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The thermodynamic functions are calculated for a weakly nonideal Bose gas. In Sec. 1, general formu­
las are obtained for the thermodynamic potential, allowing us to investigate the thermodynamics of a 
Bose gas in the region of arbitrary temperatures, except the immediate neighborhood of a phase 
transition. The formulas include terms of second order in the expansion parameter. It is shown that 
the expansion parameter (gas parameter) changes during a transition from the low temperature region 
to the high temperature region. A model with attraction at large distances is investigated. The pres­
ence of a f:irst-order phase transition in such a system is shown, and all thermodynamic functions of 
the transition are evaluated, and also the diagrams of phase stratification in the T, n plane are con­
structed. The existence of a first-order phase transition is shown for the model not only with an effec­
tive attraction, but also with an effective repulsion. 

THE goal of the present article is a study of the possi­
bility of a first-order phase transition at finite tempera­
tures in a model of a rarefied Bose gas with long- range 
attraction and short-range repulsion between the parti­
cles. A consistent model of this kind was proposed by 
Iordanski1l1J who showed that at absolute zero tempera­
ture stable homogeneous states in this case exist only 
for sufficiently large densities. One can therefore sur­
mise that the system undergoes a first-order phase 
transition at finite temperatures. This problem is of 
well-known interest. We note, incidentally, that in real 
helium a first-order phase transition of the first kind 
occurs at sufficiently low pressures and temperatures. 

Just as inl 1J we shall assume that the potential en­
ergy V(r) = V 1(r) + V2(r) of the pair interaction of the 
Bose particles consists of a repulsive core V 1(r) > 0 
with a radius of action a and a long- range attraction 
V2(r) < 0 with a radius of action R ~ a. Let the rela­
tion between these quantities be such that in the essen­
tial region V1a3 ""V2R\ so that the corresponding 
Fourier components U1(p) and U2(p) are of the same 
order of magnitude for p < 1/R. For simplicity we shall 
assume the interaction to be weak, i.e., the Born param­
eters L = uJa « 1 and~ 2 = U2/R « 1 (the mass m = 1 
everywhere). Such an approach saves us from the neces­
sity to sum the Born series for the scattering amplitude. 
One can show that the results do not depend on this 
(seel2J ). 

The amplitude f(p, p') for the scattering of two parti­
cles which interact by means of the potential V is rela­
ted to U by the equation l1- 3 l 

, , S dq U(p'- q) ·4n/(p. q) 
4:t/(p, p) = U(p - P)+ (Z:r) 3 - p' _ q2 +ill 

To the second approximation of perturbation theory we 
have 

, . , s dq U(p'-q)U(q-p) 
4:r/(p.p)=li(p -p)+ (2:r)" p'-q'+ili ' (1) 

from which, since R >> a, we obtain 

4:r/(p, p') = L'{p' -- p) -- Ui(p'- p) + 4nft (p, p'), 

where f 1(p, p') is the amplitude for the scattering of two 

particles interacting by means of the potential V 1• 

In the model l1J it is assumed that 

//(0.0) I JJ(O. 0) 1=1~1~ 1. (2) 

The smallness of {3 indicates almost complete cancella­
tion of repulsion and attraction in the scattering ampli­
tude for small p and p'. 

Since the characteristic momentum for U1 is 1/a, 
then f1(p, p') R=< f1(0, 0) for p, p' « 1/a. Therefore, for 
p « 1/a we shall have 

4n/(p,p) = [U(O)- U,(O}] +4:r/.(0.0) =4:tMo, (3) 

whereas for 1/R « /p- p'/ « 1/a one will find 

4nf{p, p') = [U(p'- p) - U1 (p'- p)] + 4nf, (0. 0) ~ 4n/o (4) 

(one can neglect the quantity U2(p) for p ~ 1/R). The 
notation fo = f1(0, 0) is used here and in what follows. 

Thus, in the present model the scattering amplitude 
varies rapidly during a change of /p - p' I from zero to 
a value ~ 1/R, then remaining constant up top, p' R=< 1/a. 

