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The singular parts of the kinetic coefficients for He4 near the ~-point are calculated. A new criti­
cal index defining the time correlation range enters the formulae. The analysis is performed on 
the basis of microscopic theory. 

1. INTRODUCTION 

A second order phase transition in any many-particle 
system is foreshadowed by the appearance of long­
range space and time correlations. Long-range space 
correlation, as is well-known[ll, leads to temperature 
singularities in the thermodynamic quantities. Long­
range time correlation must influence substantially the 
nonequilibrium characteristics of a substance, in par­
ticular the kinetic coefficients. 

Ferrell et al.f2l, and also Halperin and Hohenberg[ 31, 
used the scaling hypotheses applied earlier to static 
effects to describe dynamical phenomena. It was as­
sumed that the spectrum of the critical fluctuations is 
determined by one characteristic length, which is the 
same as in the static case. This hypothesis had no 
serious justification apart from the fact that it is the 
simplest possibility. To investigate the dynamical phe­
nomena, Kadanoff and Swift[4 • 51 used a semi-micro­
scopic method, which is also not quite satisfactory 
since it is assumed that the intensity of the dynamical 
fluctuations is the same as that of the static ones and 
this is not always physically justified. 

In the present paper an attempt is made at a micro­
scopic analysis of nonequilibrium phenomena on the 
basis of a diagram technique. The structure is found of 
time-dependent correlation functions of various quanti­
ties and a new unknown critical index determining the 
power of the frequency is introduced. Such an index 
was introduced earlier[2 -s] but there it was connected 
with the static critical indices. Below it will be shown 
that there are no theoretical reasons for such a con­
nection. 

It is shown that the collective excitation spectrum is 
defined not by one but by several scaling lengths, ex­
pressed in terms of the new critical index. All kinetic 
coefficients of the system are expressed in terms of 
this same index. 

The method of this paper is directly applicable to 
all phase transitions in which the order parameter is 
not a conserved quantity, i.e., to the ~-transition in 
He4 where the order parameter is a Bose-field opera­
tor 1/J(x), to the antiferromagnetic transition (where 
the order parameter is the difference between the 
magnetic moments of the sublattices N), etc. Transi­
tions in an isotropic ferromagnet, where the order 
parameter (the total magnetic moment M) satisfies a 
conservation law, or the liquid-gas critical point, 
where the order parameter is the number of particles, 

require some modification of the methods and are not 
treated in this article. 

From considerations of methodological convenience, 
we analyze below the ~-transition. The generalization 
to the other enumerated systems involves no difficulty. 

2. GENERAL RELATIONS AND SYMBOLS 

A Bose system above the condensation point is de­
scribed by the temperature Green function Gn( p)[6 1. 
The Green function is expressed in terms of the self­
energy part by the formula 

G,.-1 (p) =ien-p2/2m+~l-~n (p, J-1, T) (2.1) 

( J1. is the chemical potential). The self-energy part :En 
is in turn functionally expressed in terms of Gn by 
means of Matsubara diagrams. The phase transition 
line is defined by the equation (?1 

~IA=~o(O, ~11., T1.). (2.2) 
Near to the transition line, formula (2.1) may be 

rewritten thus : 
G,-1 = ien- p2/2m --r- [~n (p, ~~. T) - ~o(O, J-1~, T,) ], (2 .3) 

-r = a(~t- J-1<) .+ b(T- T,.) 

(a and b are constants). 
The dynamical properties of the system are defined 

by the retarded Green function GR ( p, E) which is 
analytic in the lower half-plane and possesses the 
property that GR(P, iEn) = Gn(P) for En< 0. To cal­
culate GR(P, E) or :ER{P, E), defined by the formula 

G8 -1 = e- p2/2m --r- [~a(p, e, J-1, T)- ~R(O, 0, Jt;., T,) ), (2 .4) 

it is necessary to continue the diagrams for :En ( p) 
into the lower half-plane. Here it is not permissible to 
retain from the start only the zeroth terms in the sums 
over the frequencies. The separation of the most singu­
lar terms must be carried out only after analytic con­
tinuation of the whole sum. For a preliminary under­
standing of the situation, we shall consider, as in the 
static case [a), the simplified Dyson equation with 
:En{P) equal to the diagram e... (2.3') 

where the lines correspond to exact Green functions. 
We have 

::!:n (p)oo ~ S dp, dP2Gn,(PI)Gn,(P2)Gn-n0-n,(P- PI- P2)• (2 ,5) 
?J•R:a 

We put into (2.5) the spectral representation for the 
Green function [SJ: 
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1 5 ~G(p,e)de 
G,.(p)=- . , ~G=ImGR(p,e). 

Jt ten- e 
(2.6) 

After this the sums over the frequencies in (2. 5) are 
easily calculated by standard methods and we obtain 

~.(p)co sdp,dp2de,de2de3 n,n.(1+n3)-(1+nt)(1+n,)n3 
Et + e,- E3- ie,. (2. 7) 

X 1G (p,, et) A G (P2· e2) .1G (p- p, - p2, e3), 

where ni = (ef:lEi- 1)-1 and i = 1, 2, 3. 
For the analytic continuation of (2. 7) into the lower 

half-plane it is sufficient to replace iEn by E - iO. 
Further, the most singular part of :E ( p, E) for small E 
and p will be obtained if we replace ni by their classi­
cal limit ( f:lEi f\ As a result we have 

,.. ( ) (' dp, dp, de, de2 de3 Et + e 2 - £3 
.., p, e oo J . 

• E1E2e3 e,+ez-e3-e+i0 (2.8) 
X ~G(p, Et) AG(p,, e2) ~G(p- p,- p2, e3). 

