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The spectrum of the lowest (quasi-homopolar) excitations in the one-dimensional Hubbard model 
are investigated within the framework of the exact method developed in articles [ a-loJ. The excita
tions are classified according to spin and momentum. The singlet states are states of the bound 
type. It is shown that both singlet and triplet excitations start from zero, i.e., they do not have a 
gap. The magnitude of the gap is determined for the spectrum of quasi-ionic states to which an 
optical transition is possible. Its dependence on the parameter characterizing the electron inter
action is investigated. 

1. INTRODUCTION 

IN order to describe the metal-dielectric transition 
associated with an increase of the repulsion between 
electrons, Hubbard(1J proposed a model of a Fermi 
lattice gas having an interaction of the electrons only 
at one center. In. the case of a one-dimensional cyclic 
chain, the corresponding Hamiltonian has the following 
form: 

(1) 
m,n cr 

where a~a and ana denote the creation and annihila
tion operators for an electron with spin a in atom n; 
all Tm n = 0 except Tn±1 n = -/3 (/3 > 0). 

The 'Hamiltonilan (1) wa~ used in articlef2l in order 
to explain the appearance of a gap in the optical spec
trum of long polymers with conjugated bonds. In this 
connection it was shown, within the framework of the 
generalized Hartree-Fock method, that an excited state 
to which an optical transition is possible is separated 
from the ground state by a gap for arbitrary values of 
the parameter y. For a suitable choice of y it was 
possible to obtain agreement with the experimentally 
observed dependence of the magnitude of the first 
transition on the length of the chain. In addition to the 
excitations of the indicated type, the Hamiltonian (1) 
has below a gap a set of singlet and triplet quasi
homopolar excita.tions.f3• 4J Here, as shown in the work 
by Kohn[sJ and BulaevskiJ:f 3 l, an optical transition to 
these states is forbidden or very weak. Meanwhile 
these states play a major role in the determination of 
the physical and ehemical properties of long systems 
with conjugated bonds. For example, the fact that the 
spectrum of the triplet excitations starts from zero 
leads, for infinitely long chains, to an appreciable 
paramagnetism of these molecules. rsJ 

The goal of the present article is a determination of 
the spectrum of the lowest quasi-homopolar excitations 
of the Hamiltonian (1) and their classification. We shall 
use the exact expression for the wave function of the 
Hamiltonian which was obtained in articlesf 7 - 9 l, where 
Bethe's ideaf 10l was extended. 

Let us consider an eigenfunction of the Hamiltonian 
(1) with the number of electrons equal to the number of 

sites, i.e., N, and with the z-component of the total 
spin equal to zero (we shall assume N to be even). We 
shall seek it in the form 

N 

'¥q(n, n2, ••• , TIN)= L; [Q, P] exp{i ~ kP. nq .} , 
} " 1' j~l 

1 :s; 'IQ, :s; nq, :s; ... :s; nQN :s; N. (2) 

Here k1, k2, ... , kN denotes the set of quasimomenta 
for which the equation will be written down; ( Q1, 
Q2, ... ,QN) and ( P1, P2, ... , PN) denote permutations 
among the coordinates and momenta respectively. The 
summation in (2) is carried out over all permutations 
of the momenta ki; the [Q, P] are coefficients which 
simultaneously depend on Q and P and which are 
represented by a square matrix of order N! x N!, 
which must be determined. The Schrodinger equation 
gives the following relation between these coefficients: 

[Q, P] = Ynm"b[Q, P'], 

where the operator ~~ has the form r 101 

ycob __ iy/'2- +('in kn- sin k,..)pab . 
nm- ~k" --Sill km + fy/T~-' 

Q; = G. cc~ Q;', Q; = b = Q{, 
Pi=m=P/, Pj=1l.=P/, 

(3) 

(4) 

~ = Qk, ~ = Pk for k "" i, j and the operator Pab 
interchanges the sites Qi and Qj. In this connection 
the characteristic energy of the system is expressed 
in terms of the quasimomenta ki in the following way: 

.v 

E =- 2B .2;cos k;. 
j=-1 

(5) 

By successively applying the operator Y~n• one 
can express any arbitrary coefficient [Q, P] in terms 
of (a vector of dimension N!) the coefficient [Q, I], 
where I denotes the identity permutation among the 
momenta k1, k2, ... , k N. 

