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A system is considered in which there occurs a decomposition of a cubic solid solution into two cubic 
phases; the phases differ from one another only in the concentration of the components and hence in 
their specific volumes. The problem concerning the distribution of inclusions of the separating 
phases insuring a free energy minimum with allowance for the elastic stress energy is solved. The 
solution of the corresponding variational problem leads to the conclusion that three types of macro­
periodic distributions of inclusions exist: one-dimensional and two-dimensional distributions, and 
two-dimensional structures with a secondary periodic modulation. Since the inclusions of the vari­
ous phases differ from each other only in their composition, these distributions can be conceived of 
as macroperiodic composition modulations which are usually referred to as modulated structures. 
A common property of these structures is the fact that the basis vectors of their Bravais transla­
tions coincide with the directions of the cubic ( 100) axes of the matrix, and their corresponding 
"reciprocal lattices" have points which are located only along ( 100) type directions around the 
reciprocal lattice points of the matrix. On x-ray and electron diffraction patterns the ''reciprocal 
lattice" of modulated structures appears in the form of satellites surrounding the Laue reflections 
of the matrix lattice. 

ELECTRON-microscope and x-ray studies of the de­
composition of a cubic solid solution into two cubic 
phases which differ from one another and from the 
matrix only in concentration and in their specific vol­
ume have led to the conclusion that the distribution of 
inclusions of the produced phases exhibits a clearly 
manifest periodicity. [1-4] In the literature these distri­
butions are usually referred to as modulated struc­
tures. The periodicity is in various cases of a one, 
two-, or possibly three-dimensional nature. A common 
feature of the observed distributions is, first, the fact 
that their basic translation vectors are directed along 
the (100) type crystallographic axes of the matrix; 
secondly, the distributions are of a macroscopic nature 
and their periods amount to tens and hundreds of ang­
stroms. The diffraction of x rays and electrons by such 
systems leads to the appearance of additional reflec­
tions-satellites located along the (100) type directions 
about the reciprocal lattice points of the matrix crystal. 
The distances between them are inversely proportional 
to the period of the modulation. 

In the case in which the correlation length in the 
solid solution is of the same order of magnitude as the 
period of the distribution, the observed periodicity can 
be connected with metastable periodic modulations of 
the compositionJSl However, theory[s] cannot explain 
the existence of relatively stable periodic distributions 
if their period exceeds appreciably the correlation 
length (the characteristic thickness of the interphase 
boundaries). Under these conditions the periodic dis­
tributions of the type mentioned should according to 
theory[s] lose their stability. One can readily convince 
oneself of the latter if one takes into account the fact 
that small shifts of the interphase boundaries which 
conserve the total volumes of the phases do not lead to 
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any change of the chemical free energy of the system 
since the latter depends only on the total volume of the 
phases and not on their mutual spatial distribution. 
Apparently, only the energy of the elastic stresses 
depends on the mutual spatial distribution of the inclu­
sions. In this connection an attempt is made below to 
explain the mechanism of the production of modulated 
structures with a large period by means of the contri­
bution of the energy of the elastic stresses to the en­
ergy balance of the phase transformation. 

The elastic energy of a system of inclusions of ar­
bitrary configuration can apparently only be written in 
its general form with the assumption that the elastic 
moduli of all the phases participating in the transfor­
mation are equal and that their coupling is coherent. 
Under this assumption the phases will differ from one 
another only in the values of the specific volume in the 
free state and in the concentration of the components. 
This assumption is not strict since for substitution 
systems in which the phase transition is not connected 
with a rearrangement of the crystal lattice but consists 
only in the redistribution of the atoms over the lattice 
sites, the relative difference in the elastic constants 
is of the order of 10-2• The second assumption about 
the coherent coupling between inclusions is generally 
not a strong limitation. It is known that the violation 
of the coherence of the phases consists in the produc­
tion of a system of epitaxial dislocations on the inter­
phase boundaries. Epitaxial dislocations increase, on 
the one hand, the surface energy and decrease, on the 
other hand, the incompatibility of the coupling of the 
phases along the boundaries which reduces in effect to 
a decrease of the difference in the specific volumes of 
the adjoining phases. For this reason the presence of 
epitaxial dislocations should only affect the numerical 
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values of the parameters entering in the theory. 
In calculating the elastic energy of the system of 

inclusions it is convenient to introduce into the treat­
ment a tensor Etj ( r) which characterizes the deforma-

tion undergone by an elementary volume of the matrix 
(or by its unit cell) at the point r in a phase transfor­
mation taking place in the unstressed, free state. In 
the case considered, in which all phases are cubic and 
the phase transformation is only connected with a 
change in the specific volume which is in turn uniquely 
connected with the concentration of one of the compon­
ents c ( r) (the concentration is reckoned from the 
average composition of the alloy): 

Bi;0 (r) = eo(c(r))lli; = ~0 (r)ll1;. ( 1) 

The function €o(r) in essence completely describes the 
spatial distribution of the inclusionsu. 