We shall seek a solution of Eq. (2 .4) for T = 0 and 
for small p and E, with :E given by (2 .8 ), in the form 

G(p, e)= ivl-'hj(eivi-P). (2 .9) 

Assuming that the bare terms E - p 2/2m may be 
neglected and that in the integral (2 .8) the important 
internal momenta and frequencies will be those of the 
order of the external ones, we put (2 .9) into (2 .8) and 
(2 .4 ). Introducing the dimensionless variables Ki 
= Pill PI and Xi = Ei I Pi 1-p it is not difficult to reduce 
the equation to the form 

r dxt dxz dx3 
} 1 (x) = J X(x,x,x2, p)A/(xt)tJ,.f(x2)M(x3) , ( 

x,x2Xa 2.10) 

"11'( S 1 d {x1 jx,jP+x2 jx2 jP-. x3 jn-x1 -x2 jP 
.R; X,Xt,X2,p)= lXt X2. J 3 . 3 , 

jx,jl•jx21 "In- Xt- x.l" 
1 

xdxtl" + x2jx2l 0 - x.jn- x,- x2 jP -x+ iO 
1 ) 

lxd'hlx21'" jx, + x21''' r. 
It is easy to check that the integrals (2 .10) converge 

for I Ki I ~ 1 and Xi ~ 1, provided that p > %. Further, 
the discarded terms in the inverse Green function were 
of order E, p2/2m. The inverse Green function itself 
is of order E 3P12, I p 1312 and consequently, with the 
same condition p > 7'2, the proposed solution repro­
duces itself. The quantity p > % is determined from 
the solvability condition for Eq. (2 .10 ). We note that, 
in another problem, equations of a similar type were 
considered by Gribov and Migdalr 9 l. 

It would seem that the terms connected with other 
diagrams, not taken into account in (2 .8 ), are not small. 
As in the static case [ 8• 9 1, substitution of the solution 
(2 .9) into the other diagrams leads to logarithmic inte­
grals. We may suppose that, by analogy with the static 
case, the logarithms are collected into the exponent and 
alter the powers in (2 .9) while conserving the general 
self-similar form of the solution. To justify this sup­
position it is necessary to use exact solutions for 
:ER(P, E); we now turn to the formulation of these. 

3. UNIT ARITY CONDITIONS FOR THE RETARDED 
GREEN FUNCTION AND PROPERTIES OF THE 
EXACT SOLUTION 

The basis of the following analysis will be the uni­
tarity condition for the retarded Green function. Here 

we shall write it out taking into account those simpli­
fications which are brought in by the closeness to the 
phase transition and the importance of the small fre­
quencies and momenta. A general formulation and 
proof of the unitarity condition is given in Appendix A. 

The unitarity equation has the form 

.:IE(p,E) =. ~ + ... (3.1) 
I 

The diagram (3.1) and those similar to it are interpre­
ted thus: 

,6};(p,e)coe Slf(p;,e;)j 2t'i(p-_6 p;).s( e-,6 e;) 
(3.1 ') 

.ll}; == Im }; R· 

Here the factors Et have arisen from the expansion 
of the Bose functions n( q). The vertex r( Pi> Ei) is 
the analytic continuation of the Matsubara four-point 
r( Pi, iEn). The continuation path is determined from 
the condition that all frequencies entering from the 
right have a negative imaginary extra part and all out­
going frequencies a positive one. For example, the 
vertex in (3 .1) coincides with the Matsubara vertex on 
the portions of the imaginary axes defined by the in­
equalities 

Ime,,2~o. Ime3.-:;;;o. (3.2) 
Such a definition of r, as shown in Appendix A, 

corresponds to the fact that it is a retarded nonlinear 
susceptibility characterizing the change of ( ljJ ( x, t )) in 
the variable field J[ 1J*(x, t)lj;(x, t) + 17(x, t)lj;*(x, t)]d3x. 
This fact will be used below. It is not difficult to see 
that if we assume that the Green function and the vertex 
parts have the form 

G(p, e) = ,-a~g(eT··1', pT-~), 
(3.3) 

f n (p,, E;) = T[3-n(J .. tt)/2l~y,. (E;CV, p;r~)' 

then Eq. (3.1) and the equation for rn, which we do not 
write out, will become dimensionless. For Ei = 0 we 
come back to the static results[ 8 ' 10' 11 l. The parameters 
a and f3 are the known static critical indices and y is 
the dynamical index. All these parameters are deter­
mined by the solvability of the equations (cf. Sec. 2) 
and are completely independent. 

Thus, so long as we consider the self-interaction of 
the critical mode the self-similar solutions (3.3) are 
self-consistent and any amplitudes occurring in the 
theory will also be self-similar. Nevertheless, treat­
ing only the self-interaction of the critical modes is 
physically inadequate since in the system there exist 
other low-frequency modes, the hydrodynamic ones 
(sound, thermal conductivity, etc.). In the unitarity 
condition terms appear of the form 

I 

~ (3.4) 

I 

' 
(here the wavy line corresponds to hydrodynamic ex­
citation); these terms will not be self-similar. To 
estimate the contribution of diagrams with hydrody­
namic excitations one must know the amplitudes of the 
interaction between the hydrodynamic and critical 
modes. In the low-frequency limit such amplitudes may 
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be defined from general considerations. This problem 
is solved in the following section. 

4. INTERACTION OF THE HYDRODYNAMIC MODES 
WITH ONE-PARTICLE EXCITATIONS 

One can calculate the amplitude of this interaction 
using the fact that the hydrodynamic modes correspond 
to slow changes of temperature, chemical potential and 
velocity, obeying linearized Navier-stokes equations. 
The interaction constant for the interaction of the hy­
drodynamic mode with one-particle states ( l/1-modes) 
is proportional to the deviation of the Green function 
from its equilibrium value. In He4 above the ~-point 
there are three types of hydrodynamic mode: sound 
with the spectrum ws = ±usk + YziDsk2, the thermal 
T-mode with the spectrum wT = i>.k2/PCp (where ..\ is 
the thermal conductivity coefficient and p is the 
density; below we assume p = 1) and the viscosity 
V -mode with the spectrum wv = i17k2, where 11 is the 
transverse (shear) viscosity. 

We shall begin with the calculation of the interaction 
amplitude Vi/il/1 (emission or absorption of the viscosity 
mode by one-particle excitations). 