Utilization of the conditions for the cyclic nature and 
symmetry of the wave function leads to a system of 
equations for the coefficients [Q, I]. Omitting the sub
sequent calculations which are rather completely given 
in the article by Yang, [9J let us write down the trans
cendental equations for the quasimomenta ki arising 
upon the solution of this system 
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N/2 

1\'k; = 2nl; + ~ <p (i~), 
~~1 

. . sink;- A~+ ic/2 
e•~(J~J = -..,--;-'---;-'--'-:--'-::::

sink; -A~- ic/2 ' 

i"'""-J A~ - Aa. + ic _ y 
C'"~-~"" =- , C--. 

A~-Aa.-ic 2~ 

(6a) 

(6b) 

(7a) 

(7b) 

Here Aa (a = 1, 2, •.. , N/2) denotes a set of numbers, 
all of which are different, and which in general may be 
complex. The phases lj! ( a{3) and cp ( j{3) are determined 
so that 

-n < Ro~1(a~), Re<p(j~) < n, 

Ij (j = 1, 2, ... ,N) and Ja (a= 1, 2, ... ,N/2) are 
integers; they label the eigenstates of the system. For 
example, the total momentum Q of the system is ex
pressed in terms of them in the following manner: 

2. SPECTRUM OF THE TRIPLET EXCITATIONS 

Let us consider the solution of the system of Eqs. 
(6) and (7) in the limit y-ao. As is well-known, in 

(8) 

this limit all eigenstates of the Hamiltonian (1) are 
divided into groups of almost degenerate states: homo
pola~ ionic, doubly ionic, etc. The first group consists 
of 2 states with almost zero energy. The splitting of 
the energy levels among this group is described by the 
Heisenberg spin Hamiltonian. The second group con
sists of 2N N states with energy ~ y. A lowest excited 
state, to which an optical transition is possible, is 
found among this group. The third group contains 
N(N- 1)2N-1 states with energy ~2, and so forth. 
We will primarily be interested in the first group of 
states. Since the excited states of the spin Hamiltonian 
are well-known, then this makes it possible to classify 
the quasihomopolar states of the Hamiltonian (1) ac
cording to spin and momentum. 

As y -ao, Eqs. (6a), (6b) and (7a), (7b) go over into 
the following system of equations: 

N/2 

Nk; = 2rrl; + ~Pr<. 
~~1 

• Pa. 2Aa. 
£a =ctgz= --c -, 

1Yp~ = 2nlp + ~~'(a~), 0 < p~ < 2:rt, 
<i(o>"BJ 

'ljl(~a) 1 
ell{~=~ 2 (sa- s~). {9) 

This system agrees with the system of equations for 
the case of the spin Hamiltonian. [41 For the ground 
state of the system it is necessary to choose Ja and 
Ij in the following way: 

la.= 1, 3, 5, ... , N-1, (10) 

I;= -N /2, -1\' /2 + 1, ... , 1\'1 2 - 1. (11) 

For the quasi-homopolar levels all kj are real, and 
for convenience one can reduce them to the interval 
(-'IT, 7r). 

In order to determine the excited triplet states, 
following(u] let us choose Ja in the form 

Ia = 0, 2, 4, ... , 2n- 2, 2n. + 1, ... , N- 1, (12) 

where n is a certain number which determines the 
total quasimomentum of the system. The solution of 
Eqs. (6) and (7) is obtained by changing to a continuous 
distribution of the numbers kj and Aa· In this connec
tion one can use the formal equation p ( k) = dj/ dkj for 
the density of the numbers kj in the interval (-'IT, 1r) 
and a(A) = da/dAa for the density of the numbers 
A a over the entire axis (- ao, ao ). Carrying out the 
required differentiation in Eqs. {6) and (7) under the 
conditions (11) and (12 ), we obtain the following system 
of equations for the triplet states: 

1 cosk r 4co(A)dA 
p(k)='2:;+--z;;-_~ c2+4(c\-sinkj2' {13 ) 

{ 4cp(k)dk =Zn (A)+ S 2ca(A')dA' +~~.5(A-A) 
.:n c2 +4(A-sink)' 0 _ 00c2 +(A-A')' N n' 

" 
E = -2N~ S p(k)coskdk. (14) 

Here An is equal to its own unperturbed value, i.e., it 
is obtained from the solution of Eqs. (6) and (7) by 
utilization of the numbers Ja and Ij, just as for the 
ground state (10) and (11). Taking the Fourier trans
form of the function a(A), one can easily obtain an 
expression for p (k) and a (A). Omitting this calcula
tion, we cite the answer for the energy of the triplet 
states 