The problem of the elastic energy of an anisotropic 
inhomogeneous system satisfying the above formulated 
limitations was solved in[6 l. Making use of E?.(r) in 

lJ 
the form (1), one can rewrite the expression for the 
elastic energy of an inhomogeneous system with an 
arbitrary configuration from (s) in the form 

1 s d3k E=2 .. (2n)3 B(n)leo(k)j2, 
where 

B(n) =9K-9K2Qii(n) >O, K= (c 11 +2c12)/3; 

cu and C12 are the elastic constants, e0(k) 

(2) 

=I d3rEo(r) exp(-ik ·r), k is the wave vector-the 
Fourie~ transform. parameter, Slij(n) = k-2Gij(k), 
Gij (k) 1s the Four1er component of the Green tensor of 
the elastic problem, n = k/k is a unit vector. Summa­
tion over repeated indices is implied. Making use of 
the value of the Fourier components for the Green ten­
sor from [7J, we obtain 

B(n)=9K-9K21+!~(nx~y2~:tn·2~n~2nz2)+3~2nin,2nz2 '(3) 
Cu c11 c12 nx2ny + n.'nv2 + nx2nz') + 

+ ~2 (c11 + 2c12 + c,..)nx2ny2n.' 

where c44 is the single-crystal elastic constant· n 
' X> 

ny, and nz are the components of the vector n along 
the axes of the cube, and tl. = (c 11 - c12 - 2c 44)/c 44 is 
the elastic anisotropy parameter. If it is assumed that 
the alloy is a binary alloy and E 0 ( r) = w[ c ( r) - cJ 
(Vegard's law is fulfilled, w being the concentrational 
expansion coefficient and c the composition of the 
alloy), then expression (3) coincides in particular with 
the coefficient of the square of the amplitude of the con­
centration wave in the expression for the elastic energy 
of a system of concentration waves obtained in(aJ. 

Let us consider a certain fixed small region of the 
crystal ~ within which decomposition has occurred. 
Below we shall call this region a complex. We shall 
assume that for a fixed shape of the complex its internal 
fine structure will be determined from the condition of 
the minimum of the free elastic, chemical, and surface 
energy. It should, however, be borne in mind that in 
some cases the dimensions of the complex are not con­
stant but increase as the decomposition process de-

t>For simplicity we consider everywhere below a binary alloy, a!· 
though the obtained results can also be directly generalized to the case 
of a multi-component alloy. 

ve lops. The purely energetic approach just formulated 
will for this reason be correct only when the character­
istic times of the relative change of the dimensions of 
the complex are appreciably longer than the character­
istic relaxation times of the elements of its fine struc­
ture. The latter is correct under the conditions of in­
hibited growth when an increase of the dimensions of 
the complex is limited by crystal defects or by "colli­
sions" with other analogous complexes growing from 
neighboring locations of the crystal. The thermody­
namic approach may also be correct in the case of free 
growth of a complex since the diffusion relaxation of 
the fine-scale elements of the fine structure should for 
not too large supercooling occur much more rapidly 
than the relative change of the dimensions of the com­
plex. 

Combining the chemical free energy of a complex 
and its elastic energy (2), we obtain an expression for 
the elastic and chemical free energy 

-s 1s d3Jr F- d"rfchem(c)+2 -(2 ) 3 B(n)jeo(k)j 2, 
(Vz) 1l 

where V~ is the volume of the complex. Since B(n) 
> 0, F =::: Fo where 

(4) 

S 1 s d3k 
Fo= d"rfcbeJc)+2minB(n) 2;t3je0 (k) 12= ~ d3rf(c), (5) 

(V,) ( ) (V,) 

where f(c) = fchem(c) + ?'2 min B(n}[€0 (c>]2 and 
min B(n) is the minimum value of B(n). In (5) use has 
been made of the condition that €'0 [c(r)] differs from 
zero only inside the region ~. The minimization of the 
free energy in the right-hand side of (5) is carried out 
in the standard way with the condition of the conserva­
tion of the number of particles. The decomposition of 
a homogeneous solid solution will occur when the curve 
f( c) as a function of the concentration has a common 
tangent at two points c1 and c2. In this case the free 
energy takes on a minimum value if complete stratifi­
cation occurs in the complex into two equilibrium 
phases whose concentrations are c 1 and c 2 and the 
ratio of whose volumes is y = c2/ ( -c1). Each of these 
phases will be characterized by a deformation €0 ( c 1) 
= ( a1 - ao)/ ao and €o( c 2) = ( a2 - ao)/ ao where ah a 2, 
and a 0 are the lattice parameters of the first and 
second phase and of the matrix respectively. 

It follows from the above discussion that the mini­
mum value of the free energy Fo is the lower bound 
of the free energy of a complex ( F:::: F0). From a 
comparison of (4) and (5) it follows that F -- Fo if 
I Eo(k) 12 differs from zero only for those directions n0 

of the vector k for which min B( n) = B( n0 ). It follows 
from (3) that for tl. < 0 (a case realized in practically 
all known decomposing alloys) B(n) takes on the mini­
mum value 9K- 9K2/c 11 for n = n0 directed along one 
of the cubic (100) axes. Thus, for the case tl. < 0 the 
free energy F tends asymptotically to F0 if I e0 (k) 12 
differs from zero in the region of k space represent­
ing one or several intersecting thin and long rods 
directed along the cubic (100) axes. The situation 
when I Eo(k) 12 differs from zero within the limits of 
one rod in k space in the [001] direction corresponds 
to a spatial distribution of deformation and composi­
tion inhomogeneities within the limits of a complex 
which is of a one-dimensional nature, i.e., depends 
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only on one z projection of the vector r on the [001] 
direction: 

i'o(r) = d0011 (z). (6) 

The function I e 0(k) 12 differs from zero in the 
region of k space representing two rods in the [100] 
and [010] directions if within the limits of the complex 

{7) 

and three rods in the [100], [010], and [001] directions 
if 

i'o(r) = ;>}1001 (x) + i'!OIOJ (y) + i'PJOI] (z). (8) 