We place the system in a field of transverse vector 
potential 6A11>. In the first approximation, this poten­
tial only induces velocity fluctuations with transverse 
gradient. In the system of coordinates linked to the 
medium the reference points of the momentum and 
particle energy fluctuate. That is, 

p-+- p- li\'..L- M.b e-+ e- p6v..L (4.1) 

(the particle mass is chosen to be unity). Account is 
taken of the fact that in a field of vector potential A 
the momentum is p - A. The Green function is 
changed thus: 

aG-1 aG-1 
6G-1 =---pliv---(6v..L +M.L)· (4.2) 

ae iJp 
From the Navier-Stokes equation 

(4.3) 
we find 

liv.L(k, w) = iw liA..L. 
iw + 1Jkz (4.4) 

Putting (4.4) into (4.2) we find 
- aG-1 'IJkZ [ aG-1 aG-• ] ~.L(p,s,k,w)R~ P.L_a_ . + k" -a-+P.L_a_ , (4.5) 

e 1w 1J • PJ. e 

where the vector vertex i-1 is defined as the coefficient 
of proportionality between -I>G-1 and c5Al [61; p1 
= p- (p ·k)k/k2• 

To determine the emission vertex of the V -mode 
xv(P, E, k) we remark that the pole term in (4.5) 
arises because of the following diagram 

I 
I 

):·) 
This diagram gives a contribution 

Xt' (p, e, k) gv (k) I ( iu} + 1]f.-!!) 

(4.6) 

(4.6') 

nte., we add a term J6A1 (where J is the mass flux density) to the 
Hamiltonian. By analo1,ry with electrodynamics such an extra term is 
equivalent to the action on the particles of a "Lorentz force" f = 
E+v X H;E=-6Al,H = curlliA1. 

(where gv(k) is the transition amplitude of the flux 
into the V -mode). The quantity gy determines the 
residue at the pole of the correlator of two transverse 
fluxes. The contribution of the corresponding diagram, 
having the form 

is 

--~-­
o; v,s) (4.7) 

(4.7') 

On the other hand, the vector correlator is given by 
formula (4.4), whence 

gv (k) = 1 1Jk2, 

Putting (4.8) into (4.6') and comparing with (4.5) we 
find 

- [ aG-1 aG-1 J Xv(p,e,k)=l'TJk2 -. -+P..L-.,-
dp.L ue 

(4.8) 

(4.9) 

(for k « p, 11k2 « E). Formula (4.9) solves the prob­
lem posed in the case of the V-mode. 

We turn to consider the T-mode interaction. We 
place the system in a field of sclaar potential c5cp(k, w ), 
such that w << usk, where us is the velocity of sound. 
Such a field gives rise to fluctuations of temperature 
and chemical potential in the system, which are deter­
mined from the Navier-stokes equation: 

(4.10) 
lip+ \'6v = 0, TM = i.\'liT. 

Here S is the entropy per unit mass and P is the 
pressure. We recall that we took an initial density 
p =1. The solution of (4.10) for w « ugk is simple and 
leads to the result 

liP R~ -6!{1, 6v R~ 0, 
1 iwCv+i.kZ (4.11) 

llp R~ - • licr, 
urz iwC p + 'Ak· 

1 iw 
6T R~ +-l'T(Cp-Cv) &p, 

ur iwCp+'AkZ 

u~ = (apjap)T. 
The Green function is changed owing to the fluctua­

tions of 1J. and T and the shift of the frequency refer­
ence point: 

(4.12) 
The second term in (4.12) is connected with the fact 
that in the Green functions used the frequency is 
reckoned relative to the chemical potential. 

We have 
aG-1 aG-1 aG-1 

-6G-1 =--(li<p+lil') ---61'---bT 
ae al' aT 

[ ( aG-1 aG-1 ) aG-1 J aG_ -1 = s ----- --- bT=I=--b<p. 
ill' ile CIT al' 

(4.13) 

(We have used the facts that c5P R: -c5cp and c51J. = c5P 
- sc5T, where s is the entropy per unit volume). Intro­
ducing the rericle density vertex by the formula c5G-1 

=-Jc5cp (cf. 6 1) and putting (4.11) into (4.13), we find 

~ = _a_G-_' +. yT(Cp- Cv) " iw r s( aG-1 _ aG-1 ) _ aG-11 
01' Ur iwCp + 'Ak2 01' ae aT 

for k « p, w « E and w « ugk. (4.14) 
To determine the emission amplitude xT( p, E, k) 

we shall proceed exactly as in the derivation of (4 .9 ). 
That is, we shall consider diagram (4.6) and this time 
by the wavy line we shall understand aT-mode and by 
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the dotted line the density operator. The contribution 
of this diagram is : 

xT(p, e, k) /T(k) (4.15) 
iw + i.k~ICP ' 

where fT is the amplitude of the transition to the 
T-mode. To calculate fT we shall compare the pole 
contribution to the density correlator (cf. (4.7)) 

/T2 (k) I (iw + }.kt I Cp) (4.16) 

with formula (4.11) for op/ o({J. Equating the residue at 
the pole of (4 .11) to f.j., we find 

fr = _1_ycp-Cvy Ak2-. 

ur Cp Cp 
(4.17) 

Putting (4.17) into (4.15) and comparing with (4.14), we 
get 

for 

1rr 1/ i.k2 [ ( oG-1 oG-1) oG-1] 
Xr(p,e,k)= y- y- s ----- ---

Cp Cp \ OJ.L oe oT (4.18) 

= _ 1/ T 1; l.k2 [( oG-t) -s(~)] 
y Cp v Cp oT p OB 

k...g; p, A.k2 1 cp~ e. 

It is convenient to treat the sound mode emission by 
a slightly different method. To calculate XS±(p, E, k), 
where ± correspond to the poles WS± = 7'aiDsk2 ± usk, 
we note that in the frequency region .Ak2/ Cp « w « usk 
by virtue of (4.14) we shall have 

!T= aG-'+-1 1; r(-1 -..!..)[s(aG-1 _ oG-1)- aG-1]. 
OJ.L Us y Cv Cp OJ.L oe oT 

(4.19) 
(We have used the fact that us/uT = ..JCp/Cy). On the 
other hand at very high frequencies w » usk the Ward 
identity[sJ 

:T'"' = aG-1 I o8. (4.20) 

must be satisfied. On account of the w sound poles. 
Eqs. (4.19) and (4.20) can be matched. For w » .Ak2/Cp 
we have 

!r=i-+ IS+'XS+ + ls-xs- (4 21) 
u8k-ro+ 1l2iDsk2 Usk+til- 112iDsk2 • 

(where ff-has no sound poles). We can find the quanti­
ties fS± by noting that in the sound frequency region 
the density correlator has the well-known form 