We shall assume that the number density of particles 
n is small, i.e., the gas parameter (nf~) 112 « 1. The gas 
approximation is valid over the entire temperature 
range with the exception of only the immediate neigh­
borhood of the Bose condensation point T c. 

The thermodynamics of a rarefied Bose gas were 
studied in articlesl 4-sJ for a model with a repulsive po­
tential. In the articles by Singhl 4J and Popovlsl the 
thermodynamic potentials U and F were evaluated by 
means of direct integration of relations of the type 
auja.\ = .\ -1(Hint>· Such a procedure enables the au­
thors to calculate the thermodynamic functions only in 
the limiting cases of low and high temperatures. As we 
see below, in the model of a Bose gas under investiga­
tion a first-order phase transition takes place over a 
broad range of temperatures. An incorrect formula for 
the chemical potential is obtained in the article by 
Glassgold, Kaufman, and Watson. lsl In addition, their 
use of Bogolyubov' s canonical transformation is not 
convenient for a determination of the higher-order ap­
proximations. 

In the general case for the thermodynamic potential 
of a system of interacting Bose particles, Domini cis 
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and Martin constructed a certain functional, expressed 
in terms of "occupation numbers," with the aid of which 
it was later shown that at low temperatures the heat 
capacity in such a system is determined by the phonon 
part of the excitation spectrum, lsl and the number den­
sity of supercondensed particles varies with tempera­
ture according to a quadratic law. lsl For specific cal­
culations, in particular, in the model of a Bose gas 
under investigation, it is much more convenient to have 
an expression for U in terms of the exact Green's func­
tions, analogous to the results which were obtained by 
:r;uttinger and Ward for the Fermi gaslloJ and by 
Eliashberg for superconductivity. l11l Therefore, first 
(Sec. 1) we derive general formulas for the basic 
thermodynamic functions, assuming for simplicity that 
there is only a repulsive interaction in the Bose gas. 
The results obtained will then be used (Sec. 2) for an 
investigation of the properties of the model of interest 
to us of a Bose gas with attraction. The existence of a 
first-order phase transition in such a model will be 
shown under rather general assumptions about the rela­
tion between attraction and repulsion (Sec. 2). 

1. THERMODYNAMIC POTENTIAL OF AN IMPERFECT 
BOSE GAS 

According to Belyaev/2 ' 31 a system of Bose particles 
is described by several Green's functions whose 
Fourier transforms satisfy the following formulas: 1 > 

iw.-f-eo(P)+S(p)-A(p)- fl. 

S(p) = lf2('Lu(p) + 'Lu(-p)), A(p) = 1/2(I.u(p)- ~u(-p)), 

eo(p) = p2 /2m. 

Above we assumed that (nf~) 112 « 1 (for the model of 
a Bose gas considered in this section, fo denotes the 
value of the scattering amplitude f(p, p') for p, p' << 1/a, 
where 1/a is the characteristic dimension of the repul­
sive interaction). It is not difficult to verify that here 
Tf~ « 1 over the entire temperature range of interest. 
We take the diagrams shown in Figs. 1a through 1c as 
the terms of the first approximation for ~ 11, ~ 02 , and iJ.. 
In this approximation~ 11, ~ 02 , and iJ. have the form 

'Lu(P)=nU(O)+noU(p)-T ~ ~ .dq ,U(p+q)G(q)ei"'•0, .S-++0, 
k (2n) (1.2) 

~o2(P) = noU(p), (1.3) 

I.L=nL'(O)-T"' s~U(1J)G(q)e1"'• 6, .S->-+0. (1 .4 ) f (2:t)3 

where 

(1. 5) 

Substituting (1.2)- (1.4) into (1.1), we have 

G =-'w~+e0 (p)+noU(p)' G(p)=G(p)= ~oU(:) .{1. 6 ) 
(p) "'•' + e2 (p) l>lk" + e·(p) 

!)The Green's functions and the mass operators depend on the 4-mo­
mentum p; in the remaining cases p = lpl. All notation agrees with the 
notation used in [ 3] 

where 
e(p) = [ (<o(P) +~II (p) - ft) 2 - Lo22 (p) J'f' = [<o2 (p) + 2noU(p)eo(p) ]"•. 

