
SOVIET PHYSICS JETP VOLUME 30, NUMBER 6 JUNE, 1970 

SLOW COLLISIONS IN A SYSTEM OF THREE BODIES INTERACTING ACCORDING TO 

COULOMB'S LAW. II. SYMMETRIC CHARGE EXCHANGE 

A. V. MATVEENKO and L. I. PONOMAREV 

Joint Institute of Nuclear Research 

Submitted May 20, 1969 

Zh. Eksp. Teor. Fiz. 57, 2084-2094 (December, 1969) 

The scattering phase shifts and cross sections for the process of symmetric charge exchange 
p + H(1s)- H(1s) + p are determined by the perturbed stationary states method for collision ener­
gies between 10-5 and 5 eV. The phase shifts are determined on the basis of the phase function 
method, which yields the values with a prescribed accuracy. For a specific physical problem, the 
results obtained permit us to derive some general regularities in the behavior of the partial phase 
shifts and cross sections, to elucidate the limits of applicability of the Born approximation for cal­
culation of these quantities, and also to illustrate the features of transition from low collision ener­
gies to high collision energies. In the antisymmetric 2pa state of the molecular hydrogen ion H~, 
a weakly bound state with a binding energy J ~ 4 x 10-4 eV is found to exist for a large equilibrium 
distance between the nuclei, R0 ~ 12.55 atomic units. 

INTRODUCTION 

THE problem of the scattering of a proton by a hydro­
gen atom 

p + Il(1s)-+ H(1s} + p 

is the simplest example of scattering in a three body 
system interacting according to Coulomb's law. The 
reaction (1) has intrinsic interest, but in addition, the 
features of more general problems of a similar type 
can be traced through this example. 

(1) 

In the calculation of the cross sections for the pro­
cess (1 ), the method of partial waves is the most sys­
tematic;[2-41 it is especially good for low-energy colli­
sions, when the number of waves that make a contribu­
tion to the cross section is comparatively small. 
Within the framework of this approximation, the par­
tial amplitudes and phases can be calculated classically 
by the formulas [5' 61, or, if the phases are small one 
may use the Born approximationPl In much earlier 
researches, the method of the impact parameter was 
also used. [2•81 Under natural limitations, both methods 
give a reasonable approximation without, however, de­
fining its limits. 

For slow collisions, the most systematic realiza­
tion of the partial wave method is the method of per­
turbed stationary states (PSS), [2•31 the correct applica­
tion of which to processes of type (1) became possible 
after the exact solution of the problem of two cen­
ters.[9-121 In the present work, within the framework of 
the PSS method, the phases and cross sections are cal­
culated for the reaction (1) without any further approx­
imations. The phase function method, developed com­
paratively recently, has been used in the calculations. 
This method is being developed intensively and two 
monographs have already been devoted to it;[ 13•141 how­
ever, it has been applied only comparatively rarely in 
practical calculations. 

METHOD OF PERTURBED STATIONARY STATES 

In the problem of three bodies interacting according 
to Coulomb's law, the variables in the Schrodinger 
equation are completely separated in the Jacobian co­
ordinates,[l•151 which makes it possible to separate the 
motion of the center of inertia of the system as a whole, 
the relative motion of nuclei with masses M1 and M2 
(the vector R) and motion of the third particle Ms (the 
electron) relative to the center of mass of the nuclei 
M1 and M2 (the vector r ). After separation of the 
motion of the center of inertia in the PSS method, the 
wave function 

'l'(R,r)= ~ X•(R)cp.(R,r) 
(,.) 

