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An attempt is made to set up a general solution of the Einstein equations with a physical singularity 
with respect to time. The general solution possesses the same time behavior as in the case of a me
tric with a three-parameter motion group of the ninth Bianchi type. 

Q UR investigations (together with E. M. Lifshitz)l1 ' 21 

have made it possible to conclude that there exists a 
general solution of the gravitational equations with a 
physical singularity, and to clarify the qualitative char
acter of the evolultion of the metric on approaching the 
singular point. 

In this paper we investigate a general solution, con
taining a simultaneous physical singularity in time, of 
the Einstein equations. By general solution we mean a 
solution in which the physical arbitrariness is deter
mined by four arbitrary functions of three spatial coor
dinates in vacuum and by eight such functions in a space 
with matterl3J. The obtained solution contains as a par
ticular case the solution investigated by us inl 11 , and 
has qualitatively the same time behavior. 

1. INTRODUCTION 

We recall here brieflv the main results ofl 11 • We con
sider a metric in the form 

-ds2 = -dt" + (a2lal~ + b'mam~ + c2ncxn~) dx'"dx~. (1.1) 

where a, b, and c depend only on the time t, while the 
vectors 1, m, and n depend only on the spatial coordin
ates x, y, and z. These vectors satisfy the following 
conditions1 >: 

I rot I == A., m rot I = 0, n rot I = 0, 

I rotm =• 0, m rotm = J.l, 11 rot m = 0, 
(1.2)* 

I rot n == 0, m rot n = 0. 11 rot n = v, 

l[mn] = 1, }., f.l, ,. = const. 

~The solution of Eqs. (1.2) is given in the appendix 
ofl 1 ). The Einstein equations ~k = 0 then reduce to a 
system of ordinary differential equations in time for the 
functions a, b, and c. If we define a new variable T by 
means of the relation 

dT = dt/abc, (1.3) 

then the indicated system of equations takes the form 
(In a'hr = (f.lb'- vc2 ) 2 -- A.'a'. (1.4) 
(lh b2)n = (Aa2- Yc')'- fL2b", 

(Inc'),= (.1.a'- pb2 ) 2 - '·'c'; (1.5) 
(Jna),(lnb),+ (lna)r(lnc)r+ (lnb),(lnc)r= 1/z(Inabc)rr. 

I) The algebraic and differential vector operations are carried out as 
if the three dimensional space were flat. 

*[mn) =mx n. 

The solution of these equations, which were investigated 
also by Misnerl 41 , has the following properties. 

1. Since three diagonal scalar products 1· curl 1, 
m · curl m, and n · curl n do not vanish simultaneously, 
the singularity2 > cannot be of the Kasner typel3l a 2 , b2 , 

c 2 ~ t 2p\ t 2p2 , 22p3, since the latter arises only when at 
least one of the indicated scalar products vanishes, for 
example 1 · curll = 0. This gives rise to a preferred 
direction 1, along which the scales expand without limit 
as t - 0 (the corresponding projection of the metric 
tensor is ga{3zazf3 = a2 - t2Pl, p 1 < 0). 

2. The solution has likewise no singularity of fic
titious character (P~> p2 , p3) = (0, 0, 1). The only excep
tion is the particular case when Aa2 = J.Lb2 • However, as 
shown inr 1' 51 , such a solution is unstable against a small 
perturbation of the type A.a2 - J.Lb2 "'0. 

3. When T (1.3) changes from 0 to +oo (T- + 00 corre
sponds to t - 0), the solution runs through an infinite 
sequence of qualitatively identical periods, which are 
joined by relatively short intermediate regions. The 
start of each such period is characterized by the fact 
that one of the functions, a, b, or c, begins to decrease 
approximately like e and subsequently (during the ex
tent of the entire period) it becomes much smaller than 
the two others, which oscillate against a background of 
a slow decrease (compared with e). During the final 
stage of the period, the small function begins to in
crease and the solution enters into a region (which is 
short compared with the length of the period itself) in 
which it is described by the Kasner asymptotic form. 
After such a short region, an analogous period again 
sets in, but another function becomes small. The lengths 
of these periods increase as T-oo. Thus, on approach
ing the singularity, an infinite number of changes takes 
place in the direction of the axis, along which the rela
tive rapid contraction of the three-space whose volume 
tends to zero like abc, takes place. 

The period described above is in accord with the 
"ground state" in which the system spends most of the 
time, and an analytic solution in its region has been 
considered by us in Sec. 4 ofru . 

