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We obtain an equation for the magnetic field in two cases: 1) gyrotropic turbulence; 2) anisotropic 
turbulence. We use the method of selective summation of the perturbation theory series, we find an 
exact solution of these problems for a particular model of turbulence. The most important assump
tion which we use then is the neglect of the velocity correlation time. In the first case it follows 
from the equation obtained that gyrotropic turbulence can generate a large-scale magnetic field. We 
find the conditions for the generation of a field. Anisotropic turbulence does not generate a large 
scale field and, in contrast, leads to an anomalous anisotropic diffusion of the field. Isotropic tur
bulence also leads to an anomalous diffusion of the field. 

RECENTLY many papers have appeared on the gen- usual boundary conditions are satisfied which are ob-
eration of regular magnetic fields. One direction in tained from the main Maxwell equations. The quantities 
which these papers have moved is the problem of the B and v inside the volume of the fluid can be expanded 
generation of magnetic fields when turbulent motions in spatial Fourier components: 
are present. In connection with the work by Steenback 
et al. [1-3] interest was drawn to gyrotropic turbulence 
where the density of the probability distribution of the 
velocities is not invariant under reflections. Since in 
these papers it was assumed that the pulsation of the 
magnetic field h «Ho, where H0 is the initial field (a 
quadratic effect is calculated), the solution is essen
tially applicable to motions with a small magnetic 
Reynolds number Rm. This was stipulated in[3 J 
(assumption 1 ). In the above mentioned papers it was 
shown that gyrotropic turbulence can act as a genera
tor of magnetic fields with a scale which is significantly 
larger than the scale of the pulsations. 

On the other hand, there is a class of motions for 
which the velocity probability distribution is aniso
tropic. Turbulent convection is an example of this. 
Tverskoi[4J has shown that a separate convective cell 
(toroidal vortex) can generate a large scale field. What 
will be the effect of a whole statistical ensemble of 
cells? 

We have been able to obtain in the present paper for 
a particular model of turbulence an exact solution for 
the magnetic field when there are large pulsations for 
gyrotropic and anisotropic turbulence, by using the 
method of selective summation of the perturbation 
theory series. 

GYROTROPIC TURBULENCE 
1. Statement of the problem. We shall use the ap

proximation of magnetic hydrodynamics, i.e., we shall 
start from the equation 

liB 
Tt =rot[vB] + 'VmdB. (1)* 

Here B is the magnetic field, v the velocity, and vm 
the magnetic viscosity. Let the conducting fluid occupy 
some bounded volume. The magnetic field must vanish 
at infinity. This means that B is not maintained by any 
external sources. At the fluid-vacuum boundary the 

*[vB):=v X B. 
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B(r,t)= ~exp(ikr)B(k,t), 
I< 

v(r,t).= ~exp(ikr)u(k,t). 
k 

(2) 

In the Fourier-representation Eq. (1) has the follow
ing form 

i.iB(k,t) + vmk2B(k, t)= i ~ {k[u(k- k')B(k')]]. 
iJt I<' 

(3) 

In problems of this kind one assumes that the 
velocity field is given. We need the spectral tensor of 
the velocity field, Tjl· For gyrotropic and homogeneous 
turbulence the form of Tjl is known (see[ 5 l): 
if k ¢ k', then 

T;1 = (u;(k, t)u!"(k', t')) = 0, (4) 

andifk=k',then T;t=(u;(k,t)ut(k',t'))= (4') 
=A (k, 1 t- t'i) [11;t- k;kt / k2] + iAt (k, it- t'i )e;ttkt. 

Here Ejlf is the third rank tensor which is antisym
metric in all indices, E123 = 1; lijl is the Kronecker 
symbol. Moreover, we split off the large scale (slowly 
varying) component of B: B = H + h, (B) = H. The 
average is taken here over a time interval which is 
large compared to the time of the pulsations but small • 
compared to the time over which the large scale com
ponents change. Thus, ( u(k, t)) = 0. 

