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Spontaneous y-emission by an excited nucleus, located in a polycrystal or single crystal containing 
identical (resonance) nuclei, is considered. The problem is solved in the approximation of short 
wavelengths A<< a (.A denotes the wavelength of the photon, and a denotes the interatomic distance). 
Expressions are obtained for the spectrum of y quanta emitted without recoil (without any change of 
the phonon state of the lattice) and for the time dependence of the rate of emission in different direc
tions. The results obtained can be experimentally verified by the usual method of measuring the 
lifetime of the excited nuclear state. 

IT is well known that the intensity of y-radiation which 
is associated with the decay of an excited nucleus de
creases with time according to an exponential law e-rt 
(r denotes the total width of the nuclear level). How
ever, as is shown in this work, if the excited nucleus 
is found in a crystal, especially in a perfect single 
crystal which contains identical nuclei {resonance nu
clei), any initial excitation may coherently propagate 
to other resonance nuclei in the lattice and be con
verted to a collective excitation whose decay differs 
appreciably from the decay of an individual nucleus. 

The formation and decay of such a collective ex
cited state in a collection of identical nuclei has al
ready been studied in several articles. Podgoretski1 
and Ro'lzen[ll first derived formulas for the decay law 
pf a system of two identical nuclei in a model of a one
dimensional chain. The results of their work pertain 
to the case of short wavelengths, i.e., A «a (.A is the 
wavelength of the photon, and a is the distance between 
ruclei). The work of Lyuboshitz[ 2J and Fa'ln and 
Khanin [3 J is devoted to a generalization of the results 
of article[ 1l. 

Interference between the radiation from different 
nuclei plays a major role in the formation and decay 
of such a collective excited state. It is obvious that 
such interference must be clearly exhibited when the 
nuclei are arranged in a regular system. This was 
already clear from the results of Podgoretski1 and 
Ro1zen for the model of a one-dimensional chain of 
identical nuclei. Therefore an investigation of the 
properties of y emission from a real source in the 
form of a crystal (single- or polycrystal) containing 
identical nuclei is of interest. In certain respects this 
problem is similar to the problem of the propagation 
of particles or quanta in a single crystal, which was 
considered in a series of articles by Kagan and 
Afanas'ev (see, for example,[4 l). 

At the initial moment and at the lattice site r 0 = 0, 
let an excited nucleus be produced (with the aid, for 
example, of a previous y cascade or !3-transition) 
with spin component i0 , the lattice being in the phonon 
state n0 • We shall not consider the case when many 
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nuclei are excited simultaneously. Such an approxima
tion is valid when the activity of the source is not too 
large in comparison with r /n. The propagation of an 
excitation which was initially localized at the site r 0 

= 0 to other crystal sites is characterized by the am
plitude Csisn of the state which corresponds to an ex
citation of only the nucleus at the site s with spin com
ponent is; here the lattice is in the phonon state n. 

We shall denote the amplitude of the state when all 
nuclei are unexcited and a photon exists with wave 
vector k and polarization a by Ckan· In order to 
simplify the,discussion, we assume for the time being 
that the spin of the ground state of the nucleus is equal 
to zero (J =0). 

One can write the equations of motion for these am
plitudes in the energy representation in the form [4 • 5 ] 

{n = c = 1) 

(E- E. -!lEn) Ckcrn (E)= ~ H:;~~-C,;,n·(E), 
s, i 5 , n' 

(E-E0'-!lEn+'!,irc)C,;,n(E)= <\01l;,;01lnn,+ ~ H~g~.Ckan•(E), 
kcrn' 

(1) 
where r c denotes the conversion width of the level, 
and ~En denotes the energy of the phonons measured 
from the energy of the initial phonon state n0 (we note 
that r «~En« E~ ); 

(2) 

where rs denotes the coordinate of the s-th lattice 
site, Us denotes the displacement of the s-th nucleus, 

and Mfa denotes the matrix element of the y transi-
s 

tion. The matrix elements (2) are associated with the 
parameters of the nuclear level by the relation 

(3) 

where € is an infinitesimal real number, rR is the 
radiative width of the nuclear level, rR + r c = r, and 
~Eo denotes the change in the energy of the excited 
nuclear state associated with the presence of its self
field of spontaneous y emission: 
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Mo =Eo-Eo', 

where Eo denotes the energy of the excited nuclear 
state. 