2lThe singularity (which is inevitable in the synchronous reference 
frame) takes place at the point where the determinant a2 b2 c2 vanishes. 
Taking into account the possibility of the transformation t--> t + c- t, 
we assume that it corresponds to the point t = 0. In terms of the vari
able T this corresponds toT--> ±oo. 
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2. CASE OF ARBITRARY GRAVITATIONAL FIELD 

In connection with the foregoing, the following funda
mental question arises. 

To what degree is the time picture of the metric 
evolution, which takes place in the particular solution of 
(1.1)-(1.5) investigated by us, a characteristic of the 
general solution of the gravitational equations? 

The only way of answering this question is to attempt 
to construct for Einstein's equations a general solution 
having the same character of the behavior as in the 
particular case considered here. We have seen that the 
investigated solution consists of an infinite sequence of 
qualitatively indistinguishable periods, in each of which 
one of the functions a, b, or c is much smaller than the 
other two, and which are connected by short intermed
iate regions (compared with the length of the period it
self). We shall now show that the general solution also 
has similar properties. 

We define the coordinate system by means of the 
conditions 

(2.1) 
Henceforth, the Greek indices assume the values 1, 2, 
and 3, the Latin indices i and k the values 0, 1, 2, and 3, 
and the Latin indices a, b, and c the values 1 and 2. The 
time variable will be denoted by the letter ~ (to dis
tinguish it from the synchronous timet), and the coor
dinate x3 by the letter z. Differentiation with respect to 
these coordinates is designated by a dot and by a prime, 
respectively. 

Thus, the metric takes the form 

-ds2 = Caa(dz2 - d~2 ) + Cabdx•dxb + 2gaadx•dz. (2.2) 
We seek the solution in that region of variation of ~ 
(assuming its existence), where the components of the 
metric tensor are satisfied by the conditions 

(2.3) 

This means that the components ga3 are small and the 
first approximation to the solution will be the metric 
(2.2) under the condition ga3 = 0. In this approximation 
it is meaningless to write out the components of the 
Ricci tensor~ and~. since they determine ga3 in 
their first order. Writing out the remaining compon
ents R2, fl3, ~.and~ (calculated from the metric (2.2) 
under the condition gaa = 0), it is easy to verify that all 
their terms containing differentiation with respect to the 
coordinates xa are small compared with the terms 
containing the differentiation with respect to ~ and z 
(the ratio of the former to the latter is just of the order 
gaafgab). 

Thus, to obtain the principal-approximation equations, 
it is necessary to put ga3 = 0, and the components gaa 
and gab must be differentiated as if they were indepen
dent of the variables xa. We note that if we extend this 
rule also to ~ and ~. then we obtain simply ~ = 0 
and~= 0. 

Putting 

gaa = c2, ICabl = G, {Jab= Y.ab. gab1 = Aab, (2.4) 

we obtain the following principal-approximation equa
tions 

2c•Rab = ~ (l'G :><a b).- ~ (yG A.ub)' = 0, 
l"G yG (2.5) 

2c2Ra0 = -x(ln c)'- A.(ln c)·+ x' + 1/ 2xb«/,,b = 0, (2.6) 
2c2 (Ro0 - R33) = -2A.(ln c)'- 2x(ln c)'+~+ 1.' 

+ 1/2Y.abXb0 + 1/2f..abf,b0 = 0. (2. 7) 

The raising and lowering of the indices is carried out 
here with the aid of gab· The quantities K and A are the 
contractions of K~ and A:, with 

x =(In G)', i. = (ln G) 1• (2.8) 

We have not written out here the equation 

2c2(H0° + R33)=4(1rl c)"- 4(ln c)"- A.'+ Y. + 1/2xabXba- 1/.l .• bAba= 0. 

However, it is easy to verify that it is a direct conse
quence of the system (2.5)- (2. 7) in the case when 

G ;oo 0 or G' r' 0. But when G = G' = 0 we arrive at a flat 
space, and this case will therefore not be considered. 

Taking the contraction of (2.5), we obtain 

(2.9) 
Consequently 

r7f = fr(x, y, s+zJ+h(x, y, ~-.::). (2.10) 
Different cases can occur here, depending on the char
acter of the variable ..fG, i.e., on the value of the norm 
N = gik (..fG) i (..fG) k' 

' ' b In this approximation, g00 = - g33 >> ga , and conse-
quently 

N = got(YG)'2 + g'l"(l'G)'2 = -4g"ft/2. 