6p k2 
ll(k, ro)""'- = --, .. --.,----::--:-:--

6<p c.r<- u,fk2 - iD8 k2w 
(4.22) 

Equating fs+ and q,_ to the residues at the correspond­
ing poles in (4.22) we find 

fB+=fs-=1/ k +O(k''•). (4.23) Y 2us 

Further, equating (4.21) to (4.20) for w » usk and to 
(4.19) for w ;5< usk and taking account of the fact that 
the quantity rr is the same in both frequency regions, 
we find 

-{ ( aG-1 oG-• ) 
XS+ + )(s- = y2usk Us -----

OJ.L U£ I (4.24) 

+ fr(~--t )[s( aG-1 _ oG-_•) _ oG-1 ]}. 
c,. Cp· iiJ.L OE . {)T 

To calculate the difference XS+ - XS- we shall con­
sider the longitudinal vector vertex frx(P, E, k, w) (the 
x axis is chosen in the direction of the vector k). It 
satisfies the Ward identities[6 1: 

aG-1 aG-1 
!r,"' = p,.--, fT,.h = --. -. (4.25) ue ap_, 

From (4.25) it is clear that rrx has a singular point at 
w, k = 0. This singularity arises by virtue of the dia­
gram (4.6}, in which the wavy line can correspond 
either to aT-mode or an S-mode. However, as was 
pointed out above (cf. (4.11 )), in the propagation of the 
T-mode longitudinal velocity fluctuations do not arise. 
Because of this the residue at the thermal pole of the 
longitudinal vector vertex is small ( ~k3 ) and this pole 
may be left out of consideration; it does not produce 
any different k- and w-limits. The difference in the 
k- and w-limits of is connected entirely with the sound 
pole, Writing 

!r,. = ~x + gs+Xs+ . + ts-Xs- . • , (4 .26) 
u8k-w+ 1I21Dsk2 usk+,{o- 1lzzDsk· 

where gS± are the transition amplitudes from the 
longitudinal flux to the modes S±, taking into account 
that, by virtue of the conservation of flux, 

rofs+""' usk!S+ = kgs+, rofs- •= -uskfs- = kgs-, (4.27) 

and comparing (4.26} and (4.25), we get 

-( oG-1 oG-1) 
XS+ -- xs- = 'f2usk --+ Px -- • 

{)p,. ile ' 

(4.28) 

From (4.24) and (4.28) we find the desired formulae: 

1/ u8k { ( oG-1 oG-t) 1/ ( 1 1 \ ( ) XS±= y- u8 ----- + V T --- 4.29 
2 aJ.l. oe Cv Cp I 

[ ( iJG-t iJG-t ) CJG-1 ] k ( oG-1 iJG-t )} 
X s ----- --- ±- --+p-- . 

OJ.l. iJ8 iJT !kl op oe 
The formulae (4.9}, (4.18) and (4.29} solve the 

problem posed at the beginning of this section. It would 
be possible to obtain similar formulae (though not co­
inciding with ours) by the method of Kadanoff and Swift; 
however, in their purely static method all terms con­
taining the derivatives aG-1/BE are lost. 

5. ESTIMATION OF THE KINETIC COEFFICIENTS 

The emission amplitudes of the hydrodynamic modes, 
found in the preceding Section, depend essentially on 
the kinetic coefficients .A, 11, and /,;. Therefore, before 
we can estimate diagrams of the type (3.4), it is neces­
sary to calculate these coefficients. In this calculation 
we shall have to assume beforehand that the diagrams 
(3.4) for E ~ Ec and p ~ Pc are small and that in this 
frequency region the formulae (3.3) are valid. The 
consistency of this assumption will be demonstrated 
later (Sec. 6 ). 

The kinetic coefficients or, what is the same, the 
frequencies of the collective modes in principle should 
be determined from the Bethe-Salpeter equation. How­
ever, it is difficult using this method to obtain concrete 
results. It is more convenient to use as a basis the 
Kubo formulae [laJ, by which 

}.. = ro-1 Im (J,.•/x-')k.,, ; = bl-1 Im (XX)A.,, 

1J = ro-1 lm (t:o:yTxy)A., 

fork= 0, ro-+0. 

(5.1) 

for k = 0, w - 0. Here the vector k is directed along 
the x-axiss Txy are the components of the stress ten­
sor and J is the entropy flux, defined by the formula 

J~= JE_ wJ, (5.2) 
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where JE is the energy flux, J the mass flux and w the 
enthalpy per unit volume. (As before the density of the 
system p = 1 ). Further 

( aP) ~ ( aP) ~ 
X == "Cxx- a;· E p - aE p E, 

(5.3) 

where p is the mass density operator and E is the 
energy density. The brackets in (5.1) are interpreted 
as follows: 

(JJN)k" =S d"xdt ei<•M-kx> 6(- t) ([Jf(O, O),N(x, t)]), (5.4) 

where M and N are any two operators. It is clear that 
( MN >kw is the retarded Green function for these quan­
tities, obeying the unitarity condition. This fact allows 
us to estimate the orders of the quantities appearing in 
the formulae (5.1). 

We shall start with the determination of the thermal 
conductivity A· Taking into account that for k - 0 the 
x and y directions are equivalent the unitarity condi­
tion for A can be written in the form 

-zen~ { --~-- +···} (5.5) 

The terms not written out will be discussed later. To 
evaluate diagram {5.5) we must know the order of mag­
nitude of the vertex of the entropy flux: 

I 

.r[J/1 ;: A = 3'[/{J -wJ"[Jg] 
(5.6) 

We note that in g-~ there are no hydrodynamic poles 
in w. Indeed, the T-mode and S-mode are purely lon§i­
tudinal and cannot enter into the transverse vertex Jy. 
The V -mode does not give a contribution, since the 
amplitude of its transition to the entropy flux is zero. 
The latter is obvious from the fact that change of the 
fluxes with change of velocity in the hydrodynamic 
approximation is 

OJF: = w6v = wM, bJS = 0. (5.7) 