The variables x, y, and z in {6)-(8) are the coordi­
nates of the vector r along the cubic [100], [010], and 
[001] directions. Formula {7) describes a two-dimen­
sional modulation which is a superposition of two one­
dimensional modulations, and formula (8) describes a 
three-dimensional modulation which is a superposition 
of three one-dimensional ones. If the characteristic 
dimensions of the complex in a direction perpendicular 
to n0 are of the order of L~ and the characteristic 
scale of the inhomogeneity Eo( r) in the direction of 
the modulation is of the order of d, then the length of 
the corresponding rod in k space within which 
I E0(k) 12 ~ 0 is of the order of 27T/d and the thickness 
is of the order of 21T/L~. It follows hence that there­
quirement formulated above that the rod be sufficiently 
narrow and long reduces to the inequality d/L~ « 1. 
Taking into account the properties of I E0(k) 12 for 
d/L~ « 1 one can take out the quantity B(n) = B(n0 ) 

= min B( n) from under the integral sign in the right­
hand side of (4) and go over from F to F 0 • The accu­
racy of this procedure is of the order of d/L~: 

F = Fo + !J.E, !J.E = S LlB(n) I eo(k) 1z~ 
(2rr)' ' 

where A E is a quantity of the order of d/ L~, and 
AB(n) = B{n)- min B{n) > 0. 

(9) 

Since AE > 0, the free energy of the complex will 
be the lower, the smaller the ratio d/L~. The latter 
means that from the point of view of the elastic and 
chemical free energy it is convenient for the complex 
to subdivide into infinitely thin structural elements. 
This process stops because in the course of the sub­
division of the complex the number of separating sur­
faces between the constituent phases increases and 
consequently the contribution of the surface energy of 
the interphase boundaries increases. In those instances 
in which the surface energy is sufficiently small (the 
criteria for the smallness of the surface energy will be 
cited below) the ratio d/L~ « 1. Thus, under the con­
dition that d/L~ is small one can neglect the second 
term in (9) and obtain the ratio of the volumes of the 
separating phases and their equilibrium concentrations, 
minimizing the free energy F 0 • As was shown above, 
F0 takes on minimum values when the matrix in the 
complex decomposes into two phases with equilibrium 
concentrations c1 and c 2, the ratio of whose volumes 
is y = c2/(-c1). 

The realization of this two-phase state is only pos­
sible in the case of the one-dimensional distribution {6) 
since the two-dimensional distribution {7) describes as 
a minimum the coexistence of three phases and the 

FIG. I. A one-dimensional periodic 
structure. The dark and light regions il­
lustrate the inclusions of equilibrium 
phases. 

[/Jill) 
,\ 

three-dimensional distribution {8)-the coexistence of 
four phases. Thus, a complex consisting of successive 
thin plates of both phases with the surfaces of these 
plates normal to the modulation direction [001] and a 
ratio of the volumes of the equilibrium phases y has 
the minimum free energy. Since the volume part of 
the free energy F in (9) depends solely on the ratio of 
the volumes of the phases, one must, in order to deter­
mine the mutual distribution of inclusions, investigate 
the minimum of the small contribution to F0-the quan­
tity AE. Calculations carried out in the Appendix show 
that the minimum of the quantity AE determined with 
the additional conditions of the constancy of the ratio 
of the volumes of the phases y and the constancy of the 
volume of the complex and of the given number of 
plate-like inclusions (fixed surface energy), is assured 
by a one-dimensional periodic distribution. In it all the 
inclusions of the first phase are in the form of equal 
parallel plates equidistant from one another. The in­
tervals between the inclusions of the first phase are 
filled with the second phase (Fig. 1 ). At the same time 

t:J.E = B(e1°- :c2°) 2a(y)aoS~, {10) 

where ao is the period of distribution determined by 
the dimension of the complex in the [001] direction and 
by the number of inclusions; a(y) is a constant deter­
mined in (A.9); S~ is the external surface of the com­
plex passing along the perimeter of the plate-like in­
clusions parallel to the [001] direction; 
B = 9K2c~f lA I (cu- C12). From the definitions (5) and 
(10) it follows that the quantity Fo has the meaning of 
the volume free energy of the complex and the quantity 
AE-of the surface energy, elastic in origin, of the 
complex, The appearance of elastic energy proportional 
to the external area of the complex is connected with 
the contribution of elastic stresses localized near the 
ends of the plate-like inclusions constituting the com­
plex. 

The last parameter to be determined is the number 
of inclusions or the period a 0 uniquely related to it. 
In order to determine the period a 0 , one must add to 
the free energy (9) the surface energy of the interphase 
boundaries which is 

E, = 2acoonV~fao, (11) 

where a<oo1> is the coefficient of surface tension at the 
interphase boundaries along the (001) planes along 
which the plate-like inclusions make contact, and V~ 
is the volume of the complex. Minimizing the sum of 
(10) and (11) with respect to a 0 (the free energy Fo 
does not depend on a 0 ), we obtain 
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ao = (roL,) ''•, (12) 

where ro = 2a<o01)[B(E~- eg)2a(yW1 is a quantity hav­
ing the dimensions of length, L~ = s(001/P(001) is the 
characteristic dimension of the complex in a direction 
normal to the [001], S<oo1> is the area of the section of 
the complex by the (001) plane, and P< 001 l is the peri­
meter of this cross section. Making use of (12), one 
can reduce the requirement d/L~ « 1, within the 
framework of which the calculation of AE is carried 
out, to the condition 

dfL, = (roL,-')'"~ 1, (13) 

which is fulfilled for the typical values of the parame­
ters ro ~ 1 A and L~ ~ 10 3 A. 

