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The dispersion properties of the macroscopic polarizability of a nonlinear resonant medium are 
considered. The Kramers-Kronig relations are extended to nonlinear resonant media with an arbi­
trary inhomogeneous broadening of the operative transition line and identically oriented molecules. 
From the derived relations it follows, in particular, that the saturation field of the antihermitian 
part of the polarizability is always equal to the saturation field of a single molecule and does not 
exceed the saturation field of the hermitian part of the polarizability. Dispersion relations are also 
found for resonant media with inhomogeneously broadened lines of symmetric shape. 

1. The polarizability of a molecule placed in a strong 
monochromatic field Ee iwt of frequency w near one of 
the eigenfrequencies of the molecule is given by the 
following well-known expression[!]: 

id;'dkno[i(wo- w)+-r2-1] 
a;k = --::-c----:-.::.....:.----:----:-:-:::-:-:'--:--=:-

h[(w- wo) 0 +-r2- 2 + 4rddEj 2/-r2fl2] 

Here n0 is the equilibrium difference in population 
density which would exist in the absence of the field; 

(1) 

T 1 and T 2 are the relaxation parameters; d is a non­
diagonal element of the dipole moment matrix for a 
resonant pair of levels. The macroscopic polarizability 
Xik(W, E) of a medium consisting of such "two-level" 
molecules can be obtained by averaging <lik over the 
distribution functions with respect to w 0 and d in an 
infinitesimal physical volume element. 

In the present paper we confine ourselves to the in­
vestigation of the general properties of resonant media 
with identically oriented molecules, without specifying 
the form of the distribution function with respect to wo. 

The function Xik, defined by the expression 
iG> 

Xik(w,E)= S /(w 0)a;kdw0 (2) 

( f ( w0 ) is the normalized distribution function of the 
molecules over the transition frequencies) can differ 
substantially from <lik in both its frequency depend­
ence and field dependence. It is possible, however, to 
obtain several general relations for the function Xik by 
using the causality principle and the properties of the 
resonant molecule. 

2. We calculate first the integral of Xik over all 
frequencies tl: 

f<>o +oo += l X;h(w,E)dw= S dw S f(wo)a;kdi~o. (3) 

We change the order of integration with respect to w 
and w 0 in the.right-hand side of this. equation; when 

'lThe conditions of applicability of the infinite integration limits 
coincide, both here and in the rest of the paper, with the conditions of 
applicability of the two-level model for the molecules of the medium [ 1 ). 

One of these conditions, in particular, is that f(w 0) decrease sufficiently 
rapidly for increasing w 0 . 

this is done, the inner integral can be calculated easily 
and turns out to be independent of w0 : 

+~ 5 i(w'O- w) + ,,-• dw = 3..... 
(w- wo) 2 + ,.-• + 4r1 j dE 12/r)z" r 

The integral of the distribution function over wo is 
equal to unity. Hence, independently of the form of 
f( w0 ), we find that -1 ( E d id;' dhnno 

' l(ik w, • ) w = --;---
~ lir 

(4) 

or, dividing Xik into hermitian and antihermitian parts, 

+oo 

S innod;' dk 
)(;A" dw = ---,--­

l!r 

(5) 

(6) 

It is obvious that for a real d the hermitian part of the 
polarizability xrk and the antihermitian part of the 

polarizability xfk coincide respectively ,with the real 

and imaginary parts of Xik· 
The formulas (4) and (5) allow us to determine the 

parameters of one molecule if the function Xik( w, E) 
is known, even if only approximately. We notice that 
the relation (4) can also be written in another form: 

- 1+= s Xik(w,E)dw=- s xu,(w,O)dw. 
~ r~ 

This equality gives an integral relation between the 
linear and nonlinear polarizabilities of the resonant 
medium. 

(7) 

3. It is clear that the Kramers-Kronig relations are 
not valid for <lik(w, E), because this function has a 
singular point (a pole) both in the upper and in the 
lower complex w planes. These relations, of course, 
are also not valid for Xik( w, E). Nevertheless, it turns 
out to be possible to find the relation between the real 
and imaginary parts of Xik• at least for the case of 
identically oriented particles considered here. 
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We now introduce a new auxiliary function Xik(w, E), 
equal to 

(8) 

This function can be obtained from the linear polariza­
bility by replacement of the parameter 1/r2 with the 
quantity r / T 2· It is easy to see the relation between 
Xik and the true polarizability Xik namely 

'Xt~th =Xih\ 

Xo,a = r"/..ih0 • 

However, according to its definition, the auxiliary 
polarizability has no singularities in the lower com­
plex w half-plane and consequently the Kramers­
Kronig relations apply here: 

+oo-
- h i s X;•"(x,E) 
Xi~ (w,E)=- ----dx, 

,. "": -oo X- W 

+oo-
- i 8 X },• (x E) Xik"(w,E)=- ' ' dx. 

;r-oo x-w 

(9) 

(10) 

(11) 

(12) 

Inserting (9) and (10) into these relations, we obtain the 
following formulas: 

i +oo x·•"(x E) 
Xik•(w,E)=-r R ' ' dx, (13) 

:r ...:::00 x-w 

( E) i 1 7 z;•h(x,E) 
X!A4 w, = -- J dx. 