The absence of hydrodynamic poles makes the ordering 
of the passage to the limit w, k- 0 in (5.5) and (5.6) 
immaterial; therefore, to evaluate the order of magni­
tude of .T[ J~] we can use Ward identity for its k­
limit. This 1dentity is derived in Appendix B. It has 
the form 

ac-• ac-• 
- ff"1' [i.lpe] = £ --+ G· 1Pu- Ts -- (5 .8) 

Dpy Bpu 

( s is the entropy density). 
For E ~ Ec, p ~ Pc, the basic contribution is ob­

tained from the last term in (5.8). Putting it into (5.5) 
we obtain 

) drot dkt 
i. = lim I.T[l/W ~G(k- kt,ro- rot)I1G(k,, rot)---,.(_.....:...._ 
~- ~(J)-~ 

ooT's'(G-t)zcz Pe3 =~oo-cP-•. {5.9) 
Pc Ec: Ec 

In making this evaluation we have taken into account 
that in the integral the principal region is k1 ~ Pc and 
W1 ~ Ec• 

We shall consider the unevaluated terms in (5.5). It 
is not difficult to show that diagrams containing only 
continuous lines will give a contribution (5.9 ). In addi­
tion to this the contribution to A of the hydrodynamic 
modes, i.e., of terms of the type 

.,.__~J. : J.S 
~--

1 . (5.10) 

will be of an essentially different order because of the 
fact that the characteristic frequencies of the hych·ody­
namic modes are not equal to €c. 

We shall consider first the case when in {5 .10) two 
T-modes are emitting. For small enough k the fre­
quency of the T-mode is 

J..k2 Pe l'z 'tz kZ 
ror(k) =-=- ~ --,.k2 ~ -2· 

Cp Ee Pe ee Pe 
(5.11) 

We have taken into account that Cp ~ p~/T2 (aJ and as­
sumed, with a calculation for subsequent confirmation, 
that the main contribution to A is of the order of (5.9). 
Formula (5.11) is applicable in order of magnitude 
provided that 

or 

where 

ror(!c) < 8< ='tV, k < Pe = 't~ 

k <min (kr, Pc), 
(5.12) 

(5.13) 

For the subsequent analysis it is necessary to 
distinguish the cases y < 1 and y > 1. In the first of 
these the virtual momenta k ~ Pc make the main con­
tribution to the integral {5.10). In this the character­
istic frequency of the wavy line is 

ror{pc) ~ ~ / Be ~ F-"1"< e, ~ 't•. 

Since the emission amplitudes of the T-modes, oc­
curring in {5.10 ), change at frequencies ~ec we can 
assume that these amplitudes in (5.10) are taken at 
zero frequencies. It is not difficult to see that in this 
limit they are zero. In fact on time-reversal the flux 
JS changes sign and consequently the amplitudes in 
{5.10) must be odd functions of the frequencies. The 
arguments adduced show that the contribution of dia­
gram {5.10) is small. There is a similar assertion 
in[41 • To obtain a quantitative estimate we note that, by 
order of magnitude 

'"''/' = -« - --¢ (5.14) 

The relation (5.14) is a consequence of the fact that in 
the critical region all diagrams containing exact ver­
tices and Green functions are of a similar order. The 
important internal momenta in the right hand side of 
(5.14) are of order Pc if all the external frequencies 
are of order €c and the momenta of order Pc· Conse­
quently we may write 

An [J "-'] ~ .T [/ /] G3i(T2Pc3 ~ 

~ G-t G' G~2 ror(pc) Pc' _ ror(p,) . 
Pc ,. Cp Pc 

(5.15) 

In the derivation of (5.15) we took account of the Ward 
identity {5.8), the expression for XT and the fact that, 
since Ei >> T, in (4.18) we may leave out of considera­
tion terms containing aG-1/ae. 

The estimate (5.15) is incorrect for external fre­
quencies low compared with Ec. As was pointed out 
above, the amplitude ATT is zero in the limit of zero 
frequencies; therefore, for low frequencies, (5.15) is 
multiplied by a small factor ~w/Ec. Since the frequen-
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cies in (5.10) are of order wT(pc), the amplitude oc­
curring in this integral are as follows: 

By analogy with (5.9) the integral itself can be 
written down in the form 

(5.16) 

S dw; dkL · ( ) ATT= --IATTj 2 AF(k;,w1)AF(k-k1,w-!tl;), · 5.17 
w;2 

where ATT is the contribution of diagram (5 .10) to A 
and 

AF(k, w) - Im [iw + 'Ak2 I Cp)-1• 

For w :$ Ec, k $ Pc the frequencies w1 ~ wT(Pc) and 
the momenta k1 ~ Pc are the important ones in integral 
(5.17). Therefore, taking (5.16) into account, 

(5.18) 

Consequently, as we asserted, the TT-contribution to 
the thermal conductivity in the case y < 1 (or Ec >> T) 
is small. 

We shall consider now the case y > 1 ( Ec « T ). In 
this case the integral over the momenta in (5 .17) will 
begin to converge when the characteristic frequency 
of the wavy line wT(k) approaches Ec. On further 
increase of WT(k), the decrease of the amplitude AT, 
occurring at frequencies greater than Ec, cuts off the 
integral. The contribution of the region wT(k) ~ Ec or 
k ~ kT ~ EcPc/T to the integral (5.17) has the form 

ATT - ArT2kr3 /eo". (5.19) 

By an estimate analogous to (5.10), at external frequen­
cies ~ec and momenta ~kT, ATT is given by 

(5.20) 

Putting (5.20) into (5.19), we find 

( kr ) 3 Pe ( l!c ) 3 Pc ArT ~ - --- · - -~ i .. 
PcBc 't£c 

(5.21) 

The region k ~ Pc >> kT, as can be verified, also gives 
a small contribution, if we assume that WT ( Pc) » E c 
(or ~ec). This assumption means that wT(k), having 
attained the value Ec for k ~ kT « Pc does not begin 
to decrease on further increase of k. 