(1.7) 

The second-order graphs for iJ. are shown in Fig. 1d. 
Taking these diagrams into account, we obtain the fol­
lowing expression for iJ. : 

rt=nF(O)-T"' s~U(q)(G(q)+G(q))e'"'•o, .S-t-+0. (1.8) 
.c..J (2:t)' 

The question of the contribution from diagrams of the 
next order for ~ 11 and ~ 02 arises in connection with the 
substitution of the expressions for G and G into Eq. 
(1.8). A typical diagram for ~ 02 is shown in Fig. 1e. 
For it we write down the expression 

I. 0,(p)= -noTF2 (p) "'' ~ ~G(q)G(p-q). '{? • (2n)• (1.9) 

For T = 0 an estimate of similar diagrams was made 
inl21 , There it was shown that the expansion takes place 
in powers of the parameter (nof~) 112 « 1 (no denotes the 
number density of the particles with p = 0). For tem­
peratures T- Tc the terms in the sums over kin which 
wk = 0 are essential for estimates of the diagrams. It 
is easy to verify that in this case the expansion param­
eter is Tf~(nof~r112 « 1. For T - n213 one can write this 
condition either as (nof~) 116 « 1 or as (Tf~) 114 « 1. In 
what follows, both of these parameters will always be 
regarded as small. This property allows us to neglect 
the contribution of the higher-order approximations. 
At the same time it should be noted that expressions of 
the type (1.9) for ~11(p) and ~02(P) diverge at small mo­
menta. For p « (n0U0) 112 Eq. (1.9) gives a contribution 
to ~02(P) of order TUo/p with respect to (1.3). However, 
as we see below the contribution to the thermodynamic 
functions coming from the region p « (n0U0) 112 is not 
impop:ant. Therefore expressions (1.6) and (1.7) for G 
and G are valid for p ~ TUo. With their aid we can 
evaluate the second-order correction for the chemical 
potential (1.8). 

It is convenient to use the following expression in 
order to calculate the thermodynamic potential 
il(T, r, IJ.) {Ydenotes the volume occupied by the Bose 
gas): 

+ 

.,. (r). ~ 
-oz· ~~ 

b 

FIG. 1 
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Q = o + 1'7" '5' ~ ~ e'"'•6 
• ..o ';! . (2n)' o--to 

X {..!_In t>>k'+(,o(P)+~tt(P)- !•)'-~o,'(p) +:::tt(P) HeC(p) 
2 w·•' +(eo(p)- f.L) 2 

+ E..,(p)G(p)-n 0[ll(O) + U(p)]G(p)- n0U(p)G(p) 

-~1' ::8 )~{U(O)+ U(p-p')]G(p)G(p')} 
2 •· (2n) 3 

1 
+-YU(O)no2 - 1"nof!, 

2 
(1.10) 

where no denotes the thermodynamic potential in the 
absence of any interaction: 

S dp ( [- f.L- eo(p) )] ~lo= Tr ---In 1- exp . 
(2n) 3 T 

(1.11) 

Expression (1.10) may be obtained in analogy to the way 
this was done inl9 ' 10J. The first variations of n with 
respect to L 11 , L 02 , and no vanish provided that Lu, Lo2 , 

G, G, and J1 are determined by formulas (1.2), (1.3), and 
(1.6)- (1.8). Substituting L u, L 02 from (1.2), (1.3) and no 
from (1.11) into expression (1.10) and carrying out the 
summation, we obtain the thermodynamic potential n to 
second order in the gas parameter: 

Q= TP l'~ln(l-e-<(P)/T)-~]1' r dpdp'U(p-p')n(p)n(p') 
J (2:~) 3 2 .,l {2n)' 

r a 
+--} _P_{e(p\- e0 (p)-noU(p)] 

2 (2:~) 3 • 

r (1.12) + -[U(O)n02 - U(O) (n -no) 2 - 2n0 f.L]. 
2 

n(p)= 
eo(P)+noU(p) 1 1 eo(P)+noU(p)-e(p) 

e(p) e•<PliT-1 -,- 2e(p) 

where n(p) is the number density of particles with mo­
mentum p"" 0. 