If N > 0, then ..fG is a space-like variable and it is easy 
to show that by means of the remaining coordinate 
transformations, which do not violate the conditions 
(2.1) and the inequalities (2.3), it is possible to choose 
..fG in this approximation in the form ..fG = f(x, y)z.3 > 

&tch a case leads to the generalization of the well 
known Einstein- Rosen metric [sl. In the case when 
N = 0, we arrive at the Robinson- Bondi wave metric[7J, 

which depends only on ~ + z or only on ~ - z. On the 
other hand, if N < 0, then ..fG is timelike and, using the 
remaining transformations, we can, without loss of 
generality, choose 

if;= f(x, y)£, (2.11) 

where f(x, y) is an arbitrary function. This is the case 
that we shall investigate further, since it is connected 
with the time singularities of interest to us. We empha
size that (2.11) is possible only in the principal ap
proximation. When further corrections are taken into 
account the determinant, of course, will not have such a 
simple form. 

Under the condition (2.11), Eqs. (2.5)-(2.7) take the 
form 

Xab + 6-1xab- l.'ab = 0, 

~ = -;-• + 1/41i,(xabXba + A.abt.b«), 

'IJ' = 1/z~xabf.. 0b, 

(2.12) 

(2.13) 

(2.14) 

3)Jn the case when the metric does not depend on x andy, this pos
sibility follows directly from the presence of other allowed transforma
tions of the coordinates of the type z' = f1 (~ + z) + f2 (~- z) and~·= f1 

(~ + z)- f2 (~- z), which do not violate the form of g33 (dz2 - de). 
Such a choice remains possible also when the metric depends on x and 
y, but only in the principal approximation, as can be readily shown by 
operating with infinitesimally small transformations. 
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where 
c2 = e~. 1(2.15) 

The fundamental equations here are (2.12), which de
termine the components gab• with which If! is then ob
tained from (2.13) and (2.14) by simple integration. If 
Eqs. (2.12) are solved, then Eqs. (2.13) and (2.14) do not 
contradict each other, and the role of one of them re
duces to a definition of the arbitrary integration func
tion of the other. 

To investigate the solution (2.12), we consider the 
variation of ~ from +oo to 0 and the corresponding 
asymptotic regions ~ » 1 and ~ « 1. 

In the region ~ » 1, Eqs. (2.12) are best replaced 
by a single matrix equation. We take the matrix g (with 
components gab) in the form 4> 

g = f(x, y)!;eii, (2.16) 

where the matrix H is symmetrical and its trace is 
equal to zero. This ensures symmetry of g and the con
dition (2.11). Expressing H in the form 

(2.17) 

we can readily obtain an expression for g in terms of 
the components: 

( cha+xa-·1 sha 
c=n 

cpa-1 sh a 
cpa-1 sha ) 

ch a - xa-' sh a · 
(2.18) 

The system (2.12)-(2.15), expressed in terms of H, 
yields 

H + ;-•H"- H" =(I- H cth H)H-2(H'S- liT) (2.19) 
-l- 1/4(/- 2Il cth// + 1MI-1sh2Jl)H--3(S2- T2), 

,j, = -'/•~ + 'I•GSp[(Ji + QT)2-1-(ll' +QS) 2], (2.20) 

'IJ'= 1/2£Sp[(Ii+QT)(H'+QS)], (2.21) 
where 

T = HH- nil, s ==II' II- Illl', Q = ''• (I- Jl-le-H sh Il)II-l 

and I is a unit matrix. 
(2.22) 

Such a representation itself leads to relatively com
plicated equations (for which simpler forms exist), but 
for the approximate construction as needed by us this 
representation is the best. We consider for (2.19) a 
solution that is periodic in the variable z and can be 
represented by a Fourier series in terms of this varia
ble. It can be understood as a solution that is periodic 
in z in the entire range of variation of z, or else as a 
Fourier expansion of a nonperiodic solution, but in a 
finite region of variation of z. 

It is easy to see that in this case all the components 
of the matrix H tend to zero like 1/..ft when ~ - oo. 

Indeed, by virtue of the .obvious expansions 

(/ -ll cthll)H-2 = --'M + 'l•siF + O(H'), 
(2.23) 'I• (/- 2H cth H + 1/ 2H-1 sh 2H) II-3 = 2/ 45Il + 0 (/l3) 

the right side of (2.19) appears only in the order H3 • 

Then the linear approximation, under the condition of 
periodicity in z, yields H ""1/..ft, since we obtain the 
Bessel equation for the Fourier coefficients of Hk(O. 