(2) 

in expanded in the complete set {n} of eigenfunctions 
c;on(R; r) of the problem of two centers, i.e., the prob­
lem of the motion of a particle M3 in the field of two 
fixed nuclei M1 and M2, separated by a distance R. In 
the case of symmetric charge exchange for low-energy 
collisions, the resonance character of the process 
makes it possible to limit ourselves to the two-level 
approximation, i.e., to keep in the sum (2) only the two 
lowest states of the system of H~: 1s a (even) and 
2p a (odd).P61 

Under these assumptions, the cross section of pro­
cess (1) is computed by the formula[ 3•41 

... 
n 

cr.x(k) = ~ O"t(k) = kl ~ (21 + 1)sin2(6i- Oul), (3) 
1=0 l 

where az(k) is the partial cross section of the reso­
nant charge exchange, and 0~ and 0~ are the partial 
phases of scattering, which are determined from the 
equation 

Here 

dt l l l 
aR•Xg, u(R)+ [k2 - Vg, u(R))Xg. u(R) = 0. 

k2 = 2JIE, 

(4) 

1131 
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v:.u(R) = 2M[IVg,u(R)- Wg,u(oo)] 

l(l + 1) 
+[l~g. u(R)- Kg,u(oo)] +~, 

Mo 
M~~-, 

m 

1 1 1 -=-+-. 
J/o Mt M2 

1 1 1 -=-+--­
m Jlla ll'lt + M, (5a) 

Wg(R) and Wu(H) are the even and odd terms, re­
spectively of the two-center problem in the set of units 
ti = e = m = 1 , and 

K8,u(R')=~dr<pc,u(R; r)(-1\a)<pg,u(R; r) 

are the diagonal matrix elements of the operator of 
nuclear motion over wave functions of the two-center 
problem.r10• 12l 

The asymptote of the potentials V(R) is the follow­
ing: 

as R -o 

as R-oo 

·2M l(l + t) 
V g' ( R) = -R- + --'---:'R.,--' ...:.... , 

V '(R)'=2M + 2+1(1+1). 
" R R• ' 

VI (R)= l(l+1) 
g. u R2 

9M 

'2R' 

METHOD OF CALCULATION 

(5b) 

(5c) 

In the computation of the partial phase shifts o~,u 
the phase function method is used, r13• 14 l which makes 
it possible to reduce the linear equation of second 
order (4) for the wave function x ( R) to a nonlinear 
equation of first order for the phase function 0 ( R): 

d l l l . ' l (6) dH 6g. u(R) =- k V, . • (R)sm [kR + 61 , "(R)] 

with the initial conditions as R - 0 that are obtained 
from Eq. (6) with account of the asymptote of the po­
tentials (5b): 

I:J,1(R) = kR(a + bR), 

a=-
(2S + 1 )+ -{45-=i 

b= 
2S 

8=1(1+1). 

M(l + a2) 

l+(l+a)S' 

For 0~ one must make the substitution 

S=l(l+1)-+S=2+1(1+ 1) 

(7) 

in the expansion of (7 ). The desired scattering phases 
o~,u are determined from the relation 

6~. u = o;. u(oo) + nl/2. (8) 

Equation (6) was integrated in the energy range 
R = 10-5-5 eV; the features of the calculation are dis­
cussed in Appendix I. 

DISCUSSION OF JRESULTS 

1. Figures 1 and 2 show the scattering phases 0~ 

and 0~ for different collision energies. These are 

smooth functions,, similar to what are discussed inf 3• 17l. 
For low-energy collisions ( E :s 0.1 eV), the phase 
0~ = Og( l) becomes a discontinuous function of the 

5g 
ro.-----------------------------. 

0.001 eV 

fO 

Q 

FIG. I. Scattering phases lig/(k) = lig(/) in the even channel as func­
tions of the orbital momentum/ for different collision energies E. For 
E.;;; 0.1 eV, the function lig(/) becomes a step function. 

orbital momentum Z: from its initial value 0~ f:o 181r1 > 

with increase in l it decreases to zero in jumps, equal 
to k1r, where k = 0 and 1. 

It is easy to understand the reason for such a behav­
ior of Og(l) if we use the asymptotic expansions of the 
scattering phases Oz for the potentialr 3 ' 7 l 

V(R)= l(l+1) a 
R' H' 

For l = 0 (a =scattering length) 

1 :rra . 2a alc2 (9 ) 
kctgi:Jo = --+-.-k+-k'ln- a 

a 3a' 3a 16 ' 

and for l ;r. 0 

k'ctgb,= (21+3)(21+1)(21-1). (9b) 
na 

It follows from (9b) that as k- 0, the phase Og(Z) can 
only take on values that are multiples of 1r. On the 
other hand, as l - oo, according to the general rule, 
Og(l)- 0. These requirements can be compatible only 
if, beginning with some l = L (which is determined by 
the region of applicability of Eq. (9b)), the phase Og(l) 
decreases by jumps that are multiples of 1r. 

