analysis of the distribution of the photocounts of 
the harmonic thus shows the following. In the case of 
the excitation of the harmonic by laser radiation with a 
small number of modes (K :::; 2), the statistics of the 
photocounts of the harmonics is close to Poisson statis­
tics, and is analogous to the statistics of the photocounts 
of the laser radiation. When the number of laser modes 
K ~ 3, the distribution of the photocounts of the har­
monic already differs noticeably from the Poisson dis­
tribution (the maximum value of the parameter 
d Rl 0.25). This is connected with the fact that in this 
case the integral intensity of the harmonic depends on 
the phase fluctuations in the modes of the fundamental 
radiation. An analysis of the distribution of the dis­
tribution of the photocounts of the second harmonic, ex­
cited by the multimode radiation of the gas laser, makes 
it possible to investigate correctly the contribution of 
the fluctuations of the phases of the fundamental radia­
tion to the excess fluctuations of the intensities of the 
harmonica>, and it can be used for the investigation of 
the dynamics of phase synchronization. A recent inves­
tigation of the distribution of the photocounts of the sec­
ond harmonic was carried out experimentallyl201 , and 
the results of the experiment were in satisfactory 
agreement with the theoretical predictions of Sec. 2. 

Even more sensitive to the generation conditions is 
6>We note that when harmonics are generated by radiation of a solid­

state laser there exists, besides the indicated source of excess fluctua­
tions of intensity, also other sources (fluctuation in the number of 
modes, fluctuations in the angular divergence, etc.)[ 2 ). 

the distribution of the photocounts of the harmonic, ex­
cited by the thermal radiation. Here the parameter d, 
connected with the fluctuations of the intensity of the 
harmonic, has a value d = 1 in the nonstationary genera­
tion regime (the distribution function of the Bose­
Einstein photocounts) and d = {5 in the quasistatic 
regime. The smoothing of the fluctuations of the 
harmonics in the nonstationary regime is due to inter­
ference effects. A similar phenomenon can result also 
from incomplete spatial coherence of the fundamental 
radiation, in the presence of which the "inertia" of the 
conversion is due to the birefringence of the nonlinear 
crystal. 

The authors are deeply grateful to S. A. Akhmanov 
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