Thus, the asymptotic solution of (2.19) at large 
values of ~ must be sought in the form 

4lThe functions of matrices are defined by their Taylor series. 

1-1<» 
II =-= L; {AAeik.,(o+z) + Bkeik"'(t-z>] + 0(!;-'!.), 

l'Sk=-oo 
(2.24) 

where Ak and Bk are symmetrical matrices of the am
plitudes, having a zero trace and satisfying the condition 
of H be real: A_k = Ak, B_k = Bk· 

A more detailed analysis of Eq. (2.19) shows that the 
linear approximation is not perfectly valid, and that 
allowance for the nonlinear terms in the right side of 
the equation causes the amplitudes Ak and Bk them
selves to be functions of ~, but slowly varying compared 
with eikw ~ . The final asymptotic form of the solution 
can be written as 

[ k+k' H-
- i(h-k') 

i(h-k')] 
-(h-1-h').' (2.25) 

-h = _!__ ~ '[xA~Ikw(Hz)+ialnt + cp,e,.k"'(o-z)+ib In l] + 0(!;-'1•). (2.26) 
if.~--

Here Xk and cpk. with k.,. 0 are arbitrary complex func
tions of the vanables x and y. The fundamental fre
quency w is an arbitrary real function of x and y. The 
quantities a and b are real and are expressed when 
k.,. 0 in terms of w, Xk• and (/Jk in the following manner: 

-!<» -!<» 

a= -4w 2;' krpkljlk0 , b = -4wL;' kx•x•'· (2.27) 

The components Xo and cpo are also uniquely expressed 
in terms of w, Xk• and (/Jk (fork.,. 0)5 > 

8ro (2a + i) ~~ k ,• . , , 
Xo= 1+4ab-l-2i(b-a)k,k::-oo {X-k'Xk -1-X-k'X• h:Hk, 

Bro(2b + i) ~' • , 
Cfo= 1-l-4ab-l-2i(a-b) _.<::J k(<f-hljlk' -1-!Jl-k.qlk )!Jlk+k'·(2.28) 

ll,lt'=-oo 

In formulas (2.27) and (2.28) the symbol~' denotes that 
the terms containing Xo and cpo have been excluded from 
the sum (i.e., as if we had Xo = cpo = 0). 

Thus, in the region ~ >> 1 the components of the 
matrix of the metric tensor gab oscillate with decreas
ing ~ against the background of a slow decrease (this 
decrease is due to the factor ~ in (2.16)). 

We now consider the region ~ « 1. It is easy to 
show that in the region of small ~ the principal approxi
mation of the solution of (2.12) is obtained from the as
sumption (confirmed by the result) that the principal 
terms in the equation are those containing differentia
tion with respect to ~. Consequently, we have here 

Kab + ~-'x.b = 0. !Cab!= r~·· 

The solution of (2.29) is 
Cab = lalbs2P• + mamb!;2P•, 

l,m. -l2m, = /, p, + P2 = 1. 

(2.29) 

(2.30) 

Here la, rna, and Pa are arbitrary functions of x, y, and 
z. The subsequent terms of the expansion can be readily 

5lThe differential equations for the slowly varying amplitudes A0 

and B0 (unlike the equations for Ak, Bk, k =F 0) are linear and inhomo
geneous equations, all the coefficients of which as well as the free part 
are expressed in terms of Ak and Bk with k =F 0. The general solution 
of the homogeneous equations (containing arbitrary integration func
tions) does not satisfy the requirement that the variation of A0 and B0 

be slow. This requirement is satisfied only by a particular solution of 
these equations, which indeed leads to the conditions (2.28). 
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obtained in the form of expansions in powers of I;. The 
condition for the applicability of the approximation 
(2.30) is obtained from the requirement that the terms 
11.~b which have been discarded from (2.12) be small 
compared with those retained terms k~, namely I; -1Kab 
,..., 1;-2 • Calculating 11.~b from (2.30), we get 

A,_'b ~ (lbm 0 [<mc'"S-Z+~P• + m0l.m'lc';-2+'P•)'. 