This tendency is noted even more sharply in the plot 
of D.z = Og(Z)- Ou(l), inasmuch as the phase shifts D.z 
in the zeroth approximation correspond to scattering by 
an exponentially decreasing potential. The results of 
the calculations for E = 10-3 are shown in Table I. 

2. The graphs of Ou ( l) for different k show charac­
teristic features of another type, which are determined 
by the form of the potential Vu(R). The antisymmetric 
term Vu(R) has a repulsive character almost every­
where, with the exception of a weak minimum for 
Ro = 12.55 of depth D =6.079 X 10-5 a.u. = 1.65 X 10-3 eV. 
In accord with this, the phases ou(Z) are negative2> for 
small l, but in the region of large l they have a weak 
positive maximum. For a decrease in k, this maximum 
increases and shifts into the region of small l. For 
E = 10-5 eV we have 0~ =3.748. According to the 
Levinson theorem, this means that in the antisymmetric 
state 2p0' of molecular hydrogen ion H~ there exists a 

1>For l = 0 and k = 0, by Levinson's theorem, P 3•141 lig = n1r, where 
n is the number of bound states of the electron in the potential Yg. For 
the symmetric term of the system H2 +, the value of n = 18. 

2lThe connection between the sign of the phase li and the sign of the 
potential Vis clearly seen from Eq. (6). 
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FIG. 2. Scattering phases l>u1(k) = l>u(l) in the odd channel. As E-+ 0, 
l>u0 (k) > 1r, which indicates the existence of a metastable level in the odd 
potential Wu (R) of the Hz+ system. '0 

weakly bound state at large distances between the 
nuclei. This fact can be interesting chemically, and 
evidently has not previously been noted. In the approx­
imation of the Morse potential, the binding energy J of 
this level is equal to 3l 

1 = 1,5·10-s a.u. = 4·1Q-4 eV. (10) 

3. Figure 3 shows graphs of the partial cross sec­
tions az(k) for different values of k. It follows from 
them that in the general case there exists two regions 
of l in which az(k) depends on l in essentially differ­
ent fashion. For l < l 0 , this is a stepwise function, 
having 18 maxima; for l > l 0 , it is a smooth function, 
having a maximum and a characteristic fall off (Fig. 
3, c-d). For k < 3, the second region appears (Fig. 
3b) and for further decrease of k, the number of 
maxima of the stepwise function also decreases (Fig. 
3a). In the limit k - 0, a single partial wave a 0(k) is 
preserved and we obtain pure a-scattering. 

Conversely, with increase im k, the contribution of 
the partial cross sections az(k) from the region l > lo 
also increases. Simultaneously, in the region l < lo, 

Table I 

.!II .I 

0 11ln+ 1,132 -0,721 - 19n- 1.283 42,9 
1 19n-O.M1 0.519 - 19n-1.360 1M 
2 -19rr -tl.l,~l 1.413 - 19lt -1.501 232 
3 19rr +0.2~2 n-1 .~2~ - 18lt + 1.450 321 
4 

I 
t9n ,o.ott n-1,216 - 18 lt + 1.286 339 

5 tH:n: -f-l.4U~ I.Oii - 18n+0.32i 52,6 
6 JHn+U.515 0.513 - 18n+U.002 0.002 
j' 17 Jl -· 0.301 0.29i - 17 n +O.OO't 0.009 
8 lin-'- 0.194 0.191 - J7n...:..1u·• -to-• 
9 1'i n -'-0.135 O.t:J5 - 17n-i- IO-• -to-• 

10 IGn-~0.099 0.099 0.095 t6n + to·• -w-• 
11 16" + 0.074 O,Oi'i O.OiZ t6:t+ w-• -w-• 
12 15 n + O.U5S 0.058 O.U56 t5n+ to·• -to-u 