11 r-oo x-<O 

We recall that the coefficient r can be found from 
formula (7). Thus knowledge of xik as a function of 

(14) 

the frequency and of the field is sufficient both for the 
determination of the parameters of the molecule (see 
(6)) and of the hermitian part of the macroscopic polar­
izability x~k (see (13)). 

We note one important property of the resultant 
formulas, connected with the character of the field de­
pendences of the hermitian and antihermitian parts of 
the nonlinear pola.rizability. It follows from (13) that 
the saturation field for xfk coincides with the minimal 

of the saturation fields X~k' and for the factor 1/r the 
latter, obviously, is equal to the saturation field for the 
polarizability of one molecule. At the same time, the 
saturation field for x~k is always larger than or equal 
to the saturation field for the polarizability of one 
molecule. 

Thus, the characteristic field which changes Xfk 
appreciably coinc:ldes with the saturation field for the 
polarizability of a single molecule 

(15) 

and is less or even much less than the saturation field 
for x!lk. The last possibility was demonstrated in the 
pape/by Javan and Kellyr 2J for the particular case 
when the inhomogeneous broadening of the working 
medium line is of Lorentz form. 

In the rather frequent case when the saturation field 
of the hermitian part of the polarizability is given by 

E,,h ~ li I dT<t<z (16) 

for fields which are not too strong, i.e., for 

(17) 

we can replace the polarizability x~k in the expressions 
(12) and (13) with its linear limit 1 

1 

l(;•"(w, E):=::::_!__~ T Xikh(x, O) dx. (18) 
n r---,;) x-(1) 

Next, using the Kramers-Kronig relations for x~k( w, 0) 

and xfk(w, 0) we obtain the relation between the anti­
hermitian part of the nonlinear polarizability Xfk ( w, E) 
and its linear limit: 

1 
XiA"(w,E)::;:;; -XiA"(w,O), 

r 
(19) 

4. There is a case of certain practical interest, 
namely when the eigenfrequency distribution function 
of the molecules is symmetric with respect to a certain 
frequency wp· For such f( w 0 ), it follows directly from 
the definition of Xik( w, E) that 

l(;t{w- Wp, E) = -x~/ (wp- w, E). (20) 

Separating the hermitian and antihermitian parts of 
this equation, we find that X~ and xfk are respec-

tively an even and odd function of the frequency vari­
ance, n = w - wp. 

It is possible now to derive for Xik( n, E) several 
new relations which are analogous to the formulas for 
t::(Q) for linear media (see, for example,r 3 l, Sec. 62). 
It follows from the symmetry relation (20) and from 
formulas (13) and (14) that 

x· '(O E)- 2iQ C z;•"(x,E) d 
1h ·-, - --;--r ') ;i!- _ Q2 x, 

0 

(21) 

(22) 

We shall derive a formula expressing the values of 
Xik ( n) on the imaginary axis in terms of the values of 

X~k ( n) on the real axis. For this purpose we first re­

late the values of Xik( in) to the values of the auxiliary 
function Xik( in), Comparing the corresponding expres­
sions (1) and (8) with imaginary arguments, we find 
that 

t+r- 1-r- (23) 
Xi~<.(iQ) = ---:z;:-x;•(iQ) + ~Xik(-iQ), 

where r = -/1 +4rlr2idEI2/:ti2, as before. 
Changing n into n in this equation, we obtain 

1-r- 1+r-
Z;•(-i!1)= --z;•(i!2)+--z;•(-iQ). (24) 

2r 2r 

It is easy to eliminate Xik(m) from these relations. 
Then for Xik( -in) we have 

2x,.(-iQ) = (1 + r)x;.(-iQ)- (1- r)x,.(iQ). (25) 

On the other hand, Xik( -m) can be obtained by calcu­
lating the integral 

over a contour consisting of the real axis and an infinite 
half-circle in the lower half-plane. In view of the 
analyticity of Xik in the lower half-plane, this integral 
is equal to the residue of the integrand at the point 
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x =-in, so that we obtain - -S XXik(x) . - ·n 
--- dx = - 11t?;ik ( -!••). 

-oo x• + Q2 

On the left-hand side of the equation, the antihermitian 
component of the integrand does not contribute to the 
integral because of its oddness. Thus 

- . 2i "'s xx;)th <x> 
Xil(-!Q}=-;- x"+ Q2 dx. 

0 

Replacing X~k by xrk (see (9)) and expressing 

Xik( -in) by Xik(±in) (see (25)), we finally obtain 

. . 4i s"' XXikh (x) 
(!+r)X<l(-lQ)-(1-r)X;~(lQ)=- , , dx 

n 0 · x- + Q-

( n is a real positive number). 

(26) 

As a simple corollary of the above result, we have 
the integral relation of the form 

(1+r) f Xih(-iQ,E)dQ=(1-r) s Xi~t(iQ,E)dQ. (27) 
0 

In conclusion, I express my gratitude to B. I. Talanov 
for making critical comments. 
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