In order to evaluate the entropy S = - (lm/a T) r, 11 , in 
Eq. (1.10) one should differentiate only with respect to 
the explicit dependence on T: 

_ r S· ap 1 (e +R_ ae<v> ). 
S- T (2n)3 e•IPJ!J'- 1 (p) 3 iip · (1.13) 

Then in Eqs. (1.8), (1.5), (1.12), and (1.13) we ex­
press the Fourier components of the potential in terms 
of the amplitude for the scattering of two particles. In 
the first approximation U(p'- p) = 47Tf(p, p') = 47Tfo (see 
Eq. (1)). But some of the integrals in Eqs. (1.8) and 
(1.12) diverge for large momenta. It is easy to eliminate 
the divergence if the second term in Eq. (1) is taken into 
consideration. ll2l After this we obtain 

=" /(OO)-Lt. r~/(p,O)eo(P) 1 
!' i:£11 ' ' >:I .\ (2n)' e (P) -e-:,,-=-vv-=T-_-:-1 

\ dp O eo2 (p)-eo(P)E(P)+4:~11o/(p,O)e(p) 
+ 2n · (2n/(p, ) eo(p)e(p) ' 1 l4 

11 =no+ s- dp eo(P)+4:tllo/(p,O) 1 ( ' ) 
(2n) 3 e(p) e•<PVT- 1 

+ ..!__ s -~fo(P) + 4:tllo/(p, 0)- e(p) 
2 (.2n)l e(p) ' (1.15) 

Q=TF' ~~lu(1--e-<IPliT)-2nJ"\ ~pd~'U(p-p')n(p)n(p') 
• (2n) 3 • (2:t)' 

1 5 dp ( (4n/(p,O))') +-;-Y -.- e(p)-ro(P)-4nno/(p,0)+------
2 _(2n) 3 2eo(P) 

where 
+ 2n:P"/(O, 0) no2 - 2nY/(O, 0) (n- no) 2 - Ynof-1, (1.16) 

e(p) = [Eo2(p) +Snno/(p, O)e0(p)]"•. (1.17) 

The integrals in (1.13) and (1.16), containing an exponen­
tial in the denominator, are collected together for E(p) 
~ T. Values of p ~ (nof0) 112 are essential for all remain­
ing integrals in Eqs. (1.14)- (1.16) (since (noUo) 112 » TU 0 

and fo ~ Uo, we have p » TUo). Considering f(p, 0) to be 
constant everywhere, f(p, 0) Rl f0 , and performing the 
possible integrations in Eqs. (1.13)-(1.16), we finally 
obtain 

(1.18) 

(1.19) 

P = - cE = 2n!o[ n2 + 6~ n 02 (no/03 ) 'It+ (n- no)']+ T'i>h (a), 
r 5ya (1.20) 

Here a = 47mofo/T, 
S = 'J""T'f•J4(a). (1.21) 

l'2 s"" [3/,a + (z' + a2 ) 'h]z3 dz 

lt(a)= 3n' o (z'+a')''1a+(z'+a')''•f'•(e' 1) 

1 1 [a+ 5j3(z' +a.') 'I•] : 3 d: 

/.(a)= y2n' .I (z'+a2 )'11a-l-(:2 +a')''•]'l•(e'-1). 
0 

At low temperatures, Tf~ « nof~ (a » 1), according 
to Eqs. (1.18) and (1.22) we have 

32 n'B,T' 
fl = 4n/o( n +--=-n(nfo3 )'f, +--), 

3}'n 2c5 

8 B 1T 2 
no= n--- n(n/o3) '!•- --, 

3yn: 2c 

(1.23) 
( 64 ' 5 T' 