Investigation of the contribution of the sound and 
viscosity modes to A is carried out analogously and 
this contribution is found to be small. Therefore, the 
final estimate for A is 

(5.22) 

The qualitative meaning of formula (5.22) is that, owing 
to the fluctuations, the system can be found, for a time 
tc ~ Ec\ in a superfluid state. Then heat transfer will 
occur on account of the motion, without mass transfer, 
of the superfluid and normal components to different 
sides. Consequently, 

JS ~ (sf p) p8v,, (5.23) 

where Ps and ss are the superfluid density and 
velocity. From the equations of two-fluid hydrodynam­
ics it follows that 
v1 ~ V~t = (fJJJ.{ 8T)pVT, v, ~ t.(afl. i fJT)pVT ~ e.-'(fJfl./ 8T)pVT. 

(5.24) 
(We have taken account of the fact that the heat conduc-

tion occurs at constant pressure). 
Putting (5.24) into (5.23), we find 

A.= I ~J;: ~ ; P•( :~) /•-'· (5.25) 

Since (8JJ./8T)p = s/p and Ps co Pc[11, this formula 
coincides with (5.22). 

We turn to the evaluation of 1J. By the third of the 
formulae (5.1), for this it is necessary to know the 
vertex of the stress tensor Txy· As shown in Appendix 
B, for zero transferred momentum, this vertex satis­
fies the Ward identity 

!1"'[-r.,vJ = p.,OG-t I opv. (5.26) 

Putting (5 .2 6) into formula (5 .9) together with T [ J~], 
we find 

~ 3 n .. 3 
TJ - !f"'ZG2-- _- 'taH. 

e e 
(5.27) 

It would seem that (5.27) gives only the singular 
part of 1J; therefore, for y < 3 {3 (which, evidently, is 
fulfilled for real systems) 

TJ - const. (5.28) 

The estimate does not change when the hydrodynamic 
modes are taken into account. 

It remains to consider the quantity i;. It is conven­
ient to take immediate account of the characteristics 
of He4 , in particular the fact that {3 R~ ,-3[11 and, in ad­
dition, that the compressibility of He4 is anomalously 
small. As was shown by Batyev, Patashinski1 and 
Pokrovskil [131, the latter fact means that in the for­
mula 

the coefficient 
't=U(J.&- JJ.l) + b(T- TA) 

b>a. 

(5.29) 

Therefore in the critical region the variables depend 
weakly on the chemical potential and the derivatives 
with respect to 1J. are far smaller than the derivatives 
with respect to T. 

We shall begin with an evaluation of the contribution 
to i; of the one-particle excitations. In Appendix B the 
Ward identity for the vertex !r( X J is derived 

:r {X] = Px fJG-1 + G-1 - aG-1 [f, !!!_) + JJ. ( fJP ) ] 
iJp,. Ofl 8p z; iJE p (5.30) 

_ (~) ( BG-1 _ e 8G-t _ G-l \ 
ae ~ ar ae r 

Transforming to the variables 1J. and T, we may write 
down the coefficients in (5.30) in the form 

(:;)P = ~ (sP,.,.-PT,.)(PTTP,.,.-PT.,2)-1, (5.31) 

( 8P \ ·· iJP' - 1 +fl(-) =(PTT-sPT,.)(PTTP,.,.-PT,.')-1• 
iJp E -- iJE p 

The function P( T, 1J.) has the form [loJ 

P(T, fl) = Jh2ln r 1 + P&1 (T, fl.) 

(where Preg is a continuous function). In[13l it is 
shown that in the practicably attainable region of tem­
peratures the derivatives ( PJJ. IJ.) reg >> Da 2 ln T -1. 
Taking this into account, we find 

( fJP ) Dab In 't-1 a 1 
8E 0 ~- Db2TP,.,.ln't- 1 ~ -b (P,.,.) 8 eg' 
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( oP) +J.L(oP)::::: 1 (5.32) 
op E aE p {P~ .. ) Reg· 

Thus the coefficient of aG-•jaT contains the small 
quantity a/b and the derivative aG-1/SiJ. is itself small. 
As a result, the estimate of fr[ X] is 

(5.33) 

Putting this estimate into a formula of the type (5 .9 ), 
we find 

~- 1 {P .... ),;ng ~ urz Da2urz (5.34) 
Ec (P .... ) 2Reg £c 

(since uT RS p~IJ. ). In the derivation of formula (5.34) 
it is essential that the integral (5.9) converge and give 
no new logarithms. 

We shall now consider the contribution to l; of the 
hydrodynamic modes and in particular of the T-mode. 
Using diagram (5.14) we can evaluate ATT[ X], the 
amplitude for the conversion of X into two T-modes. 
Replacing fr[J~] in (5.15)by T[X]andtaking (5.33) 
into account, we find 

:=t aG-1 
Arr- (P .... )Reg-0 -Gaxyp.!. (5.35) 

II 

As before, we shall consider the cases y < 1 and 
y > 1 separately. In the first case, in the integral of 
the type (5.27), k ~ Pc and W1 ~ WT(Pc) are important. 
Taking (5.35) into account and the fact that FRS 1/wT, 
we find the estimate 

(5.36) 
Further, 

(5.37) 

(5.38) 

It is possible to show that the V- and S-modes always 
give a small contribution. Therefore, for y < 1 the 
thermal modes give the main contribution to l:, and 
l; is given by formula (5.38). For y > 1 one-particle 
excitations have effect and l; is determined by (5.34). 

To evaluate the dimensionless quantity a = Da'\!T, 
we note that, firstly, Cp = T;\.Db2 ln T-1 and, secondly, 
dJ.L/dTI;\. =a/b (where dJ.L/dTI;\. istheslopeofthe 
;\-curve). Consequently, we can write 

a= mur2 (~1 )-I Cp (5.39) 
'KBTA dT i A 'KBlnr1 

(m is the mass of a helium atom and KB is the Boltz­
mann constant). Inserting numerical data from [13•21 and 
using the fact that uT RS u8, we find 

a- 1()-3. (5.40) 

6. CONTRIBUTION OF THE HYDRODYNAMIC MODES 
TO THE GREEN FUNCTION 

We shall show that, as was stated at the beginning 
of Sec. 5, the hydrodynamic modes have little effect on 
the Green function. For this we shall evaluate the 
correction to :E given by diagram (3.4), with the wavy 
line implying, at first, a T-mode. We have 

S dkdwlxrl 2 
Im Grr-1 = e ~F(k, w) ~G(p- k, e- w). 

w(e-w) 
(6.1) 

Let E ~ Ec and p ~ Pc· As above, we distinguish two 
cases y < 1 and y > 1. In the first case k ~ Pc and 
w ~ wT( Pc) « Ec are important in (6.1 ). Therefore, 
we can rewrite (6.1) in the form 

1 dkdw 
ImGr-•:::::.) --lxr(p,s,k) 1z~F(k,w) ~G(p-k,e-w)::::: 

(I) 

~ S dklxr(p,e,k)I 2 F.t(k)~G(p-k,e); (6.2) 
.... 