(4) 

In writing down (1) it was assumed that the nuclear 
levels are completely degenerate. We also note that 
the second equation contains the initial condition indi
cated above. 

The system (1) is solved by the method of iteration. 
First of all one can show that the amplitude Coion0 ( E) 
has the form 

Co;,n,(E) = [E- Eo+ if/ 2 + R]-', 

where one can represent R in the form of a series 
whose first term is of order 

rR(_!:_)a rR 
a E -Eo+ if/2 

(5) 

In the approximation of short wavelengths (X. «a) 
one can neglect R, and thus the total probability for 
the decay of the system under consideration does not 
differ from the case of an isolated nucleus. We note 
that since in the general case R depends on the energy, 
the time dependence of the total probability I Coion0(t) 12 

for decay of the system differs from the usual expo
nential law. 

Now let us go on to a calculation of the amplitude of 
the state Ckan( E). After certain transformations, 
from the system of equations (1) we have 

C (E)- Co;,n,(E) {M kcr( -ikUo) 
k<1n - E-E~t-A.En+ir: io e nnu 

where 

(in what follows we shall discard ~En in Eqs. (6) and 
(7) since ~En« Ek). Formula (6) clearly indicates 
the formation and decay of a collective, excited state 
of the system. In fact, different channels contribute to 
the emission of the photon kan. The first term of the 
series (6) corresponds to the emission of a photon 
directly from the initially excited nucleus (r 0 = 0, 
i = io, n = no). The second term describes the emission 
of a photon by the other nuclei (r 1 "' 0) which are ex
cited with the aid of the photon which is originally 
emitted by the excited nucleus, and so forth. 

Certain special cases are considered below: 
1. The source does not contain resonance nuclei. 

For a comparison of the results obtained below, let us 
consider this case first. Only the first term is left in 
the series (6), and 

Formula (8) contains all information about the emis
sion by an "isolated nucleus," in particular the well-

(8) 

known Lorentzian shape of the energy distribution 
(spectrum) of the y-quanta emitted without recoil 
( n =no): 

W(E ) ~ IC (t) 12 - IM;~" i•tk (9) 
k kOno, t~- (Ek -Eo)•+ f2/4 , 

where fk = [ ( e- ilt · Uo ) nono] 2 is the probability for the 
emission of y quanta without recoil in the direction k, 
and Ckan(t) denotes the amplitude obtained by taking 
the Fourier transform of the amplitude Ckan (E): 

1 00 

Ckon(t)= --. ~ e-i(E-E.JtCkcrn(E)dE. (10) 
2:n;! -oo 

The time dependence of the rate of emission (or the 
flux) in different directions is an important character
istic of y emissi.on: 

A d s ffikcrn(t)=2ndt ICkcrn(t) l 2 dEk (11) 

(A denotes a certain normalization factor). Substituting 
(8) and (10) into (11) one can easily see that this rate of 
emission decreases with time according to the law 
e-rt 

2. The resonance nuclei are distributed randomly 
in the source (thi.s also refers to the case of a poly
crystalline sourc:e ). The sum of the phase factors in 
(6) and (7) is given by 

~ e-ir"L ... 0 for d k * 0. 
r .. o 

Therefore, for the amplitude of the state Ckan0 ( E) the 
sum over k' and n' in (7) reduces to the single term 
with k' = k and n' = n0 : 

M~-~.Mfa' 
L;b, ;0 (rb- r.) = ~ E _ Ek' + ie exp {- i (k- k') (rb- r.)} 

X(exp{-· ik'u.})n,n,(exp{ik'ub})n,n, (k' II k). (7') 

The absence of the summation over n' in Eq. (7') in 
comparison with (7) is associated with the fact that a 
transition accompanied by a change of the phonon state 
( n' "' no) gives an additional phase factor 
exp{ -iq · (rb - ra)}, where q is the wave vector of 
the phonon. In a polycrystal the nuclei are not randomly 
distributed in eaeh crystal; however the sum of the 
terms with k' ;e k in (7) nevertheless gives a small 
contribution of order (x./a) 2 upon averaging over the 
orientation of the crystals. Such an averaging is 
realized in analogy to the calculation of the total ef
fective cross section for coherent scattering of a neu
tron in polycrystals(s] (here it should be understood 
that the summation over the lattice sites in (6) is taken 
over r"' 0). 