P = 2n/o n' + --="'(n/o3)''• + -- n2B,-, 
5f'a 6 c3 

4 n 2B 27"T3 

S = c = (4:tn/o) 'I• 
3 c3 

(B1 and B2 are Bernoulli numbers). Thus, at low tem­
peratures, Tf~ « nof~, only the phonon spectruml 4 J gives 
a contribution to the entropy, and the quantity n- no 
varies with temperature according to a quadratic law. [gJ 

At high temperatures, Tf~ » nof~, according to Eqs. 
(1.18) and (1.22) one will have 

[ fo J'lz no= n- ncr+ T -;-<n -·ncr) , ncr = lz(O) T't., 

r f ]'I'} !J =4lf/oJ1n+nc,-2T, ..!.(n-ne,) , 
. L n 

P = 11(0) T'l• + 2nfo(n2 + l!cr 2)- 8/il';:;T(/o(n- llcrli'• 

- 4{; Tncr./o(fo(n- ncr) ]'1•, 

(1.24) 

S = 5/2/1 (0)'/I'T'I•- 6nl2(0)'J"T'I•fo(n- ncr). 

(here I1(0) = {; ~5/2)/ (211)312 and I2 (0) = Ia(O) 
= &;(3/2)/(271)3 2 ; {;(5/2) and &;(3/2) denote zeta func­
tions). It is not necessary to take into account terms of 
higher order in the expansion of the integrals h(a) 

2)The last term in the equation for the pressure ( 1.24) is not present 
in Popov's work. Everywhere in Singh's work, only the first-order terms 
in the gas parameter are evaluated. 
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through 14(a) in powers of a, since for T "" Tc = n213 
they become of the order of the contribution which 
comes from the discarded diagrams of perturbation 
theory. Finally, the quantity no ~ 1- (T/Tc)312 becomes 
small quite close to the transition line Tc = [n/12(0)]213 
for an ideal Bose gas. As one can easily verify, the 
condition Tcf~/(no£~) 112 « 1 will be the criterion for the 
validity of all formulas with regard to nearness to the 
transition line. 

Formulas (1.23) and (1.24) derived above basically 
agree with the results of Singh l 41 and Popov. lsl 2> 

2. THERMODYNAMICS OF A MODEL OF AN IMPER­
FECT BOSE GAS WITH ATTRACTION 

In this Section we investigate the phase transition be­
tween "liquid" (characterized by the presence of a 
condensate) and "gaseous" phases. In equilibrium the 
usual conditions must be satisfied at the boundary be­
tween the two phases: 

T=T',11=11', P=P'. (2.1) 

(y{e shall everywhere denote the thermodynamic func­
tions pertaining to the gaseous phase by primes.) 

Below we shall seek the region of phase stratifica­
tion in the (T, n) plane. We shall use the results of the 
previous section for the quantities IJ., P, and p' which 
enter into Eq. (2.1). 

In the liquid phase the diagrams for the mass opera­
tors E u, E 00 (Figs. 1a and 1b) and for the chemical 
potential 1J. (Figs. 1c and 1d), and also the analytic ex­
pressions (1.2), (1.3), and (1.8) corresponding to these 
diagrams remain valid. It was indicated above that 
Eu(p) and Eo2(P) given by Eq. (1.9) vary significantly 
only for small momenta p ~ TUo. Therefore, assuming 
TUo « 1/R and taking the smallness of the quantity U(O) 
given by (2) into consideration, we obtain the result that 
to the lowest approximation, in the range of momenta 
1/a » p :.G 1/R, Eu(p), E 02 (p), and 1J. are given by 

' s d<J -~t~(P)=noU(p)-T~ (2n) 3 V(p+q)G(q)e'"•6, 11--++0, 

~o2(p) = noU(p), 
T ...... s c/(J 

11 =- -{? (2n),U(q)G(q)e'"•6, 11--++0. 