In the following we shall use the perturbation theory 
series: 

B(k,t)= ~B<n>, B<O>=B(k,O)exp(- k2vmt), 
(5) n=O' 

t 

B<n+')= i S dt1 exp [k2vm(t!- t)] ~ [k[u(k- k')B<nl(k')TI. 
0 k' 

We shall consider the following model of turbulence: 
1) B2/87T « pv2/2 which is usually assumed in prob
lems of the generation of a field, i.e., one can assume 
that the velocity field is stationary; 2) the velocity 
probability distribution is Gaussian; 3) we assume that 

A (k, it- t'll = u(k)tl(t- t'), At(k, it- t'i) = Ut(k)11(t- t'). 
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2. Derivation of the equation for the magnetic field 
H. We shall assume that the initial field is large scale 
i.e. kL, the center of gravity of the product 
Bi(k, O)Bi(k, 0), occurs for small k(kL « k1, k1 is 
the center gravity of u(k) and ul(k)). We shall be in
terested in the large scale component of the field: 

H= ~ (B<n>> = ~ H<n>. 
11=0 ?1=0 

Using the second assumption we get from (5) 

in the even terms the average of the products of veloci
ties will be split up into a sum of all possible pair 
combinations but by virtue of the third assumption 
there remains only one combination. This makes it 
possible to establish a recurrence formula for the 
averaged quantities: 

t 

By directly substituting (7) into (8) one can verify that 
(7) is a solution of Eq. (8 ). It follows from (7) that the 
magnetic field increases for small k: k < km where 

(10) 

When k 2:: km, the field decreases. This statement is 
true if km << k1; in the opposite case (km R: k1, km 
>> k1 ) the generation occurs in the entire large scale. 
We note that there is no stationary solution: the field 
is either generated or dissipated. There is no genera
tion in the case when km < 2w/L, where L is the size 
of the body. 

In the strictly uniform case of an unbounded turbu
lent medium we must also obtain an increase in the 
field. Then 

T;r- ll(k-k'), 

(B;(k, t)Bt"(k', t)) - ll(k- k'), (B> = 0; 

all summation signs in (2), (3), and (5) must be re-
H<2n+2l =- Vok2 S exp(vmk2(tl- t) )H<2n) dt1 

" t 

+ iaS exp(vmk•(tl-t))[kH<2nl]dt~, 
0 

{6) placed by integrals over the whole of k-space. More
over, we multiply the series (5) by B*(k', t), average, 
and integrate over k'. 

where 
v0 = 1/3 ~ u(k), a= 1/a~ k2ut(k). 

k k 

We must now express ( B< 2 n+ 2>) in terms of B<o> and 
it turns out that H< 2 n+ 2> and hence H can be written in 
the form of a sum: 

H = AH<0> + Ci[kH<~>], 

where A and C depend on v0 , a, k, and t. We first 
evaluate A, the sum of the series. It is convenient to 
separate off partial sums of the form: 

80 = ~ S0<n>, 82 = (a•k•)• ~ S2<n>, ... , 

n 

One shows easily that the general term of the series 
s2 p has the form 

tn 
( a2k2) 2pC!p (- Vok2) n-2p-;:;( 

(we put C~ = 1 ). The series S2 p converge for all k 
and t and we can easily find its sum: 

S2p = ( a2k2) ~Pt2P (2p!) - 1 exp [ -v0k2t]. 

We can now sum the partial sums: 

A= ~·s.P = ch(kat)exp(- v0k2t). 
p 

We can in the same way evaluate C md as a result we 
get 

H = exp [-(vo + Vm)k2t]{B(k, 0) ~h (kat) 
+ i[kB(k, O)]k-1 sh (kat)}. (7) 

We see that in the given problem the series remaining 
when we perform a selective summation converges. 

Differentiating (7) with respect to t we get 

or, in r-space 

aH +(vo+vm)k2H=ai[kH] 
at 

aH 
-= arotH+(vo+Vm)~H. at 

(8) 

(9) 

Let the initial field satisfy the isotropy condition: 

(B;(k, O)B/ (k', 0)) = B(k, O)ll(k- k') (II;;- k;k; / k2). (11) 

We shall assume that B(k, 0) is statistically independ
ent of the velocity field and is large scale 

(SB(k,O)kdk /SB(k,O)dk~Su(k)kdk /S u(k)dk). 
0 0 0 0 

We break off the obtained series, restricting ourselves 
to terms of fourth order in the velocities. Moreover, 
we shall be interested in the large scale components of 
the field, i.e., B(k, t) with k R: kL. The largest con
tribution to the sum comes then from terms for which 
B(k, 0) can be taken out from under the integral sign: 

S<B(O' k)Bo(O) I) 
i ( ; (k) dk'=2B(k,O)exp(-2vmkZt); 

s ((B~0l(k)B;"(2J (k')+Bj(OJ (k)Bf2l(k') >)dk' 

= - 2B ( k, 0) exp (- 2vmk2t) 2k•vot; 

S (B:2J (k)B/00 (k') ))dk' 

= S ((Bflll (k)B;"<'> (k')+ B;"(O) (k)B\'~ (k')))dk' 
= 2B(k, O)exp(- 2vmk•t)(1/i(2k•v0t)• + k•tza•]. 