With the aid of these simplifications the series (6) 
for the state amplitude Ckan0 (E) reduces to the ex
pression 

(12) 

where 

a=--i(2I+1)pf~ rR (13) 
8n E-Eo+if/2 

p denotes the density of the resonance nuclei, z is the 
distance from the initial excited nucleus to the surface 
of the source along the given direction k of the pho-
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ton's flight. From (12) one can easily find the spectrum 
for recoilless emission of y quanta: 

2 IM~o""l 2/ { crop/zf2/4 } 
W(Ek) ~ ICkan,(t) It~= (Ek- Eo)• + r•;4 exp - (Ek-Eo)•+r•/4 ' 

where (14) 

fs 'J..' 
cro = [(21 + 1)zn· (15) 

The value of W(Ek) depends on the position z of 
the initially excited nucleus. The emission spectrum 
averaged over z is observed experimentally. If the 
initially excited nuclei are uniformly distributed over 
the entire source, then an averaging of expression (14) 
over the initially excited nuclei gives 

[ { cr0p/df2/4 }] 
W(EA)~! 1-exp - (Ek-Eo)•+r•;4 , (16) 

which is in agreement with the previously known result 
for the recoilless emission spectrum of y quanta in 
the presence of self-absorption in the source[7l ( d is 
the linear dimension of the source in the direction k). 
We note that for a wide interval of variation of the 
parameter cs = a~pfd the function W( Ek) is close to 
a Lorentzian curve with a half-width greater than r. [71 

Substituting (12) and (10) into (11) gives the following 
expression for the rate of recoilless emission of y 
quanta in the direction k: 

w t -A IM;,""I'I S e"" e-iEtaEI" (17) 
k•n,( )- f 4rr2 E-Eo+if/2 · 

The integral (17) is calculated by Lynch, Holland, and 
Hamermesh.[s] Using the results of article[a] we ar
rive at the expression 

Wkan,(t) = A/IM;,I:•I•e-rtllo(l'crop/fzt) 12, 

where J 0 denotes the Bessel function of zero order. 
Averaging this expression over the initially excited 
nuclei ( z and i0 ) and summing over the polarization 
(a) give 

fllkn,(t) = A/(IM;,""I 2)e-r1{llo(l'crop/fdt) 12 + ll1 (lcrop/fdt) 12}, 

where J 1 denotes the Besse 1 function of first order, 
and the angular brackets on the right hand side denote 
averaging over i0 and summation over O". 

We note that the rate of emission of y quanta ac
companied by a change of the phonon state of the lattice 
wkn(t) (n-" nn) decreases with time according to the 
usual law e-i'\ therefore if all quanta of a given y 
transition are detected in the experiment, then the rate 
of emission in the direction k is given by 

w" (t)= A( IM;,""I 2)e-rt {1- f + /[ilo(l1crop/fdt) 12 + ll1 ()'aopjfdt) 12]}. 

(18) 

3. A source in the form of a single crystal. It is 
well known that for a single crystal one can write 

~ e-irAk=(2:rt) 3 ~6(Ak-2:rtb), (19) 
r Vo b 

where v0 denotes the volume of the elementary cell, 
and b is a reciprocal lattice vector. Thus the sum 

-ir·6.k 
~e over r may reach a large value when the 
difference of the wave vectors 6.k is close to 21Th. 
This always happens for "resonant forward scattering", 
k' = k(b = 0). Therefore, for a single crystal it is 
necessary to distinguish two cases. 

A. The wave vector k does not satisfy the Bragg 
condition: k -" k' + 21Th for all k' where b denotes a 
nonvanishing reciprocal lattice vector. In this case 
each sum over k' in (7) consists of two different parts: 
the term with k' = k which satisfies the Bragg condi
tion (with b = 0 ), and the sum of the terms with k' -" k 
which do not satisfy the Bragg condition. 