Here, as usual, the Green's functions of the super­
condensed particles for 1/a » p :.G 1/R are described 
by formulas (1.6) and (1. 7) obtained above. 

It is impossible to perform the integration in formu­
las (1.13)-(1.16) for the thermodynamic functions 
without specifying the specific form of the scattering 
amplitude f(p, 0). However, for sufficiently large values 
of R one can significantly simplify expressions 
(1.13)-(1.16). In fact, if one assumes (nof0) 112 » 1/R, 
i.e., a/R « {3, then for T » (nofo) 112 /R everywhere in 
the integrals one can neglect the region of momenta 
q ~ 1/R in which f(p, 0) varies rapidly, i.e, in all of the 
integrals (1.13)-(1.16) one can set f(p, 0) = f0 • Finally 
we obtain 

lt=4a/o[~n+ s.:_no(n0f03)'1•+T'I•/2(a) ]. (2.3) 
3}n 

n =no+ 8_ n0 (n0/ 03) ''• + T'i•l,(a), (2.4) 
3l'n 

s = T'i•J,(a) /n (2.5) 
where sis the entropy per particle, and l1(a), l2(a), 
Is(a), and I4(a) are determined by expressions (1.22). 
... lit the "gaseous" phase no= 0, E 02 = 0, E 11 = E, 
G = G = 0, and according to Eq. (1.1) G has the form 

where 
G(p) = [iroh-e'(p)]-1, 

e'(p) = eo(P) + ~ (p) - 111
• 

(2.6) 

(2.7) 

The perturbation theory formula for E is valid every­
where except in the immediate neighborhood of a phase 
transition, i.e., for Tfo « IIJ.~ff 1112 (IJ.~ff denotes the 
"effective" chemical potential, IJ.~ff = IJ. 1

- E). In this 
temperature range and for 1/a » p ~ 1/R the mass 
operator E (p) is given by 

~(p)= -T ~ S~U(p+q)G(q)e'"'•6 ~ 4nn'/0, 11-+0. (2.8) 
h (2rc)3 

The entropy, the number density of particles, and the 
pressure in the gaseous phase are calculated according 
to formulas (1.13), (1.15), and (1.16), where it is neces­
sary to substitute €(p) = €'(p) from (2.7), and n0 is set 
equal to zero. 

As already mentioned above, the condition IJ. = JJ. 1 

must be fulfilled on the equilibrium curve for the two 
phases. The quantity IJ. 1 /T « 1 in the temperature range 
of interest to us, T » (nof0 ) 112/R. Therefore the quantity 
JJ.'/T « 1 near the equilibrium curve, and therefore one 
also has IJ.~ff/T « 1. In this connection Tfo/IIJ.~ffl 112 
<< 1, and therefore the boundaries of phase stratifica­
tion in the (T, n) plane are located far from the curve 
Tc = [n/12(0)]213 which describes the transition in an 
ideal Bose gas. For IJ.~ff/T « 1 an evaluation of the 
thermodynamic functions in the gaseous phase is not 
difficult. Near phase equilibrium we have 

s' = 5/t (0) /2/2(0), 

(2.9) 

(2.10) 

n' =ncr- Tl11;ff·l '1•/l'2n. (2.11) 
In order to understand the situation and show the 

order of magnitude of all quantities, let us consider the 
boundary of the stable states in the liquid phase, which 
is determined by the condition (aP/an)T = 0. In the reg­
ion of temperatures and densities where a = 47Tnofo/T 
"" 1 and In - no I « n one can neglect the term (n - no)2 
in Eq. (2.2). According to Eq. (2.2) we have 

i3lt +3:;-a''•+~=O, (2.12) 
oa n- 4n-rl• 

where Tis the temperature in dimensionless variables, 
T = Tf~, and according to Eq. (1.22) the derivative aiJaa 
is given by 

oil a s.. la+ 3/.(z2 +a2)''•)z3dz 

8;;- =- -{2n2 0 (z2 + a 2) 'h[a +(z2 + a 2) 'i•]'i•(e'- 1) 