Let us consider the possibility of the existence of 
the two-dimensional distribution (7). Let us assume for 
simplicity that there is a linear relationship between 
the deformation €'0( r) and the local concentration c ( r) 
at the point r reckoned from the average composition 
of the alloy (Vegard's law is valid): 

i'0(r) = wc(r), (14) 

where w is the linear coefficient in the concentration 
dependence of the lattice parameter of the alloy. The 
two-dimensional distribution (7) consists of a minimum 
of thre-e phases differing from one another in composi­
tion. Here the functions €~1001 (x) and €J010l(y) should 
have a step-like form and take on only two values. 

As was shown above, the two-dimensional distribu­
tion (7) is described in the main by the volume free 
energy F0• The correction AE in (9), as well as for 
the one-dimensional distribution (6), characterizes the 
surface energy of the complex connected with elastic 
strains and is of the order of d/L~ « 1. For this 
reason the equilibrium composition and the volumes of 
the structural components of the complex should be 
determined from the condition of F0 being a minimum. 
A necessary requirement for the minimum of F0, when 
the number of particles is conserved, is the require­
ment 

8j/8c = f.l, (15) 

where f is determined in (5) and J.1. is an undetermined 
Lagrange multiplier fulfilling the role of the chemical 
potential. Equation (15) determines the equilibrium 
concentrations of the phases into which the complex 
decomposes and has in the general case three solutions 
(see Fig. 2): c1(J.L), c2(J.L), and ca(J.L). 

It follows from (14) that a two-dimensional distribu­
tion of the deformation (7) corresponds to a two-dimen­
sional distribution of concentrations: 

c(r) = c}1001 (x) + c210101 (y). (16) 

This distribution will take on three values only in the 
case when each of the functions c~100l(x) and c~010l(y) 
takes on only two values: c1(J.L)/2 and c2(J.L)/2. The two 
values of c(r) are c1(J.L) and c2(J.L), and the third value 
is }'2[c1(J.1.) + c2(J.1.)]. The equality Y2[c1(J.L) + c2(J.L)] 
= c 3(J.L) where c 3(J.L) is the third solution of (15) is the 
equation for determining J.1.. We shall use ')'1 to denote 
the fraction of the volume of the complex V~ within 
which c~100l(x) takes on the value c1/2 and Y2-the 
fraction of the volume V~ within which c~010l(y) takes 

f(cl 

FIG. 2. The solution ofEq. (15). 

CJ= :c.!! Cz f) 

z 
on the value c2/2. Then the volume of the phase with 
concentration c 1 is y 1 y 2 V~, with a concentration c 2 it 
is ( 1 - y 1)( 1 - y 2) V~, and with a concentration 
Y2(c1 + c2) it is (y1 + ')'2- 2y1y 2 )V~. Since all the 
concentrations are reckoned from the average concen­
tration of the alloy, the condition for the conservation 
of the number of particles is of the form 

Ct'\'I'\'2 + c2(1- y!) (1- '\'2) + 1/2(c1 + c2) (Yt + Y2- 2YtY2) = 0 (17a) 

or 
Yt + '\'2 = 2c2 I ( c2 - ct) , 

and the free energy 
{17b) 

Fo = v{t(ct)Yt'\'2 + /(c2) (1- Yt) (1- '\'2) (18) 

+t( Ct~C2 ) (Yt+Y2-2YtY2)]. 

Minimizing (18) with respect to y1 and y 2 with account 
of (17b), we obtain 

(19) 

It should be noted that the limitations on the form of 
the function c~100l(x) and c~010l(y) just obtained do not 
as yet fully determine the form of c ( r): there is an 
infinite set of functions of the type (16) which satisfy 
the obtained limitations with respect to which the 
minimum value of the free energy Fo is degenerate. 
For this reason a full clarification of the form of the 
function c(r) requires, as in the one-dimensional case, 
a minimization of additional terms not accounted for 
previously in the free energy: the elastic energy AE 
proportional to the external area of the complex, and 
the surface energy of the interphase boundaries Es. 

It follows from (7) and (2) that the quantity AE for 
the two-dimensional distribution separates into a sum 
of two quantities: 

(20) 
characterizing the corresponding one-dimensional 
distributions in the [100] and [010] directions. For 
this reason the minimization problem of the quantity 
AE for a two-dimensional distribution for a given 
volume V~ and a given number of interphase bounda­
ries (number of inclusions) reduces to the problem of 
minimizing AE for a one dimensional distribution, 
considered in the Appendix. We can, thus, state that 
the minimum of AE is realized if c~100l(x) and 
c~010l(y) are periodic functions of the same form as in 
the one-dimensional case. The corresponding values 
of AE[loo] and AE[o1o] are determined by equations of 
the type of (10): 

AEllooJ = 1/ 4Bro2 (ct- c2)2a(yt)SriOoJa[looh (20a) 
t.E10101 = 1/4Bw2(ct- c2) 2a(y2)Sroto1arotoh (20b) 

where S[looh S[o1o], a[loo], and a[o1o1 are the external 
area of the complexes and the periods of the one­
dimensional distributions parallel to the directions 
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[100] and [010j. In (20a) and (20b) we have taken into 
account the definitions following from (14): 

et0 = roc1 /2, e2°= roc2/2, e1°- e2°= 1/2co(c1- c2). 