If the thickness of the source is small, i.e., when 
cs = O" 0 pfd << 1, the terms with k' = k in the series 
(6) give small contributions and we may neglect them. 
Then, by using the kinematic theory of the emission of 
y quanta [s] it is not difficult to show that in this limit
ing case formula (6) for the amplitude Cko-n0 ( E) turns 
into a geometrical series whose sum is given by 

MI. ka ( e-iku,) n,n, 

Ckan,(E). (E~Ek+ie)(E-Eo+if/2+L)' (20) 

where 
k.'G' 

L= ~ ElM;, 1". ~exp{-i(k-k')rs}(exp{ik'(u,-uo)}),.,n,. 
-Ekl + 1e 

a',k'# •• ,.o (21) 
Comparing (20) with (8) we immediately see that the 
radiation in a given direction k is similar to the radi
ation of an "isolated nucleus" upon the replacement of 
r by r' = r +2 1m L and Eo by Eo= Eo- Re L. In 
particular, the rate of recoilless emission of r. quanta 
decreases with time according to the law e-r t. At 
lower temperatures T << ® D ( ® D denotes the De bye 
temperature of the crystal) one can regard the phonon 
matrix element in (21) as equal to unity, and then one 
can easily show that 

f'=f-T]fR, (22) 

where 71 denotes the concentration of resonant nuclei 
in the source (71 s 1). In the opposite limiting case 
T >> ® D one will find r' - r. An analysis of expres
sion L for intermediate temperatures is given in 
article[41 • 

In the general case of a source of finite thickness 
each term of n-th order in the series (6) is converted 
into a sum of 2P components of n-th order, differing 
from each other by a sequence of "forward scattering" 
( k' = k) and ''scattering to the side'' ( k' -" k) pro
cesses. In spite of the apparent inconvenience, by 
grouping the corresponding components of different 
orders in separate series and summing them in se
quence, we can sum all of the terms in the series (6). 
As a result we have 

M. ka (e-iku,) 
C (E)= '' n,n, 

"""• E-Ek+ie E-E0+if/2+L' 
(23) 

where 'J..2.. rR 
a'=- i(2l + f)p/" 4n E- Eo+ if/2 + L' (24) 

From (23) it is not difficult to derive an expression for 
the spectrum of a y quantum emitted without recoil in 
a given direction k (averaged over z): 

{ [ cropfi<df'2/4 ]} ( ) 
W(Ek) ~f-.. 1- exp - (Ek- Eo)•+ r"/4 . 25 

Comparison of (23) with (12) immediately gives an ex
pression for the time dependence of the rate of emis
sion of y quanta in the direction k. If all the quanta of 
a given y transition are detected in the experiment, 
then 
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UJk(t) = A\1Mi,k0 12)e-r'{1- fk + /k[ lloCVcropfkf'dt) 12 

+ IJ!(Ycrophf'dt) 12]}. (26) 

B. The wave vector k satisfies the Bragg condition. 
Let us assume for simplicity that k = k 1 + 27Tb with 
one specific nonvanishing reciprocal lattice vector b. 
In this case the series (6) diverges, and the amplitude 
~an (E) cannot be determined from formulas (20) 
and (~3). However, in analogy to Eqs. (8) and (20) we 
shall seek this amplitude in the form 

Mi ka (e-ikuo) 
C (E)- 0 n,n, (27) 

kon, - (E-E,+ie)(E-E,+if/2+L:)' 

where L' will be determined from Eqs. (1). It is 
natural that here the amplitude Ck1an0 ( E) has a simi
lar form: 

M. k,a (e-ik1u0 ) 
C E _ lo nono {28) 

k,on,( ) - (E- E,, + ie) (E -Eo+ iF/2 + L') 

Deriving from the system of equations (1) an equa
tion which holds between the amplitudes ~an( E) and 
substituting formulas (19), (27), and (28) into it, we 
obtain 

where TjN is the number of resonant nuclei in the 
source, referred to an area of 1 cm 2 perpendicular to 
k. In the short wavelength approximation k 1 differs 
little from k, and then Eq. (29) can be appreciably 
simplified: 

(E- EA)Ckan,(E) 

- (e-iku0 ) M. ko [· i 
- n,n,-•••• E -Eo+ if/2 

i~fR J (30) 
(E- Eo'+ ifc/2) (E- Eo+ if/2 + L') ' 

~=1JNfk(21+1)t.2 /4n. (31) 