The sum of the first two terms in Eq. (2.12), (8IJaa) 
+ 2(a312/7T2), changes sign at a= 0.288. Therefore, at 
finite temperatures a transition between the liquid and 
gaseous phases will exist both for {3 < 0 as well as for 
{3 > 0. For comparatively high temperatures, T » ~. 
one finds 

,. = 0.02291:' (2.13) 
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as is evident from Eq. (2.12) for the cases {3 < 0 and 
{3 > 0 (vis the number density of particles in dimen­
sionless units, v = nf~). For low temperatures, T « {f, 
and {3 < 0 will give 

v = n(~l16)2. 

For {3 > 0 the boundary of stability aP/an = 0 for lower 
temperatures, T :S {f, falls into the region n - no ~ no 
and 01 « 1. In th!s case for T « {32 we obtain 

V = V cr+ ;~-l (-r/ ~) 2• 

After substituting P and 11 from Eqs. (2.2) and (2.3) 
and p' from (2.9) into them, the equilibrium conditions 
(2.1) for the two phases take the following form: 

4n/o{~n + 32/Jn··'l•no(no/o')''• +I2(a) T'!.] = f!;ff + 4nfon12, 

(2.15) 

where nand /l~ff are determined, respectively, from 
Eqs. (2.4) and (2.11). By solving the system of Eqs. 
(2.14) and (2.15) with the aid of Eqs. (2.4) and (2.11), we 
obtain the boundary of phase stratification in the T, n 
diagram. In this connection, as is clear from the pre­
ceding discussion, it is necessary to consider the cases 
{3 < 0 and {3 > 0 separately. 

The case {3 < 0. In this case, as will be seen below, 
in the region T » (nof0) 112 /R one always has 01 ~ 1 and 
n0 ~ n. Therefore, neglecting the small terms of order 
{3 and the terms containing the superfluous power T112 , 
one can reduce Eqs. (2.14) and (2.15) to the form 

4 , 1 ~a2 
/ 1(a)--/t(O)+-a'•+--= 0, (2.16) 

5n2 8" •'" 

1 [ ,;'I• J 4 ,. a~ '''] (2 17) \' =y 1---=-- ft(a)-/z(O)+-a"+-- . · cr fn/212(0) 3n2 4nT'1• 

At comparatively high temperatures, T » (57T{3/32)2, the 
value of the parameter 01 is of the order of unity, as is 
clear from Eq. (2.16). In this connection the term con­
taining {3/T112 becomes unimportant in both equations. 
Neglecting these terms in Eqs. (2.16) and (2.17), we ob­
tain the result that the parameter 01 is determined by the 
equation 

(2.18) 

which gives numerically 01 = 0.501. Thus, asymptotic­
ally 

v = O.SOI T = 0.0398r. 
4n 

Near the asymptote we have 

v = 0.0398T(l- 0.4i2~ IT"'). 

(2.19) 

(2.20) 

In connection with the evaluation of v' given by Eq. 
(2.17) in the temperature range T » (57r{3/32)2, the 
correction coming from the term {3/T 112 is unimportant, 
and therefore 

v = \'cr(1- 1.3'dl•). (2.21) 

Then substituting the value 01 = 0.501 into Eq. (2.5), we 
find that the entropy in the liquid phase is small: 

s = 3.7'!'1:. (2.22) 

In the limiting cas:e of low temperatures, T « (57r{3/32)2, 

the parameter 01 becomes large, 1/ {3 » 01 » 1. 
Neglecting for 01 » 1 the terms I1(01) and I2(01) in Eqs. 
(2.16) and (2.17), we find 

4 1 ~a2 
-a''•+---/1 (0)=0, 

5n2 8n ,;'1• (2.23) 

[ ,;'i• j 4 ,, af:l !'''] v'=Vcr 1- -a·•+--: . 
l'n/2/z(O) 3:t2 4n•"' 1 (2.24) 

The last term in Eq. (2.23) is small; therefore 

CI=(:;~J[t+: n2J1 (0)( 53:~;·I )']. (2.25) 