The surface energy of the distribution can also be 
represented in the form of a sum of surface energies 
of two-one- dimensional distributions: 

E, = 2aV::_+_2aV~ , (21) 
a[t<lOJ a[oto) 

where a is the average surface energy of a two-dimen­
sional distribution over surfaces of sepa),'ation of the 
type (100 ). It follows from (20) that the quantities 
a[1oo] and a[oto] can be determined independently from 
one another by minimizing the sum of (19) and (21) with 
respect to apoo] and ar0101 . A procedure completely 
analogous to that presented for the one-dimensional 
case yields 

(22) 

where Lpoo] = S(loo/P(lOO) and L[olOl = s(Olo/P(OlO) are 
the characteristic linear dimensions of the complex; 
rl = 2a [14 Bw 2 ( Ct - c2)2a( ')'1 W\ s(lool and s(OlO)l and 
P< 100> and P< 010> are the areas and perimeters of the 
sections of the complex by the (100) and (010) planes. 
Since from the point of view of the symmetry of the 
system the (100) and (010) planes are equivalent in all 
respects, one can in the majority of cases expect that 
L[1oo] f:e L[otoJ· The latter will attest to the fact that 
a[1oo] f:e a[oto] = ao· The complex will thus constitute a 
two-dimensional square periodic structure in the (001) 
plane of the crystal whose lattice points will be rods 
with square cross sections of two phases with compo­
sitions c1 and c 2, close to the equilibrium composi­
tion, and rods with square cross sections and average 
composition close to the comoosition of the homogene­
ous solid solution 12( c1 + c 2). All the rods are elon­
gated along the [001] direction perpendicular to the 
plane of the square lattice (Fig. 3 ). 

The free-energy minimum of the two-dimensional 
distribution found for the class of functions (16) corre­
sponds to a three-phase composition of the complex 
and does not, therefore, insure an absolute minimum 
of the free energy: one of the structural components of 
the complex has the composition %(c 1 + c 2) close to 
the composition of the undecomposed matrix. The ab­
solute minimum corresponds, as has been shown at the 
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FIG. 3. A two-dimensional structure. The dark and light regions il­
lustrate the phases with compositions c1 and c2 . The shaded regions 
have a composition (c1 + c2)/2. 

FIG. 4. A two-dimensional structure after secondary decomposition. 
The dark and light regions have a composition c1 and c2 respectively. 

beginning of the article, to a one-dimensional two­
phase distribution. The distribution shown in Fig. 3 
can for this reason only be metastable, i.e., stable with 
respect to small variations of the fine structure. In 
order to be convinced about the metastable nature of 
the obtained optimum two-dimensional distribution, one 
must investigate the change of the free energy of this 
distribution for variations of the concentration which 
remove the function c ( r) from the class of functions 
(16). At the same time it is sufficient to analyze only 
the most "dangerous" variations which are, on the 
one hand, coupled with a minimum loss in the elastic 
and surface energy, and, on the other hand, with a 
maximum gain in the volume free energy. Since the 
minimum loss of elastic energy is connected with the 
formation of thin platelets along the cube faces, and 
the maximum gain in the volume free energy is con­
nected with the decomposition of the rods which have 
the average composition 12(cl + c 2), close or identi­
cal to the composition of the initial matrix, then the 
most "dangerous" change in the fine structure of a 
two-dimensional complex will be the splitting of the 
rods with the composition 12(c1 + c2) into platelets of 
segregations. The composition of these platelets is 
close to the equilibrium composition and their planes 
are normal to the [001] axis of the rod (Fig. 4). 

The formation of one such platelet, for example 
with a concentration c1, leads to an elastic-energy 
loss D-Ept= B (E1- E2)2ad1v1/l1 calculated in accord­
ance with formula (9) for D. E, in analogy with the cal­
culation of D. E in the Appendix [here E 1 = we 1, E 2 
= w ( c 1 + c 2 )/ 2, a is a numerical factor of the order 
of unity, d1 and Zt = a0(1 - y 1 )y 1 is the thickness and 
width of the platelet and v1 is its volume], and to a 
loss in the surface-tension energy E~t = 2a< 001>vdd1. 

Minimizing the sum of D-Ept and Epl with respect to 
d1 for a given volume v 1, we obtains D. F pl 
= 4a<oo1>vj..;r;f; or, using expression (22), D-Fpz 
= 4a< 001>v1r1- 314 L[~~6J. At the same time, the gain in the 
volume free energy in the segregation of the platelet is 
D.Fo = [f(c1)- f(12(c1 + c2))]v1 < 0. Thus a complex 
which has the fine structure illustrated in Fig. 3 is 
metastable if the loss in the elastic and surface energy 
D. F pl in the formation of one platelet becomes larger 
than the gain in the volume free energy D.F0. This con­
dition is valid when 

(23) 

Condition (23) is valid for small supercooling when 
the specific free energy of the separating phases is 
close to the free energy of the matrix, as well as for 
short decomposition times when the dimensions of the 
complex L[wol are sufficiently small. In the opposite 
case the two-dimensional distribution becomes un­
stable against secondary decomposition which takes 
place in the rods with the average composition 
12(c1 + c2). The secondary decomposition reduces to 
a transformation of the rods into packets of successive 
platelets of both phases normal to the rod direction 
[001] having phase compositions c1 and c2. Secondary 
decomposition can thus lead to a transition of the sys­
tem from the three-phase to the two-phase state which en-
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sures, as has been shown at the beginning of the arti­
cle, a minimum of the volume free energy F0. 