Substitution of (27) into (30) gives 

E-,E0 + if/2 
£' = iA f R -:::-=-:---'--:-:--

I' E- Eo' + ifc/2 ' 

and therefore 
M i,"0 ( e-iku,) n,n, E- Eo'+ ifc/2 

Ckan,(E) ---,---=--,-
E- E, + ie (E- Eo+ if/2) (E- Eo'+ ifc/2+ i~fR) 

Let us find the rate of emission of y quanta in a (32 ) 
given direction k. Substituting (32) into (10) and (11) 
instead of (18) and (26) we obtain 

k { -rt 11Eo2 + f2/4 
(J)k(t)=A(IMi,•i) (1-h.)e +!kAEo'+(2~-1)FR'/4 

[ 
~2f 2 

X e-rt+ AEo'+Rf2/4 exp{-(fc+l2~fR)t} 

~rR { ( r + fc . ) 1 
!'!.Eo'+ f'/4 exp - -2-- +~r R t) 

X (2/1Eo sin I'!.Eot + fR cos .f'1E0t) ]} , (33) 

where AE 0 is determined by formula (4). In cases of 
practical interest {3 » 1; then from (33) it is seen that 
Wk(t) decreases with time basically according to the 
law exp{-(rc + 2f3rR)t}. 

One can generalize all of the obtained results to the 
case of nonvanishing spin of the ground state of the 
nucleus ( J "' 0 ). Such a generalization does not pre
sent any difficulties in principle although it complicates 
the discussion markedly. In the case J "' 0 it is neces
sary to multiply •C¥, a', a0 , and {3 (formulas (13), (23), 
(15), and (31)) by (2J + 1)-1 and 1/rR (formula (22)) by 
( 2I + 1 )/ ( 2l + 1) ( 2J + 1) ( l denotes the multiplicity of 
the y transition). 

Returning to expressions (18), (26), and (33) we see 
that the results obtained permit experimental verifica
tion with the aid of the usual method of measuring the 
lifetime of the excited nuclear state. The time depend
ence of the rate of emission of y quanta by a system 
of identical nuclei differs markedly from the ordinary 
law e-rt for an "isolated nucleus," and this difference 
is larger the smaller the fraction of y quanta emitted 
with a change in the phonon state of the lattice 
( T « ® o). In this connection we note that the applica
tion of resonance counters [ 101 in experiments gives the 
possibility to completely exhibit the characteristic 
properties of radiation from a system of identical 
nuclei. 

1 M. I. Podgoretskil and I. I. Ro'lze", .lh. Eksp. Teor. 
Fiz. 39, 1473 (19fl0) [Sov. Phys.-JETP 12, 1023 (1961)). 

2 V. L. Lyuboshitz, Joint Institute for Nuclear 
Research Preprint R4-3297 (1967); Zh. Eksp. Teor. 
Fiz. 53, 1630 (1967) (Sov. Phys.-JETP 26, 937 (1968)). 

3 V. M. Fain and Ya. I. Khanin, Kvantovaya radio
fizika (Quantum Radiophysics), Soviet Radio, 1965. 

4 A. M. Afanas'ev and Yu. Kagan, Zh. Eksp. Teor. 
Fiz. 52, 191 (1967) (Sov. Phys.-JETP 25, 124 (1967)). 

5 W. Heitler, The Quantum Theory of Radiation, 
Oxford, 1954 (Russ. Transl., IlL, M. 1956). 

6 I. I. Gurevich and L. V. Tarasov, Fizika ne1tronov 
nizkikh imergi'l (The Physics of Low-Energy Neutrons), 
Nauka, 1965. 

7 G. A. Bykov and Pham Zuy Hien, Zh. Eksp. Teor. 
Fiz. 43, 909 (1962) (Sov. Phys.-JETP 16, 646 (1963)). 

8 F. J. Lynch, R. E. Holland, and M. Hamermesh, 
Phys. Rev. 120, 513 (1960). 

9 M. E. Rose, Multipole Fields, John Wiley and Sons, 
1955. 

1°K. P. Mitrofanov, N. V. Illarionova, and V. S. 
Shpinel', Materialy rabochego soveshchaniya po 
effektu Messbauera (Proceedings of a Working Con
ference on the Mc'\ssbauer Effect), Joint Institute for 
Nuclear Research Preprint R-1231, Dubna, 1963. 

Translated by H. H. Nickle 
22 