It follows therefore that the condition A~b « I; -2 will be 
satisfied if 

P• > 0, Pz > 0. (2.31) 

Thus, it is necessary to take for Pa the parametric 
representation 

P• = 1/z + 'hsin u, P2 = 1/z - 1/.sin u, (2.32) 

where u is an arbitrary three-dimensional function. 
We now can obtain the function 1/! from (2.20) and 

(2.21) for the region I; » 1 and from (2.13) and (2.14) 
for I; « 1. A simple calculation yields in the region 
I; » 1: 

+oo 

-to> 

+'P-•'I'-•*)-I-.dnl;-l-2w2z'B' k 2 (X•Y.h 

+ X-•Y.-It •- <r•<r•' - 'f-k'l'-k') + tl'o(x, y) 

+ (terms of order of unity, oscillating in I; and periodic 
inz) +0(1;- 1). (2.33) 

For the case of a metric that is periodic with 
respect to the variable z, it is necessary to require that 
the coefficient of z in formula (2.33) vanish, i.e., the 
two-dimensional functions Xk and 'Pk (which depend on 
x and y) should satisfy the condition -'B' k2(Y.kY.h 0 + 'X-kY.-k- (jJ!,ffk- <r=~<<r-.") = 0. 

It is obvious that such a requirement does not limit the 
generality of the solution described by the three-dimen
sional functions of the variables x, y, and z. The entire 
small term denoted by 0( I; -1) also contains only a 
periodic dependence on z. The function 1/!o(x, y) is arbi
trary. The quantity s is a function of x and y only, and 
is expressed in terms of w, Xk' and 'Pk· Its explicit 
form, however, can be obtained only when account is 
taken of terms of order I; -312 in the matrix H. It suffices 
for us to know only that s = s(x, y) (and this fact can be 
readily established also without the succeeding terms of 
the expansion in H). 

In the region I; « 1 we have 

ljJ = (p,• + Pz2 - 1) In~+ i!io(x, y) 

+ 2) (p,l•la' + pzm•ma') dz, 
(2.34) 

where lfo(x, y) has an arbitrary integration function. 
From the asymptotic formulas (2.33) and (2.34) we 

see quite clearly the character of the behavior of the 
function C2 =elf! (g33 =-goo= c2 ). When I; decreases 

I 
from a certain value, the function c2 first decreases 
(in the region I; » 1) practically exponentially: 

(2.35) 

where q is an essentially positive function of x and y: 

+<» 

q = 2UI• L;' k•(x•x•' + X-•x-•' + 'P•'P•' + <r-•<r-.-). (2.36) 

The presence of the arbitrary function 1/!o(x, y) in 1/! 
makes it possible to choose a sufficiently arbitrary 
initial value from which c2 decreases. 

The components gab hardly decrease in the region 
I; » 1 compared with the exponential function, as fol
lows from formulas (2.16) and (2.25) and (2.26). Thus, a 
region in which the inequality c2 « gab' which is the 
first fundamental inequality of the entire approximation 
considered here, occurs still at large values of I;. 

At a certain value I; ;S; 1, we fall into the region 
described by formulas (2.30)-(2.32) and (2.34). Since 
p1, P2 > 0, the components gab decrease when I; - 0, 
whereas c2 increases: 

c2 ~ ~P...,.P•'-~, P12 + P22 - 1 = 1/2 (sin2 u- 1) < 0. (2.37) 

Thus, in the region of small I; there always sets in an 
instant at which c2 becomes larger than the components 
gab' and the considered solution can only be used. 

The foregoing analysis shows therefore that a solu
tion satisfying the condition c2 << gab' which was pro
posed from the very beginning, actually exists in a cer
tain region of variation of I;, which is bounded from 
both above and below6 >. 

It is now necessary to show that in this region there 
is satisfied also the main condition of applicability of 
the constructed approximation: 

Kaa <if. TCaaCaa• 

To this end, it is necessary to consider the equation~ 
= 0, ~ = 0, in their first approximation (i.e., it is 
necessary to assume that the inequality ga3 « v'g33gab 
is satisfied), and after obtaining a solution for the com
ponents ga3 it is necessary to verify the validity of our 
assumption. 

Calculating ~ and ~' we observe that they have the 
form 

(2.38) 

(2.39) 

-K(lnc) ;a -I- 2(lnc);. -i-O(c2). 

Taking into account the fact that ..fG = fl; ("- = 0, K = 2/1;) 
and the assumed notation c2 = e 1/!, we obtain the equa
tions of the principal approximation: 

t-• [te->~goc(!f°Coa) T = ljl: a- A~; c, (2.40) 
{e-~ga, (g<•gos) T = 'II. a- ~-ltj>: a-x:, c· 

Here gcb is the inverse of gcb' and the covariant differ
entiation is carried out relative to gcb' the solution 
from which was already obtained above. 