In order to describe a system undergoing secondary 
decomposition one must add to the two-dimensional 
distribution (16) the function c[ooi] (x, y, z) which dif­
fers from zero only in the rods of average composi­
tion Y2(c1 + c2), and which modulates the composition 
only in the [ 001] direction of the z axis. Then, 

c(r)=[cl1001 (x)+ciOiOJ (y)J+cl001 l(x,y,z). (24) 

The system will be a two-phase system if c~100l(x) and 
c ~010 1( y) will, as before, take on the values c 1 I 2 and 
c 2l2 and c[001l (x, y, z) as a function of z wi11 take on 
the values Y2(c1- c2) and -Y2(c1- c2). If the charac­
teristic length of the d modulation described by the 
functions c~100l(x) and c~010l(y) is much smaller than 
the characteristic dimension of the complex in a direc­
tion perpendicular to the direction of modulation 
( diL~ « 1 ), and the characteristic length d1 of the 
modulation in the [001] direction described by the 
function c[001l(x, y, z) is much smaller than the char­
acteristic transverse dimension d of the rod within 
which this modulation takes place ( d11 d « 1 ), then 
the correction to the volume free energy separates 
into the sum of corrections connected with three types 
of one-dimensional distributions: 

F- F0 = ~E[IooJ + t.ErotoJ + ~ErootJ· (25) 

The corrections ~Er 1oo] and ~Er01oJ have been de­
termined previously [see (20a) and (20b)]. They corre­
spond to two one-dimensional periodic distributions in 
the [100] and [010] directions. The elastic energy 
~Eroo1J represents the sum of the energies correspond­
ing to one-dimensional periodic distributions-stacks 
of alternating platelets of two phases whose number is 
the same as that of the rods of average composition 
which have undergone secondary decomposition. The 
elastic energy of one stack is proportional to its 
lateral surface parallel to the [001] and is given by 
expression (10): 

Bro2(c1 - c 2) 2a(y3)aroow2(a!tooJ + alOiDl)L,, 

where Lz is the dimension of the complex along the 
[001] axis, 2 [a[Ioo] + a[ 0101]Lz is the area of the lateral 
surface of a single stack, and y 3 is the ratio of the 
volume occupied by the phase with the composition c1 
to the volume of the entire stack. The value of ~Eroo1 J 

can be obtained if one multiplies the energy correspond­
ing to one stack by the number of such stacks equal to 
s(001/ a(loo] a[OlO]• We thus have 

Mr0011 =Bro2 (cl-c,)'a('\'!l)ar001J(-1-+-1-) V:o:. (26) 
a[looJ arotoJ 

It should be noted that in obtaining formula (26) we have 
taken no account of the contribution of the energy of 
elastic interaction of the stacks with one another, since 
this contribution is of a higher order of smallness in 
the parameter: 

dt I d ~ arootJI a[looJ < 1. 

In order to determine the periods of the distributions 
a(loo], a[o1o], and a[oo1], one must take into account the 
contribution of the surface tension at the interphase 
boundaries to the free energy. The homogeneous dis­
tributions c~100l(x) and c~010l(y) lead to a total surface-

tension energy 

E.uooJ+E/otoJ =2aV:o: ( _1_+_1_), (27) 
a[IOO] a[OiO] 

and the distribution c[oOl) (x, y, z) leads to a surface­
tension energy 

E/OOil = 2cr<oot)(Yt + Y•- 2yty,) V:o: . (28) 
a root] 

Minimizing the sum of (20a), (20b), and (26)-(28) with 
respect to a(loo], arow], and ar 0011 , as well as with re­
spect to y1, y2, and y3, with the condition that the 
dimensions of the complex in the [100] and [010] direc­
tions .coincide and the ratio of the volumes of the 
phases is given and equal to 

Y1Y2 + (Yt +Yo-- 2YtYzhJ 
y = I 1 - Yt) ( 1 - Yz) + (y, +Yo- 2yty,) ( l- '\'3) 

we find y1 = Y2 

where 
L, = s(OOI) I p(OOI)o r, = 2cr(OOI) ( Yt + Y2 

- 2y,y2) [Bro2 (c1 - c2) 2a(y3)]-1. 

(29a) 

(29b) 

A simultaneous solution of Eqs. (29a) and (29b) gives 

ao~( ~: t (r1L,2)''{ 1+o(( ~~)"')], (30) 

where O(rdL~)113 is the order of the correction 
( r 2 ~ r 1 ). The expression for the quantities y 1 and y 3 
is not presented since they must be determined from a 
very cumbersome transcendental equation that follows 
from the condition of the minimum of the free energy. 

The condition of applicability of the present theory 
which leads to the fine structure shown in Fig. 4 is, as 
has already been indicated, of the form d11 d 
~ ar001JI a0 « 1; bearing in mind (29a), (29b), and (30 ), 
this reduces to the condition 

(31) 

Since the condition for the realization of the two-dimen­
sional fine structure shown in Fig. 3, ( r 1 I L~ )11 2 << 1, 
is of a higher order of smallness than (31), condition 
(31) is stricter and is fulfilled for larger dimensions 
L~ (at later stages of the decomposition). Finally, we 
note that a three-dimensional distribution of the type 
(8) cannot in general insure a minimum of the total 
free energy. The reason for this consists in the fact 
that the minimum number of phases for such a distri_. 
bution is four, whereas the necessary condition for the 
coexistence of phases in equilibrium (15) admits the 
coexistence of only three phases. It does not, however, 
follow from this that as a result of peculiarities of the 
kinetics under conditions when the contribution of the 
elastic energy of the system is sufficiently large a 
transitory existence of an unstable three-dimensional 
distribution is impossible. 