E,(q)=Eo+ 2~flt(cu)rosw,\ndw_ (15 ) 
~ wch(wc/2) 

Here E0 , the energy of the ground state which was 
first determined by Lieb and Wu,r 10l is given by 

Eo=_ 4;v~ J J,(w)Jo(w)dw, 
0 w(1 + e"'') 

J 0{w) and J1(w) are Bessel functions. The quantity An 
is expressed in terms of the quasimomentum of the 
system q = 27rn/N in the following way: 

q= ~-+ s /0 (~,) sinwAn dw. {16 ) 
2 0 w ch (wc/2) 

The system (15) and (16) parametrically determines 
the Et ( q) dependence. The function Et ( q) possesses 
a double periodicity and reaches a maximum at q = 1r/2. 
Ify-ao 

e,(q) =Et(q)- Eo~ (4n~2 /2y) !sin ql, 

which agrees with the expression for the triplet exci
tations[11J in the Heisenberg model with an exchange 
integral equal to 4(3 2/y. 

3. SPECTRUM OF THE SINGLET EXCITATIONS 

As was shown in[ 4J the lowest singlet states of an 
antiferromagnetic Heisenberg chain necessarily belong 
to the bound state type, i.e., they correspond to com
plex momenta in the spin system. Our calculation of 
the spectrum of the singlet quasi-homopolar excitations 
of the Hamiltonian (1) will be entirely based on an 
analogy with a similar calculation for the spin Hamil
tonian. 

Let us choose sets of numbers Ij and Ja in the 
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following way. Let us leave the set Ij unchanged, as 
given by Eq. (11 ), but 

1 .. = 1, 3, ... , 2~1 - 1, 2~1 - 1, ... , 2~2 - 3, 2~z + 1, ... , N- 1. (17) 

According tor41 two complex-conjugate numbers 
Aa = ~ + iK and Ab = ~ - iK will correspond to two 
identical numbers J(31' We note that the total quasi
momentum of such a system will be determined in the 
following way: 

q = 2n(J~, -Jp,) IN. (18) 

One can choose all remaining Aa to be real. From 
the imaginary part of Eq. (6c) for a = a we have 
K = c/2. Changing to a continuous distribution of the 
numbers A a and kj and introducing the corresponding 
densities according to the formulas of the preceding 
Section, we obtain the following system of equations: 

k 1 cosk""s 4ca(A)d,\ 1 T(k) 
p( )=-+-- ---2:n 2:n __ &+4(A-sinlr)" 21\"n ' 

T(k)=[2:n&(sink-A)- 2c ]cosk 
c•+(sink- i..)• 

f 4cp(k)dlc 
.:.n c2 + 4(sin k -· A)2 

2:rra(A)+ ""s 2ca(A')dA' + D(A) 
_,.,c2 +(A-A')• N ' 

4c 12c 
/J(A)=- 4:nb(.\-i.)+ 4(.\-i.) 2+c•+ 4(i..-A) 2 +9c• 

+ ~ r2nb(A-Ap )- 2c ]. (20) 
mo=1,t ., c•+(.\-Apm)• 

In connection with the derivation of these equations we 
added to the system of real numbers Aa two additional 
numbers A(31 and A(:3 2 which satisfy the same equations 

as the number Aa for J(:31 = 2(:31- 1, J(:3 2 = 2(32 - 1. The 
function a (A) is represented out of the density of real 
numbers Aa together with the two additional numbers 
A(:31 and A(:3 2• 

The solution of the system of equations is obtained 
by transition to the Fourier transform for the function 
a(A). Omitting the calculations, we write down an ex
pression for the energy of the singlet quasi-homopolar 
excitations 

. s"" dwlt(w) - -
E.(q) =Eo+ 8~ 1 ( /?)(cos wAp, +cos <•>Ap,- cos wi.)· (21) 

0 wc 1 we ..... 