Note: The Born phase 6s is computed from Eq. (9b). The partial cross sections 
OJ are given in natural area units (h/me2 ) 2 = 0.28 X 10-6 cm2 • 

3)This level is metastable, inasmuch as the transition from it to the 
highly excited vibrational levels of the system Hz+ in the Is u state is 
made very difficult from the small overlap of the wave functions of the 
nuclear motion. It is of interest to make clear the role of this level in 
biological molecules for the structure of which long-range order is char­
acteristic. 

l 200 

FIG. 3. Partial cross sections l>t(k) as functions of the orbital mo­
mentum l for different collision energies E. ForE< 0.1 eV, this is a 
stepwise function (a); forE;;;. 0.1 eV, a characteristic smooth fall-off is 
noted b( ); forE= 0.22 eV, a region of smooth change of ur(c); forE= 
5 eV, this region is greatly expanded and simultaneously, the step-wise 
function for I< 10 approximates a periodic function (d). 

the jumps in the function az(k) become ordered and 
begin to approach a periodic function more strongly 
than in the histogram (Fig. 3d). 

The graphs that have been shown permit us to follow 
smoothly the features of transition from low-energy 
collisions to high-energy ones. In particular, it follows 
from them that for E > 5 eV, the total cross section 
a(k) can be estimated in the following way: 

(k) ~ :rc(lo + t)• + r C1 dl 
0 2k2 J I ' 

!, 

(11) 

i.e., by averaging over the region 0 :S l :S lo and inte­
grating over the range l > l 0 • In previous works, it 
was done in this way, rs,sJ and az was computed by the 
WKB method. 

For E = 1 e V, both components in Eq. (11 ) give about 
the same contribution to the cross section a(k); how­
ever, for E > 1 eV, the contribution from the range 
l > lo begins to dominate. 

4. Figure 4 shows the dependence of the total cross 
section a(k) on the energy of relative motion E. The 
divergence between our results and the typical values 
of Dalgarno and Yadav[eJ is reasonable if we take into 
account the approximations made in their research 
(averaging for small l, the quasi-classical phase cal­
culation, discarding of the matrix elements Kg and 
Ku). 

The reason for the difference of the theoretical cal­
culations from the experimental data[Is] is discussed 
in[sJ. 

We now consider the fact that the character of the 
dependence of aex(t) on the collision energy changes 
for E =0.1 eV. This effect is produced by a change in 
character of the function t:.z: for E < 0.1 eV, it be­
comes stepwise and at the same time, the second 
region l > lo vanishes in the partial cross sections 
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16 - 6,. 
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FIG. 4. Various types of cross sections for the process of symmetric 
charge exchange with account of proton statistics. ForE> 0.1 eV, ac­
count of spin states of the particles does not affect the value of the 
total cross section. 

o-z(k) (see Figs. 1 and 3b). 
However, even for energy E = 10-5 eV ( T ~ 0.1°K) 

the region of pure a-scattering is still not reached, 
inasmuch as the four phases (Z-0, 1, 2, 3) make con­
tributions to the cross section at this energy. For 
E > 0.1 eV, the formula 

a,x(k) ~ A+ B lg E, (12) 

is fulfilled satisfactorily~ this has already been dis­
cussed in the literature. 8 ' 191 We note that as k - 0, 
Eq. (12) no longer holds, since it follows from the re­
lation (9a) that a(k)- const here. 

5. The cross section of the charge exchange a ex( k), 
the cross section of elastic scattering adir(k) and the 
total cross section a(k)[ 4 • 5l 

a(k)= Gex(k)+adir(k)= 

= ~~ ~ (2l+1) (sin2 6i+sin2tV) 
(13) 

l 

completely determine the scattering process (1) with­
out account of proton statistics. 