Fa~(k)= S dw ~F(k,w). 
_w 

The quantity (6 .2) as a function of E is determined by 
the scale of Ec and may, with precision up to the terms 
of order WT(Pc)/Ec which were discarded in the de­
rivation, be represented in the form (3.3). 

We shall consider now the case y > 1. The region 
k ~ kT and w ~ Ec gvies to (6.1) the contribution 

Im Gr-t ~ kr3Xr2FG ~ (kr / p,) ac-t~ G-1. (6 .3) 

The region k ~ Pc gives a small contribution, if 
WT(Pc) »we, and a contribution of the type (3.3) if 
WT(Pc) ~ Ec. (We recall that we can investigate 
WT(k) only for k <kT «pc). The hydrodynamic 
formulae give no information about the quantity 
WT(k) for k ~ Pc· 

The estimates made show that in the principal 
region E ~ Ec and p ~ Pc, the Green function has the 
form (3.3). (We do not discuss the completely analogous 
arguments for the S- and V -modes). 

7. THE REGION BELOW THE TRANSITION (He II) 

The rigorous consideration of the He II problem is 
extremely complicated owing to the fact that the Green 
function and vertex parts at sufficiently low E and p 
are subject to the equations of hydrodynamics and 
therefore do not have a definite dimensionality. Using 
unitarity, it is difficult to trace how self-consistency 
comes about in the region of small E and p. Neverthe­
less, we can perform an estimate of the kinetic coeffi­
cients using considerations of the correspondence be­
tween the regions T < TA and T > TA. 

The point is that the spectra of He II and He I at 
p ~ Pc must be matched, since the temperature fluc­
tuations in a volume of dimensions p(:3 are of order 
T - TA and in these ranges the difference between 
He II and He I loses its meaning. Consequently, in 
He II at k ~ Pc we have one-particle relaxation with 
frequency Ec and thermal relaxation with frequency 
wT(Pc) (and, of course, S-and V-modes). Further, in 
the region of extremely low p (it will be stated below 
which p must be regarded as small), two-fluid hydro­
dynamics is applicable and the spectrum consists of 
second sound: 

(7 .1) 

and, as before, the S- and V-modes. We shall assume 
that the two frequencies (7 .1) are transformed into Ec 
and WT ( Pc) as k increases. Formula (7 .1 ) ceases to 
be true as soon as w 2 ( k) becomes of the order of the 
smallest of Ec and WT(Pc). Consequently, two-fluid 
hydrodynamics is applicable when 

k < k2 = u2-1 min (wr (p,), e,) = 'ti?-11 ~ Pc (7 .2) 

(account has been taken of the fact that the velocity of 
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the second sound u 2 ~ -1 Ps / Cp, UzPc ~ r ). Knowing the 
character of the spectrum, one can use the Kubo 
formulae to evaluate the kinetic coefficients for a 
superfluid liquid[ 14l: 

. ~ = w-1 Im (l ;slx8), I') = w·-l Im ( 'txyTxy), 

!;, = w-1 Im (~X), •f,I'J + ;2 = 6)-1 Im (XX), 
(7 .3) 

~ = w-1 Im (~~); 

when k = 0 w-.-0. 

Here J~, Txy and X are the sa~e as in Sec. 6; /; 1 , !; 2 

and !; 3 are bulk viscosities and Jl is the chemical 
potential operator, related to the superfluid velocity 
Vs by the formula 

Ys= V~. (7 .4) 

The main contribution to the kinetic coefficients 
arises from the region k ~ Pc, where the characteris­
tic frequencies are the same as in He I. (The region 
k ;:;; k 2 has small statistical weight and is therefore 
insignificant). Consequently, the most singular parts 
of A, 1J and !; z are the same in He 11 as in He I. 

To estimate !; 1 and !; 3 we make use of the fact that 
at low frequencies we may consider the operator il 
to be an equilibrium operator, i.e., 

~ ~ ( ( :: ) r. + f' ( ~~)) r + ( ~~). (i~ _ rtP >. (7 .5) 

Simple transformations lead to the formulae 

( Ufl ) _P_:_T"--
7iif p = - T (PnPu 0 - 1'1'"0) ' 

(~) + rd,~) _ = PTT(PTTP""- PT"2)-1• 
O(l E oE r 

(7 .6) 

Comparing (7.6) with (5.32) and (5.30) we come to the 
conclusion that the singular parts of the operators jj. 
and X are identical. Consequently, 

(7 .7) 

8. CONCLUSION 

In conclusion we shall enumerate the results ob­
tained and compare them with experiment. In the 
above-critical region (He I) there is a long-lived one­
particle relaxation mode, the spectrum E(p) of which 
obeys the similarity relation: 

e(p) = r>cp(p,-P), (8 .1) 

where y is the new dynamical index and r -{3 is the 
static correlation range. The mode E(p) has an essen­
tial effect on the spectrum of the hydrodynamic modes. 
Thus, the temperature relaxation frequency wT(k) is 

Ak2 i i 
wT(k)=-~--, ---k2• 

C p -r"B-2 ,;7-B 

Formula (8 .2) is applicable if 

(8.2) 

k <min (-rB,,;HH). (8.3) 

The anomalous thermal conductivity (8 .2) is 
physically linked with the fact that, with changes of 
temperature in the system, displacement of the distri­
bution of the Bose field 1/J from the equilibrium distri­
bution arises. The succeeding, and, according to (8.1 ), 
very slow, relaxation of this distribution gives rise to 
a large energy dissipation. 

Experimentally [15 1, the thermal conductivity 

~""' (T- TA)-'i•, (8.4) 

Putting the value {3, 7'3 into (8.2), we find 

y ~ 1. 