Equations (2.40) are not contradictory and, by virtue 
of the Bianchi identities, one of these equations reduces 
to a determination of an arbitrary function of the first 

6>The upper bound of the region of applicability corresponds to a 
certain large value ~ 1 at which c2 -gab (and beyond which c2 becomes 
much smaller than gab)· The lower bound ~ 2 is found from the same 
condftion in the region of small ~. 
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integration of the other equation. Inasmuch as we are 
interested only in the behavior of gas relative to the 
variable ~ , we shall consider the first of the equations 
(2.40). Its solution can be readily expressed in terms 
of quadratures: 

Ca3 = Cea ~ j• d~ + Cea <D•(x, y, z), 

J< =+e•gc" [ S ~¢.'.d~-) ;;.!,bds+F.(x,y,z)]. 

(2.41) 

Here ~f~C and Fa are four arbitrary functions of the spa
tial variables, Fa(x, y, z) are the arbitrary functions of 
the first integration, and when (2.41) is substituted in 
the first equation of (2.40) we obtain the conditions F~ 
= 0, i.e., Fa= Fa(x, y). As to the functions ~f~C, we set 
them equal to zero, since in the region ~ » 1 the terms 
gcalflc in the component gas patently violate the condition 
gas<< .Vgs3 gaa· It will become clear later, in the analy
sis of the degree of generality of the obtained solution, 
that the vanishing of ~f~C is not connected with a physical 
limitation, and is the result of the remaining permissi
ble coordinate transformations. 

It is now easy to see that in the region ~ » 1 (taking 
into account the asymptotic solutions obtained above for 
gab and lj;), the behavior of gas is determined by the 
common factor c2{= el/!), i.e., ga3 ~ c2 • We shall not 
consider in detail the complicated integrals that enter 
in (2.41), and it suffices to carry out a simple qualita
tive estimate, which shows that the terms of the highest 
order, which arise in the components ga3 , are of the 
form 

(2.42) 

where ua are bounded functions of ~, and can be repre
sented by Fourier series 7l. 

In the region ~ « 1 it is possible to simply neglect 
the right side of the first equation of (2.40), since its 
order of magnitude is smaller than the order of magni
tude of the left side 1/~ 2 • In this case we have 

[ l.l• m.m• ] . 
g.a= 2(P2"-1) + 2(pt•-1) F.sP•·+p,t-t=c2f.(x,y,z), (2.43) 

We see therefore that in the region of large ~ the com
ponents ga3 decrease practically exponentially approxi
mately like ga3 00 c2 , and the second of the inequalities 
proposed by us, ga3 « Vg33gaa• is satisfied in the region 
where c2 « gab· In the region of small ~, the compon
ents gas begin to increase, but again like c2 , i.e., the 
second inequality is violated as a result of violation of 
the first, and consequently also in the same region as 
the first. 

We thus obtain the solution, satisfying our initial as
sumptions, of the equations Rfk = 0 in a certain limited 
region of ~. 

We now consider the question of the degree of its 
generality. The coordinate system is fixed in our case 
by the following conditions: 1) the four-dimensional 
conditions (2.1) hold; 2) the determinant G = I gab I is 
equal to f2e in the principal approximation; 3) the 

7lin the derivation of (2.42) we took into account the fact that w = 
const (this can always be done by means of the remaining permissible 
coordinate transformations). In addition, we took into account the con
dition that the function 1/J (2.33) is periodic in z. 

terms ~gab are eliminated from the components gas81 ; 

4) the frequency w is assumed constant; 5) the solution 
for gab is constructed in the first approximation in such 
away 

By carrying out a small four-dimensional coordinate 
transformation xi =Xi + 17i(X:k), we can readily verify 
that there are no transformations left containing any 
three-dimensional (and of course also four-dimensional) 
arbitrary functions without violating the five conditions 
indicated above. Among the transformations containing 
arbitrary two-dimensional functions, the only allowed 
remaining one is 

z-+z+zo(x,y). 

Thus, one of the arbitrary functions of x and yin the 
constructed solution is not physical, and the entire 
three-dimensional arbitrariness will therefore be phys
ical. 