In this connection, just as inr41, the following restric
tion is imposed on A(:3 1, A13 2, and ~: 

IA~.I > 1, IAp,l > 1, p .. 1 > 1. (22) 

The condition for solvability of the system of equa
tions for the number Aa (here it is required that Aa 
;.o A(:3 for a ;.o (3) at once gives the equation 

(23) 

The real part of Eq. (6b) for a =a together with Eq. 
(23) leads to the relation 

2~1 = ~2· (24) 

Finally Eqs. (18) and (24) make it possible to relate 

the total momentum q of the system to A(31: 

I 1- ") "'s· dwlo(w )sin wAp, q -n-~ . 
0 wch(wc/2) 

(25) 

Equation (2 5) together with the equation which fol
lows from (21) and (2 3 ), 

e.(q)= 8~ S dwlt(w)coswAp, (2B) 
0 wch(wc/2) 

give the parametric dependence of the energy of the 
singlet excitations on the quasimomenta. Here one 
should keep in mind the limiting condition I A(311 > 1. 
It leads to the result that the singlet excitation spec
trum has a termination point at 

Soo lo(w)sinw 
q0 = :t - 2 dw 1 ( / 2) • 

0 we 1 we 
(27) 

For y- oo the value I q0 I = 7T/2. If y = 0 then q0 = 0, 
which indicates the absence of bound states in this 
limit. For small q the spectra of singlet and triplet 
excitations have identical slopes: 

2~/1 (rr/c) 
£t,.(q)=JqJ lo(n/c) ' 

where 11 and 10 are Bessel functions of imaginary 
argument. For large values of q the singlet levels 
always lie above the triplet levels. For sufficiently 
large but not infinite values of N, the energy of the 
first triplet level tends to zero in the following way: 

tt(N) = 4rrfi l1 (2nfi/y) 
N · lo(2nj3/y) 

(28) 

(29) 

Let us make several remarks about the energy of 
the singlet quasi-ionic states. A strong optical transi
tion takes place precisely to these states. The quasi
ionic states possess a nonvanishing current. The en
ergy of the lowest current state and, consequently, the 
gap in the optical spectrum in the one-dimensional 
Hubbard model were calculated in the article by Lieb 
and Wu.r 101 For its determination they obtained an 
energy E+ = Eo+ J.L+ for the ground state of the system 
containing N + 1 electrons and an energy E- = Eo + J.L
for the ground state of the system containing N - 1 
electrons. The gap in the spectrum of the quasi-ionic 
states is then determined in the following way: 

(30) 

In order to determine the spectrum of the quasi
ionic states it is necessary to determine the energy of 
a system containing N + 1 or N- 1 electrons and 
having a total momentum q. This computation is quite 

Different types of excitations of the system. Es( q) is the spectrum 
of singlet homopolar excitations for small q, as given by Eqs. (25) and 
(26); q0 given by Eq. (27) is the point of termination of the spectrum; 
et(Q) is the spectrum for the homopolar triplet excitations which are 
described by Eqs. (15) and (16); fi(q) is the spectrum for the ionic ex
citations, and ~E given by Eq. (33) is the gap in the spectrum of the 
ionic states. 
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analogous to the one given in the text. Without giving it 
in detail, in the figure we show the general form of the 
spectra for the lowest excited states. Different types 
of excitations of the system. Es(q) is the spectrum of 
singlet homopolar excitations for small q, as given by 
Eqs. (25) and (26); q 0 given by Eq. (27) is the point of 
termination of the spectrum; q(q) is the spectrum for 
the homopolar triplet excitations which are described 
by Eqs. (15) and (16); Ei(q) is the spectrum for the 
ionic excitations, and A.E given by Eq. (33) is the gap 
in the spectrum of the ionic states. 

Lieb and Wu(loJ arrived at the following expression 
for the gap 6.E: 

ilE=y-4B +B~ 2; (-1)"[(1 + c2n2)'f,-cn]. (31) 

It is possible to give a more convenient expression for 
A.E. For this purpose let us represent the series in 
(31) in terms of an integral along a contour Co which 
encompasses the real axis from c to "": 

- 1 r ~ 2;(-1)"[(1+c2n2)'i•-nc]=-.-. \ (iz"+1-z). (32) 
,~ 1 21c ,:-, sh (nz/c) 

Deforming the contour Co until it coincides with the 
imaginary axis, we can represent 6. E in the form 

1GB' r YY"- 1 dy !::..E=- ~--------. (33) 
y ; 'h(ny/c) 

For y- oe the gap is given by A.E ~ 'Y - 4{3 
+ ( 8{3 2/y) ln 2 + •.•. If the strength of the electron 
interaction is decreased, i.e., if y- 0, then 

!::..E""' Sn-•yy~e-2><~/v. (34) 
We note that to within the pre-exponential factor this 
expression agrees with the expression given in articlef 2l 
for the gap as y- 0. 

In conclusion the author thanks Ya. B. Zel'dovich, 
I. M. Khalatnikov, I. M. Lifshitz, and E. Lieb (USA) 
for interesting discussions of this work. 
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