The relation y = 1 was assumed in[2 ' 3 ' 161 Theoretical 
reasons for the exact fulfillment of this equality (as 
for the static equality {3 = % too) apparently do not 
exist. 

Anomalous damping of sound, connected with the 
second viscosity p, can be induced by two different 
mechanisms. For y <. 1 the main one is the decay of 
the sound into one-particle excitations, and !; is de­
termined by (5.34). For y < 1 decays to the T-modes 
are dominant and !; is (5.38). 

The experimental data on sound absorption[ 17 l agree 
poorly with the hypothesis y = 1. The reason for the 
discrepancy is not clear at the present time. Experi­
ments at lower frequencies than were used in[ 17 l and at 
T - TA ~ 10-6 would be able to clarify the situation. 

In He 11 the experiments on first and second sound 
absorption agree well with the formulae of Sec. 7, if 
yRil. 

We emphasize, finally, that the theory developed 
enables us to calculate the spectra of the collective 
modes only in the hydrodynamic regime, i.e., for 
k < Pc, w < Es and says nothing about the behavior of 
the spectra at large k. 

The author is sincerely grateful to A. I. Larkin and 
V. L. Pokrovski1 for many important comments at 
various stages of the work. 

APPENDIX A 

To derive the unitarity condition it is convenient to 
use the ordered diagram technique demonstrated 
in[19• 201. By the rules of this technique each diagram 
for ~ is proportional to a product of energy denomina­
tors 

i 
l:R ""' II ' (A 1 ) ; (w-E,-iO) · 

where each denominator corresponds to a possible 
split of the diagram and Ei is the sum of the energies 
of the particles going across the point at which the 
diagram is split. To calculate the imaginary part of 
the expression (A.1) we use the equality 

n 1 n 1 llllD1 w-E;- iO =.~ :tb(w- E.).~ w-E,+ 10 

n 1 . (A.2) 
i>a w -- E;- iO 

Thus, to calculate the imaginary part of a diagram it is 
necessary to replace the denominator at each succes­
sive split by a o-function, convert the denominators on 
the left into their complex conjugates and leave those 
on the right unchanged. 

We shall show that the left amplitude r, expressed 
by the product with i < a and depending on Zi ... Zk 
(where k is the number of particles at the split a and 
Zi are the energies of these particles), is analytic for 
Im Zi > 0 (all particles are assumed outgoing from r ). 
For the proof we note that among the splits are some 
where the outgoing lines from r are not cut and some 
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where these lines are cut. The contribution of the de­
nominators of the first type is 

e=E-f.lp, (B.2) 

[w-E+ iO]-' = ( 2; Zi- E + iO) - 1 
where E is the energy densitS in the usual sense. 

(A.3) Therefore, the entropy flux J is 

( E are the energies of the internal particles). The de­
nominators (A.3), clearly, are analytic for Im Zi > 0. 
The denominators of the second type have the form 

(w-E-~, z,+iOr =( ~"z;-E+iOr (A.4) 

(where ~' is a sum over the cut outgoing lines and ~" 
a sum over the uncut ones). The denominators (A.4) 
are also analytic for Im Zi > 0; thus our assertion is 
proved. 

The ordered diagrams are the analytic continuation 
of the Matsubara diagrams and the condition Im Zi > 0 
uniquely defines the path of the continuation. In the 
time representation the analyticity condition when 
Im Zi > 0 leads to the fact that the left amplitude is 
advanced in these times and the right one is, corre­
spondingly, retarded. 

We arrive at the following rule for calculating the 
imaginary part of the diagram for ~R· We successively 
carry out all possiLble divisions of the diagram. With a 
division we associate 110 ( w - ~q) and the factor 

frn(ei)-IT (1+n(e;)), (A.5) 
i 

where n( q) = ( e /3Ei - 1 f 1 • The creation amplitudes 
are the analytic continuation of the Matsubara ampli­
tudes by the path indicated above. 

These rules differ from the rules of the relativistic 
theoryr 21 l by the unimportant factors n(E) in the statis­
tical weight and therefore enable us to obtain the uni­
tarity condition. Collecting diagrams and replacing 
n( q) by ( {3qf1 we arrive at the diagrammatic equa­
tions (3.1). In the general case it is necessary to in­
sert (A.5) in place of E/7Tq in Eq. (3.1). 

APPENDIX B 

To derive the identities used in the text we note that, 
since for our purposes the structure of the interaction 
between the He 4 atoms is not important, this interac­
tion may be assumed to be local. The technique for 
obtaining identities of the Ward type for the vertices 
of conserved fluxes in local field theory is well-
known r22l. In our case the vertex parts are analytic 
continuations of Matsubara T-productsC6 l. For example, 
:T[ JE] is related to the quantity 

(1',/•(XT)11' (XITI )1jl+(X2T2) ). 

Using the conserv2Ltion law: E + V' JE = 0 and the 
canonical commutation relations, we find 

-G(p, e)G (p +q e + w) {wfT'(p, e, q, w)- qET•(p, e, q, w)} 

= p(p: 2[G(p + q, e + w)- G(p, e)] 

(B.1) 

+ [ ( 8 + w- (p ~ q) 2
) G(e + w, p + q)- ( e- ~2 )G(p, e) l 

Here erE is the energy density vertex and i-E is the 
energy flux density vertex. 

We must bear in mind that by the energy here is 
meant the quantity 

w w- f.IP s ( ) JB=JE-~J=J•---J=J•-T-1 B.3 
p p p 

( w is the enthalpy and s the entropy per unit volume). 
Thus 

. s BG-1 

lim tr{lyS)= lim tr[lu•l+T---. (B.4) 
k. (1)--+-0 k, w-o 0 apy 

From (B.1) it follows that 

g-[J•] = -[eaG-tfop+G-tp]; 

for ill = o, q--.. o. (B.5) 

Formulas (B.4) and (B.5) yield the identity (5.8). 
To derive formula (5 .26) we need a Ward identity 

for the energy-momentum tensor; this is obtained by 
the standard methods : 

wfT[la] - q~tr'[Ta~J 

=paG-1(p, e)- (p+q)aG- 1 (p+q, e+w). 

Assuming in (B.5) that w = 0 and q - 0, we obtain 
(5.26). 
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