It follows from (13) and (31) that the present theory 
is valid under conditions when the inequality 

(32) 

( r1 ~ r 2 ~ r 0) is fulfilled. The breakdown of inequality 
(32) attests to the fact that the surface tension at the 
interphase boundaries which stimulates the formation 
of equilibrium inclusions begins to play a role com-
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mensurate with the role of the elastic energy which 
"rolls" the inclusions into thin and extended platelets. 
The latter leads to the circumstance that the mecha­
nism of the production of periodic distributions de­
tailed above ceases to operate. Thus, making use of 
the inequality (32) one can make a number of predic­
tions concerning the systems and conditions for which 
one can expect a macroscopic structure with a clearly 
pronounced periodicity. The periodic macroscopic 
distributions will be the more perfect, the better in­
equality (32) is fulfilled, i.e., the smaller the value of 
the characteristic length r 0 [see Eq. (13)]. The latter 
gives the following conditions for the existence of 
periodic distributions: 1) the separating phases should 
have crystal lattice parameters which differ strongly 
from one another [a large value of (E~- E~)2 ]; 2) the 
solid solution should have a large elastic anisotropy 
(a large value of I~ I); 3) the surface tension at the in­
terphase boundaries should be sufficiently small. The 
best conditions in this sense are realized near the 
spinodal where a = 0. An infringement of any of these 
conditions (a -oo, ~- 0, E~- E~- 0) leads to a de­
struction of the periodicity. It should also be noted that 
in some cases in which at the initial stage of the de­
composition the characteristic dimension of the inclu­
sion is sufficiently small (r0/L~ ~ 1), a random dis­
tribution of inclusions is formed which rearranges it­
self into a periodic distribution with the growth of the 
inclusions [with the increase of L~ and the correspond­
ing transition to the inequality (32)]. 

Available experimental results are, apparently, in 
good agreement with the conclusions of the present 
theory. It has been shown in[4 ' 9 J by the methods of 
electron microscopy and electron microdiffraction 
that a two-dimensional periodic distribution of a form 
coincfding with that obtained in this article (compare 
Figs. 3 and 5) is formed during the decomposition of 
an alloy of the Ticonal type. In Fig. 5 we present two 
micrographs of a complex representing its mutually 
perpendicular sections by the (001) and (100) planes. 
As one can readily verify they have a form that coin­
cides with the corresponding sections in the diagram 
of Fig. 3. At a later stage of the decomposition the 
rods of the experimentally observed distribution un­
dergo secondary decomposition[9J and the configura­
tions shown on the micrograph (Fig. 6) are formed in 
the (100) plane of the foil. 

A comparison of the micrograph of Fig. 6 with the 
corresponding section of the complex in Fig. 4 by the 

FIG. 5. Electron-microscope image: a- (001) section of a two­
dimensional structure; b - (I 00) section of a two-dimensional struc­
ture.[9] 

FIG. 6. Electron-microscope 
image of a ( I 00) section of a two­
dimensional structure with second­
ary decomposition.[ 9] 

(100) plane of the lattice of the matrix shows excellent 
agreement. The sequence of the fine-structure 
changes observed in[4• 9J is also in agreement with the 
theory since it was shown above that the distribution 
(24) with a secondary fine structure has a lower free 
energy than a metastable two-dimensional distribution 
of the type (16) and should therefore occur at a later 
stage of the decomposition. The fact that all transla­
tion vectors of the obtained redistributions are directed 
solely along the (100) type cubic axes is also in agree­
ment with experiment. Finally, attention should be 
drawn to the fact that the superpositions of one-dimen­
sional distributions along ( 100) type directions, con­
sidered in the article, should lead to the formation of 
satellites in the cube directions near the reciprocal 
lattice points of the matrix. As has been shown, the 
formation of satellites in other directions will lead to 
an increase in the elastic energy of the system. This 
conclusion is in full agreement with the results of x­
ray diffraction experiments (see, for example,Pl). 

The author expresses his deep gratitude to I. M. 
Lifshitz for a discussion of the article which facili­
tated an appreciable improvement of it, and to E. G. 
Knizhnik for the possibility of using the results of her 
experiments.[4 ' 9l 

APPENDIX 

Let us consider a complex in the form of a cylinder 
whose axis is along the [001] axis of the crystal with 
the sections by the (001) planes having an arbitrary 
shape. Let the volume of the complex be completely 
filled with plate-like inclusions of the two separating 
phases whose surfaces are parallel to one another and 
perpendicular to the [001] axis of the cylinder. We as-
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sume that the number of inclusions and the ratio of the 
volumes of the phases y is given. All the plate-like 
inclusions are bounded by the cylindrical lateral sur­
faces of the complex and the surfaces of all inclusions 
have therefore the same shape. For this reason the 
Fourier components of the function of the form 
® p( r )2> can be represented in the form of the product 

Elp(k) =S('t)<pp(k,), (A.l) 

where k = { T, kz}, T is the component of the vector k 
in the (001) plane, and kz is the component of the vec­
tor k in the [001] direction; 

00 

S('t) = .\ ~ S(p)exp(iYp)dZp; 

<pp(k,) = r ih(z)exp(ik,z)dz, 

p is the component of the radius vector r in the {001) 
plane; S(p) is a function of the shape of the section of 
the complex by the {001) plane equal to unity if the 
vector p lies in the plane of the cross section and zero 
otherwise; z is· the component of the radius vector r 
in the [001] direction, iP'p{z) is a function of the shape 
equal to unity when the z coordinate corresponds to a 
point located inside the inclusion of the p-th phase and 
zero otherwise. 