Substituting the value (2.25) into expressions (2.4), 
(2.24), and (2. 5), we find that 

1 ( 5nf:l ) 2 [ 5 ( 32,;'/, )"l v=- - 1 +-n2/1(0) --
4n 32 2 5n I f:ll 
I [ 5 ( I f:ll 3 )'h] 

v =\"cr 1 - 64]'3/z(O) -,- ' 

s = 4B:_ (~-)\a. 
3yn 5lf:ll 

(2.26) 

At T = 0 E~. (2.26) gives a value for the density which 
in articler1 corresponds to the pressure being equal to 
zero. 

From the formulas obtained above it is clear that 
over the entire range T >> (nof0 ) 112 /R under considera­
tion, the entropy s in the liquid phase is small in com­
parison with the entropy s' in the gaseous phase. There­
fore, forT» (nofo) 112/R the latent heat of transition q 
per particle is given by 

= ~ 1,(0) T (2.27) 
q 2 lz (U) · 

For the same reason the equilibrium curve of the phases 
on the P, T-diagram differs very little from the corre­
sponding curve P = h(O)T512 for ideal Bose condensation. 

The case {3 > 0. For this case 01 ::::; 1 everywhere. At 
not too low temperatures (T ~ (57T{3/32)2) Eqs. (2.14) and 
(2.15) have the form (2.16) and (2.17). Therefore ex­
pressions (2.19)-(2.22) and (2.27), which we derived in 
the region of high temperatures (T » (57T{3/32)2) for the 
case {3 < 0, are also valid for the case {3 > 0. 

In the limiting case of low temperatures 
(T « (57r{3/32)2) and for a positive value of {3, values of 
the parameter 01 « 1 are essential in the equations. 
One can represent expressions (1.22) in the following 
form: 

/ 1 (a) = /1(0) - a'~•l3:t, /z(a) = /2 (0) -a'" In, 

/3(a) = lz(O)- a'f, / 2n, l,(a) = /i(O)- 3i2lz(O)a. (2·28 ) 

Taking (2.28) into account and substituting n0 from (2.4) 
and ll~ff from (2.11) into Eqs. (2.14) and (2.15), we find 
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v and v'. They are given by 

v= 5/ 2vcr, v'=vcr[ 1-3(3Jtl2 ~~;/2)'I.J. (2.29) 

According to Eqs. (2.5) and (2.28), for a« 1 the en­
tropy in the liquid phase is determined by the expression 

s = 1, (0) I I2 (O). (2.30) 

From Eqs. (2.29), (2.30), and (2.10) we obtain the follow­
ing result for the latent heat of transition q: 

3 lt(O) 
q =2 l2(0) T. 

T,n-diagrams are shown in Figs. 2a and 2b, where 
the region of phase stratification is cross-hatched for 
the cases {3 < 0 and {3 > 0. The boundary of metastabil­
ity on the side of the liquid phase is given by the dashed 
line for {3 < 0. The boundary of metastability of the 
gaseous phase is located in the immediate vicinity of 
the Bose condensation line, i.e., in a region where the 
formulas of perturbation theory are not applicable. All 
curves are obtained as the result of a numerical solu­
tion of Eqs. (2.12), (2.16), (2.17), (2.26), and (2.29) for 
lf31 = O.L 

Here it is appropriate to emphasize that all formulas 
are valid only for very small values of v, T, and {3. This 
circumstance is associated with the fact that in order 
for our approach to be valid at high temperatures it is 
necessary that T 114 « 1 and v116 « 1. The interplay of 
numerical coefficients also restricts the domain of 
validity of almost all asymptotic formulas. In particu­
lar, the transition line T = 3.31 v213 for Bose condensa­
tion and the asymptote T = 2511 for the stratification 
region now intersect at 11 = 2.4 x 10-3 • 

In conclusion the author expresses his deep gratitude 
to s. V. Iordanskii' for helpful discussions and to z. B. 
Vol'pert for carrying out the numerical calculations. 
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