From these expressions it is clear that the contribu
tion from u1(k) only appears in the fourth order. Thus 

B(k, t).= B(k, O)exp(- 2vmk•t) 

1 
X(1- 2k2vot + 2T (2k2v0t) 2 + 2k2a2tz]. 

Equation (12) is, generally speaking, valid when 

(12) 

t « (2k2 vot1 so that for the operation of the dynamo 
it is necessary that the condition k « a/ ( v0 + vm) is 
satisfied. Indeed, then we have 

1 
2k2a2t• >-(2k2v0)2 

2! 

and amplification is obtained when t « (2k2 v0 t 1• This 
result agrees with (10) but in view of the fact that in the 
latter case the problem was solved approximately we 
do not obtain the threshold value km (i.e., the value 
km such that B(k, t) increases when k < km and de
creases when k > km). 
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Turning to the exact solution (7) (for a body of size 
L) we note that (7) confirms in the general form the 
conclusions of Steenbeck. As to the third assumption, 
it will be justified _if the characteristic time of varia
tion of the field 

to= (akL- (vo + llm)kL')-1 ~ t 1 = (k12v0)-', 

t 1 is the correlation time. Of most interest is the case 
when v0 »lim (Rm >> 1). We introduce the quantity 
f = a/vok1; it has the meaning of the ratio of the third 
term to the first two in (4) as far as order of magni
tude is concerned, i.e., it characterizes "the role of 
the gyrotropy." If f << 1, the condition to >> t1 is 
satisfied automatically, but if f » 1, the following con
dition must hold: 

ANISOTROPIC TURBULENCE 

Anisotropic turbulence may serve as a model for 
turbulent convection (whether or not it consists of 
toroidal cells). In lhat case Tjl has the following form 
(see[sJ ): 

(13) 

where Ap = Ap(k, (10.), it-t' i); p = 1, ... ,5; >.is a 
unit vector parallel to the preferred direction (in the 
case of convection this is the vertical). The solenoidal
ity condition leads to the following form of Tjl when 
k =k': 

k2At+As 
T;1=A1k;k1+k2 (A.k)' A;A1+Aall;z (14 ) 

k2At+As 
- (k;AI+kz1.;). 

(A.k) 

All three assumptions of the preceding problem remain 
in force and the third one takes the form 

A 1 = u1(k, (ll))ll(t- t'), 
A 3 = u3 (k, (ll) )ll(t- t'). 

Using these assumptions we obtain easily the recur
rence relation 

where 

t 

H<2n+2) =- x.k' S H<~n>exp(t1 - t)dtt, 
0 

2k'x = v3 (k2 - 2(kA.) 2) + (v{ + va') (k1.) 2 

+ v,(lf2k2 - 5/z(kA)') + v{'(3/z(kA.)'- 1/zk2) + 211mk2, 

k• 
v' ~ u 
I=~ (kA,)' h 

v.'' = ~ (kA.)'u1; 

k 

~ I ~ kl 
v3 = "f' us, Va = "f' (kA.)' Us. 

(15) 

Equation (15) reminds us of (6) but is simpler in form. 

This series also converges and the sum is easily 
found: 

H = B(k, 0) cxp ( -x.k2t). (16) 

Hence we get an equation for H: 

~+k'x.H =0. (17) 
{)t 

One sees easily that x > 0 and hence (17) describes 
an anomalous diffusion of the field with an anisotropic 
character. Anisotropic turbulence thus does not gen
erate a large-scale field. 

Let us consider limiting cases. If we can neglect 
the anisotropy, we have 

and 
Aa+A,k'=O 

T1; = ua(k) (liz;- kzk; I k')ll(t- t'), 
v3' + v1' = 0, v{' = - 1/ava, v, + Va = 0, 

whence 
X= 1/sVs + 11m-

It is clear that turbulent diffusion turns out to be 
ohmic, if V3 »lim (Rm » 1). In the other limiting 
case of strong anisotropy, i.e., if 

u, (k, (kA.)), ua(k, (ll)) 

are non-vanishing only when (k>.) = ±k, we shall have 

V! = v,' = v(, Va = va', X.= 1/2 ( 1- (kA-)2 I k2)vs +11m. 

We note that the time over which the field energy is 
transferred to small scale motion is to = (k~xr\ 
while the velocity correlation time is t 1 Rj (k1xt1. As 
t 0 >> t 1, the neglect of the correlation time (third as
sumption) is fully justified. 

I express my thanks to A. A. Galeev for a useful 
discussion. 
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