We see that the three-dimensional arbitrariness is 
contained precisely in the components gab· For the 
solution to be general it is necessary that the number 
of arbitrary functions of the spatial coordinates be 
equal to four. Turning to formula (2.30), we note that 
this is the case. In the region ~ « 1 we have six func
tions la, ma, and Pa, which are connected by two alge
braic conditions. In the region ~ » 1, it is necessary 
to consider the corresponding formulas (2.25)-(2.28). 
Taking for simplicity a small region of variation of ~ , 
in which it is possible to neglect the slow functions (the 
logarithmic phases), we obtain two independent real 
components of the matrix H: 

llu = h + h' = L; (Xk + 1(-A')eikcu(Hz) + L; (CjJk + (jl-A')eikcu{<-z), 

H12 = i(h- h') = ~i (Xk- X-A')eik"<Hzl + L;i(qJA- (jl-h')eikcu(i-z). 

(2.44) 
Inasmuch as Xk and (/Jk are fully arbitrary on the entire 
k axis (from -co to +co), the equations (2.44) yield four 
arbitrary functions (two of x, y, ~ + z and two of x, y, 
~ - z). This, of course, is equivalent to four functions 
of x, y, and z. Thus, the physical arbitrariness in the 
solution is determined by four arbitrary functions of 
the variables x, y, and z, in full agreement with the re
quirement that the solution be general (see[3,aJ ). 

3. CONCLUSION 
Thus, the solution investigated by us is general. On 

the other hand, it contains as a particular case the me
tric (1.1)-(1.5), the explicit form of which is given in 
the appendix inuJ. We present it here again, but in 
somewhat different coordinates91 : 

d " c2 (d • 1 [( z ~ s-=- ~--d;2)+-.- a2 sin2 -
4 ch- y 2 

+ b2 cos2 ; ) d.r2 + ( a2 cos2-i-+ b• sin2 ~) dy• 

-----
8lBy performing a small coordinate transformation xi= 71i (xk), we 

observe that the new components ~3 acquire terms of the form gac1l'c. 
The requirement that the coordinate conditions (2. I) must be conserved 
yields in this case 7)c = 71c (x, y, z). Thus, elimination of the terms - gab 
from ~3 means that the foregoing transformations are forbidden. 

9lin formula (A. II) of [ 1 ] we put for simplicity X= p. = v = f3 = I. 
Carrying then the transformation dt = (l/2)cd~. y =tanh Y, and z = z/2, 
we obtain (3.1), where the bars over y and z have been omitted. 
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+(at- bZ) sin z d:c dy J + c' tl\2 y d:c2 - c' th' y dx dz. (3 .1) 

It is easy to see that the variable ~ in (3.1) coincides 
exactly with the variable ~ introduced in Sec. 4 oflll, in 
terms of which the corresponding asymptotic formulas 
have been written out. In the region ~ ~ 1 we had 

a2 = 1/ 4pt exp[2A~-'/•sin(~- to+ A 2 ln m + 0(!;-'1•), (3.2) 
b2 = 1/,pt exp[ -2At-Y•sin (~-so+ A2 ln t)] + 0(~-'1•), 

C2 = ca'~A-'/aeZA~[f + Q(t-1)]. 

Here p, A, ~ 0 , and c 0 are arbitrary constants. It is easy 
to verify that this result is obtained from the general 
case if we put in (2.16) 

f (x, Y) ~~' p / 4ch' y, 

and if we take only the two following non-vanishing 
Fourier components of Xk and 'Pk in (2.25): 

(3.3) 

(3.4) 

A similar comparison can be carried out also in the 
region ~ « 1. 

This circumstance allows us to conclude that the 
subsequent behavior of the solution in the general case 
(after going outside the region of applicability of the ap
proximation constructed by us) will be qualitatively the 
same as in the particular case of the metric (3.1). 

That is to say, a prolonged period, analogous to that 
considered here, will again set in after a relatively 
short intermediate region, but another diagonal compon
ent of the metric tensor (g 11 or g22 ) will now become 
small, i.e., the axis along which the relative rapid com
pression of the three-space takes place will change. 
This change of axis will be repeated an infinite number 
of times up to the singular point. 

&lch a solution will be a general solution with a phys
ical singularity. 

We note in this connection that the assumption made 
by us inlll that the physical singularity in the metric 
(3 .1) is eliminated after inclusion of the arbitrary per
turbations in the region where it is close to the form 

·-ds' = -dt' + dx2 + dy2 + t2dz', (3 .5) 

is not valid in the present case. 
The general solution investigated here is a general

ization of the metric (3.1) with a three-parameter group 
of motions of the ninth Bianchi type. The space des
cribed by the metric (3.1) is closed. In this connection, 
the question of the stability of the metric (3.5) should be 
solved with allowance for the topology of that space on 
which it is realized. A preliminary investigation, the 
details of which we hope to publish later, shows that in 
the case when the coordinate lines z in (3.5) are homo
morphic to a circle (as in the metric (3.1)), the solution 
(3.5) is unstable. On the other hand, if the lines z are 
homomorphic to an infinite straight line, then there 
exists a general solution, with a fictitious singularity, 
close to (3.5) (seel 9J ). 