For low-ener!~Y collisions, it is necessary to con­
sider the spin states of the protons. In this connection, 
two total cross sections a8 8 (k) and a8 a(k) appear 
for the singlet and triplet states of two protonsr 3 • 5l 

O",,,(k)= ~~{:~ (2l+1)sin26g'+ ~ (2l+1)sin2 6u1}, 

' even odd 

a, 0 (k)= 41t { '5-' (2l+ 1)sin2 6i+ ~ (2l+11)sin2 6u1}. . k2 ,:..J 
Cl>dd even 

(14a) 

(14b) 

Only the total cross section is measured experimen­
tally :[3 • 51 

1. 3 
a,(k)=4<rs,s(k) +4as,a(k), (15) 

and is averaged over the initial and summed over the 
final spin states of the two protons. In practical ap­
plications, the transport cross section[ 3 J 

" 
<Tt '= 2n ) a(9) (1- cos 9)sin e ae (16) 

0 

is also encountered, which, after expansion in partial 
waves and symm•etrization, takes the form 

a,(k) = ~ {( ].__ ~ +...!.. L:') (l + 1)sin2 (6u'- 6~+1 ) (17) 
k- 1 4 even 4 odd 

+(! ;~ +: ~){l+1)sin2 (6g'-6~1 )}. 
odd even 

Table II 

.. ., ~ I •• 
I 

JQ-• - 20,3 II ~: I 26 42 21 30 
JQ-• - 1J .-'! 22 ~· ' 

29 44 24 17 
w-• - :;.27 11 g ! 16 12 17 6.7 
JQ-• - 0.933 4.5 ul 5.7 4.9 5.9 ~.0 
0,1 0,60 O.ti22 

I 
1.7 2.~ 2.5 2.1 1.2 

0,22 - 0.518 1.6 2.1 2.2 1.9 2.3 0.99 
1 0,47 0.4.~~ 1.2 1.6 1.6 1.6 1,6 0.89 
5 - 0.3/L 0.87 1.2 1 ., 1.2 1.2 0.74 

Note: The cross sections are given in units of 10-14 cm2 , ~x are the values from [6]. 

Figure 4 shows some of these cross sections as a 
function of the collision energy and Table II gives the 
numerical values. It is seen from them that for energy 
of 1 e V, account of proton statistics does not change the 
total cross section. 

CONCLUSION 

In problems of similar type, two sources of error 
exist: in the choice of the initial approximation and in 
the calculation of the cross sections within the frame­
work of the given approximation. In the present re­
search, it has been possible to avoid errors of the 
second type, since, within the PSS method, the cross 
sections and the phases for process (1) are computed 
with the specified accuracy without any additional ap­
proximations. Therefore, the results can be used for 
the estimate of the errors of other, approximate 
methods of calculation of the phases and cross sections 
of the process of symmetric charge exchange. 

The completed study is principally of methodologi­
cal interest, since hydrogen is generally in the molecu­
lar rather than atomic state at low collision energies. 
However, this classical problem of scattering theory 
allows us to have a feeling for the general features of 
the process of scattering in three-body system inter­
acting according to Coulomb's law. 

The proof of the existence of a bound state of the 
system H; at large internuclear distances should be 
especially noted. 

We take this occasion to express our thanks to V. V. 
Babikov for numerous consultations, and also to S. S. 
Gershte'ln for constant interest and for discussions, to 
T. M. Peck who kindly lent us the tables of terms. 

APPENDIX I 

In the practical calculation of phases from Eq. (6 ), 
specific difficulties arise which must be emphasized 
here. 

One of these is that the phase functions o~(k) have 

a stepwise character in the presence of bound states as 
k - OY3 ' 14] This gives rise to considerable difficulties 
in the integration of the more natural phase equations, 
which use Bessel functions, and it is necessary to inte­
grate Eq. (6) in place of them. For this equation, the 
limit of integration Ro is shifted appreciabl{ in the 
direction of large R. Finally, the phases 1ig,u were 

calculated from the formula 

I I :nl 
6g, u = Og, u(Ro) + z-+ h1(Ro), 

(A.1) 
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where the correction 

, __ 1_[ 3M] _i_[z<z+i)+ 9M] 
h (flo)-+ 2kRo l(l +f)+ 2R02 + (2kRo) 2 2llo2 

X sin 2(kR0 + 6°) + - 2--[ l(l + 1)- 91ll J cos 2(kRo + 6o). 
(2kRo) 3 R ' (A.2) 

6o = 6(Ro), 

takes into account the contribution to the phase otu 
from the region Ro :::; R < oo, and Ro is determined 
from the condition of convergence of the expansion 
(A.2) ( kRo > 1) for the additional condition 

6' (l/0) ~ 10-2. (A.3) 

These conditions guarantee the given accuracy 
E :::; 10-2 in the calculation of the separate phases o~,u 
and the accuracy E :::; 10-3 in the calculation of t.z. 