Let the plate-like inclusions in the complex form a 
one-dimensional periodic distribution. The elementary 
unit cell of such a distribution consists, in the general 
case, of an arbitrary number of inclusions of the two 
phases and of the matrix parallel to one another, each 
inclusion having an arbitrary thickness and an arbi­
trary position along the z axis. The latter assump­
tions do not limit the generality of setting the problem 
since a nonperiodic distribution is a special case of a 
periodic distribution if the period of the latter tends to 
infinity. Since the inclusions are distributed period­
ically along the L001j axis with a period a, the function 
jE:: 0(k)j 2 = jE::~® 1 (k) + E::~® 2(k)j 2 is nonzero only at 
"reciprocal lattice" points: kz = 21rm/ a ( m = 0, ± 1, 
±2, ± ... ). The integration for AE over kz in expres­
sion (9) can for this reason be replaced by a summa­
tion of the expression 

M( 't , 2nm/a )!!_I e,•<p,•(2nm) 
'f(2nm/a)'+,;2 'f(2nm/a) 2 +,;2 a a 

+e,"<pz•C:m)l'jS(,;)j", 

over the "reciprocal lattice" points; here N is the 
number of unit cells in the complex, and cpp(21Tm/a) 
= W1cpp(21Tm/a) is the Fourier component of the shape 
function of the inclusions of the p-th phase inside one 
unit cell of the distribution. The expression for AE in 
(9) can be rewritten in the form 

N p ~ 1 I ( 2nm ) 1 2nm ) I' ( ) !!.E =~ ~ A(m) e1°<p1° -a- + Ez0<pz0 \-a- , A.2 
m=-oo 

( 
't 2nm/a )jS(,;)j 2 d2't 

A(m)= S .\t1B , ----, 
'f(2nm/a)Z+,;2 Y(2rrm/a) 2 +'t2 P(oOI)a (2n) 2 

(A.2a) 

2lThe shape function of the inclusion of the p-th phase (p = I ,2) 
Elp (r) is equal to unity if the radius vector is inside the inclusion of the 
p-th phase and zero otherwise. 

where P< 001> is the perimeter of the section of the com­
plex by the (001) plane. The term corresponding to 
m = 0 is absent in formula (A.2). This is related to 
the fact that for a linear dependence E:: 0( c) = we the 
expression between the absolute value signs in (A.2) 
for m = 0 vanishes in accordance with the definition 
of the functions cp~(kz) and cp~{kz). Since the function 
I S(T) 12 is localized in T in the interval T ~ 21T/L~ and 
kz 2>: 21T/a, then T/kz ~ a/Lz << 1. For this reason we 
can with an accuracy to higher orders in a/L~ repre­
sent AB(k/k) in the form of the first nonvanishing 
term of the expansion in the deviation of the vector k 
from the [001] direction: 

~ ( !!.B(n)~B--2 , A.3) 
k,Z+,; 

where B =-9K2A(cu- c12l/cf1 is a positive constant 
proportional to the elastic anisotropy constant A. 

Expression (A.2a) for A( m) calculated with the aid 
of (A.3) is in the first nonvanishing approximation with 
respect to a/L~ of the form 

B 1 (A.4) 
A(m)=Tn"'~· 

Substituting (A.4) in (A.2), we obtain 

!!.E = _}.__ NP(oo!) _!!_ i; I _1_1 e,o<p,•( 2rrm ) + e,'<pz'( 2rrm ) I' 
2 4rr jmj a a 

m~-= {A.5) 

From the definitions of the functions cp p( kz) as the 
Fourier components of the one-dimensional shape func­
tion of the p-th phase of one unit cell it follows that 

vP ( ) 

0 ( 2rrm) _ "' sin(nd/ m/a) (. 2rr b (P) ) (A 6) <pp -- -a L.l cxp L- , m , . 
a . rrm a 

J=i 

where vfe is the number of inclusions of the p-th phase 
in one e ementary unit cell, and b1p> and djP> are the 

coordinate and thickness of the j -th inclusion of the 
p-th phase. 

In order to find the optimum distribution of plate­
like inclusions in the unit cell, one must investigate 
the minimum of expression (A.6) under the additional 
condition of the conservation of the volumes of the 
first and second phase. As a result we find that the 
number of inclusions of both separating phases is 
equal to one another (1.11 = 1.12 = v), and 

a > a a a 
b<n =-i bj' =-i +-, ao =-, 

J v ' v 2v 'V 

(A.7) 

where j = 0, 1, 2, ... , v- 1. It follows from (A.7) that 
the quantity AE takes on a minimum value when the 
plate-like inclusions of the first phase have the same 
thickness and are located at equal distances from one 
another, the spaces between them being filled up with 
the second phase (see Fig. 1 ). Since the number of 
inclusions of each phase is given and equal to N, the 
period of the obtained one-dimensional distribution a0 
is determined by a0 = Lz/N where Lz is the dimen­
sion of the complex in the [001] direction. For such a 
distribution we have in expression (6) Vp = 1, d< 1> 
= a0y, d<2l = a0(1- y), b< 1> = 0, and b<2> = ao/2. Mak­
ing use of these relations in (A.5), we obtain 

B 
!!.E= (Zn) 3 (e1°+ e2°) 2a(y)a0S~, {A.8) 
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where S:z; = P<oo1)Lz is the lateral area of the complex 
passing through the perimeter of its (001) section and 
parallel to the [001] direction, 

oo ' sin2 nvm 
a(y) = m~-oo lml 3 • 

utilizing Poisson's summation method, one can obtain 
for a ( y) the integral representation 

I 

a(y)= 4ny2 S (-In 21 sin ny£1) (1- s)d£. (A.9) 
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