In the foregoing investigation, we assumed the space 
to be empty. A simple analysis shows that inclusion of 
matter does not change the qualitative character of the 
solution. During the final stage of the period consid
ered here, the dependence of the metric on the time has 
a Kasner (power-law) character. In this region, as 

shown in£9 J , inclusion of matter leads only to small 
corrections to the solution for vacuum. 

In the initial region of the period (large ~), this also 
takes place. We have seen that at large ~ the principal 
approximation is described by the metric (2.2), in which 
ga3 = 0 and g33 , gab can be regarded as independent of 
the variables x andy. It is therefore sufficient to con
sider only such a simplified variant. In this case ~ 
= ~ = 0, and for the ultrarelativistic equation of state 
E = 3p (which we assume for concreteness; actually, the 
performed analysis is valid for any equation of state) 
we obtain the following system of equations: 

Ro0 - Ri = To0 - r.' = 4p(u0uo- u'u,), (3.6) 

R3° = T,O = 4pu0u3, (3.7) 

(3.8) 
(3.9) 

The velocity components ua = 0 (in accordance with the 
requirement T~ = 'Fa_ = 0), while uo and u3 as well as 
the pressure p depend on ~ and z. The equation R2 + ~ 
= Tg + 'Ji, as before, is the consequence of the system 
(3.6)-(3.8). The equations of motion Tf k = 0 and the 
identity (3.9) yield (we retain here the e'ntire previous 
notation) 

(l'Gu3p'l•)' -()'cu0p'f•)' = 0, 

(u{)p'.'•)'- (u3p'f•) • = 0, 

(3.10) 
(3 .11) 

(3 .12) 

Since c2 is small in this approximation, we make the 
assumption (subsequently confirmed by the result) that 
in the principal approximation it follows from (3.12) that 

u0 = u,. (3 .13) 

Then (3.10) and (3.11) yield 

(3 .14) 

where <1>1 and <1>2 are arbitrary regular functions of 
their variable. The components of the energy-momen
tum tensor are now 

It is easy to see that in Eqs. (3.8) the right side of 
T~ is small compared with the left side ~ and can be 
discarded. Indeed, in this case the solution for gab does 
not change and formulas (2.16) and (2.26), in which all 
the arbitrary functions of x and y should be regarded as 
constants, are valid. Then {G = ~ and, as follows from 
(2.5), Rt 1/~ 2c 2 , whereas T~ ~ 1/e. Since c2 is small, 
we get Ta « ~· On the other hand, in Eqs. (3.6) and 
(3. 7), the right side is of the same order as the left. 
From (2.6) and (2.7) it follows that I{i, R:i- ~ ~ 1/~c2 • 
Thus, Eqs. (3 .6) and (3. 7) take on the form 

(3 .16) 

(3 .17) 

The right sides of these equations are calculated 
from the solution (2.16), (2.26) for gab• and contain a 
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periodic dependence on z. The arbitrary terms 
8 exp[<l>r(~ + z) + •IP2 (~ + z)] will also be expanded in a 
Fourier series in z. As a result we obtain 

8eM'"•=y2 +terms oscillating in~, (3.18) 

where y 2 is an arbitrary positive constant. It follows 
therefore that in the integration of (3.16), the principal 
term in lJ! will be 

"'= q~ + y'!;, (3.19) 

where q is determined by the previous formula (3.36). 
Thus, inclusion of matter leads to an increase of the 

argument of the exponential q in the asymptotic expres
sion for c2 (when i; » 1). In other words, the decrease 
of c2 at the beginning of the period becomes sharper, 
but the qualitative behavior of the solution does not 
change. 

Finally, we note that in the region ~ » 1 the energy 
density of the matter, according to (3.14), increases 
like ~ -2 (G ~ ~ 2 ) wi.th increasing ~, whereas the compon
ent g33 decreases exponentially. In synchronous timet, 
this component deer eases like e' and the energy den
sity increases like [ln(t/to) r2 ' where t decreases from 
a certain instant t » t 0 • 

In conclusion the authors are grateful to L. P. 

Grishchuk, A. G. Doroshkevich, and I. D. Novikov for a 
discussion of the results. 
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