In integration in the range R :::; 20, the tables of 
Peck[uJ were used for the terms Wg(R) and Wu(R) 
and the tables of Hunter et al. (ls] for the matrix ele­
ments Kg(R) and Ku(R). In the range R > 20, we 
used the asymptote of the terms[ 21 l 

APPENDIX II 

In some cases, in the calculation of the phases az 
from Eq. (4 ), the regions of applicability of the quasi­
classical and Born approximation overlap. This can be 
shown directly by comparing the two expressions: 

C"[ (l+'/z)' l''• i"[ .. (l+'/t)']v' 6Kel=J k'- -U(r) dr-J k-- r dr, 
r, ,t r, (A,ll) 

"' 
6s1= -~ Su(r)[jr(kr)]Zdr. 

2k 0 (A.12) 

(Here ro = (l + Y2)/k, jz(kr) = Jl+l/2(kr) is the spheri­
cal Bessel function of half-integral order.) For large 
l and small k, the turning point r 0 >> 1, and in this 
region, the condition of applicability of the Born ap­
proximation U( r) « k2 is satisfied for rapidly decay­
ing potentials. Using this condition, and also the quasi­
classical asymptote of the functions jz ( kr) for large 
zr211 

V2k[ (1+•/,)'J-''• (rV (l+'/z)' ") lrH,(kr)= - k2 - c.os i k~- dr--
nr r' J r 3 4 ' 

r, 

W 1 ,,.(R) =Eo(R) + 1/ 2!1E(R), (A.4) in both cases we obtain the same formula 
(A.13) 

E R 9 15 213 7755 1773 86049 
o( ) =- 4R2 - 2R'- 4R7 - 64R8 - 2R9 - 16R10 '(A.5) 

I!E(R)=i._Re-R[i+-1 __ 25 -~- 3923] (A.6 ) 
e 2R 8R2 48R3 384R' . 

As the collision energy E increases, it is necessary 
in the calculation of a(k) to sum over a large number 
of partial cross sections az(k) (see Fig. 3). Practically 
speaking, summation is carried out in Eq. (3) only over 
a finite number of partial cross sections: 

L 

cr(k) = ~ cr1(k)+ !1cr(k), (A.7) 

where L is determined from the condition 

(A.8) 

and the Born phase o~ is given by Eq. (9b) (see Table 
I). 

In the range L :::; l < oo, the asymptotic formula (b) 
for the scattering phase ol is already well satisfied g,u 
and the contribution t.a ( k) to the total cross section 
a(k) can be estimated analytically: 

r ~3a2k2 
l!a(k) = i cr1(k) dl ~ 32£' , 

(A.9) 

a=9M /2. 

This contribution is negligibly small ( ~ 10-3 of the total 
cross section a(k)). For collision energies E > 10-4 

eV, the value of L can be estimated from the formula 

(A.10) 

The given estimates determine the accuracy of the 
results within the framework of the PSS method in the 
two-level approximation. This approximation is reason­
able for small collision energies, although the dis­
tances between the protons of the H; system is large 
in comparison with the energy of the emitted proton. 
However, the exact limits of the method are currently 
unknown, although certain estimates exist for them. [61 

1 'f [ (l + 1/ )']-''• llr~-.1 U(r) k2 - 2 dr. 
2 ;. . r2 

(A.14) 

In our specific case, U(r) =-a/r4 • Calculating the 
integral, we obtain the relation 

6r = nak2/8(l + '12)•, 

which is practically the same as Eq. (9b). 

(A.15) 
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